Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Определение обобщенных реакций связей

Определение обобщенных реакций связей. В 4.4 мы описали способ решения задач при неголономных связях  [c.232]

Для определения обобщенных реакций связей служат соотношения  [c.412]

Таким образом, показано, что и при существовании связей (голономных) уравнения движения можно записать в форме Лагранжа. Дальнейшее обобщение возможно только применительно к таким неголономным системам, для которых связи выражаются как неинтегрируемые дифференциальные соотношения. Рассмотрение этого случая мы отложим до изучения вариационных принципов в гл. VI. Тогда можно будет изложить и способ (метод неопределенных множителей) для определения величин реакций связей.  [c.34]


Таким образом, при определении обобщенных сил, реакции идеальных связей выпадают. Рассмотрим примеры вычисления обобщенных сил.  [c.328]

С другой стороны, обобщенные реакции Q) как коэффициенты при 8qi в формуле (38) элементарной работы bW реакции связей выражаются через эти реакции. Таким образом, равенства (43) могут служить для определения зависимости между реакциями связей и множителями связей (см. следующий параграф).  [c.318]

Вместо сочетания некоторых общих теорем и уравнений динамики, выбор которых представляет значительные трудности, применение уравнений Лагранжа является обшим приемом, который приводит к составлению дифференциальных уравнений движения. Удачный выбор обобщенных координат обеспечивает относительную простоту составления этих уравнений. Удобно и то, что в составленные дифференциальные уравнения движения не входят реакции идеальных связей, определение которых обычно связано с большими трудностями (реакции связей при движении системы являются функциями от времени, положения, скоростей и ускорений точек системы)..  [c.581]

Кроме того, что уравнения Лагранжа имеют вычислительные преимущества, они являются и более общими уравнениями, чем те, которые получаются из основных теорем динамики, поскольку существуют при каких угодно голономных идеальных связях, без ограничений на возможные перемещения системы. Кроме того, в полученные уравнения не входят реакции связей, поэтому для определения движения нет необходимости знать эти реакции. Движение определяется только активными силами. Для составления уравнений движения достаточно определить живую силу системы и обобщенные силы.  [c.344]

Прежде всего рассматривается задача о равновесии системы (статика системы), решение которой дается на основе принципа возможных перемещений. Вводится понятие обобщенных сил и формулируются аналитические условия равновесия. Здесь же можно кратко рассмотреть вопрос об устойчивости равновесия. Далее, как обычно, рассматривается принцип Даламбера и выводятся уравнения Лагранжа 2-го рода. Тем самым указывается метод решения основных задач динамики несвободной системы. Здесь же рассматриваются некоторые другие вопросы. Две системы активных сил, приложенных к определенной системе точек, называются эквивалентными, если их обобщенные силы совпадают при каком-нибудь выборе обобщенных координат (или если они выполняют одинаковую работу на любом возможном перемещении). Это определение вытекает из того факта, что активные силы входят в уравнения движения только через обобщенные силы, вследствие чего замена системы сил ей эквивалентной не сказывается на движении. Следует иметь в виду, что две эквивалентные в указанном смысле системы сил могут вызывать, конечно, различные реакции связей. Но в ряде задач эти реакции не представляют интереса и это различие можно игнорировать. Если это не так, то с помощью принципа освобождаемости реакции связей следует перевести в разряд активных сил.  [c.75]


Применение методов аналитической механики к решению нетривиальных задач требует уже при составлении уравнений подробных сведений по вопросам, на которых, как правило, останавливаются весьма кратко. В связи с этим в книге значительное внимание уделено способам введения обобщенных координат, теории конечных поворотов, методам вычисления кинетической энергии и энергии ускорений, потенциальной энергии сил различной природы, рассмотрению сил сопротивления. После этих вводных глав, имеющих в известной степени и самостоятельное значение, рассмотрены методы составления дифференциальных уравнений движения голономных и неголономных систем в различных формах, причем обсуждаются вопросы их взаимной связи подробно рассмотрены вопросы определения реакций связей и некоторые задачи аналитической статики. Мы считали полезным привести геометрическое рассмотрение движения материальной системы, как движение изображающей точки в римановом пространстве этот материал нашел, далее, применение в задачах теории возмущений. Специальная глава отведена динамике относительного движения, к которому приводятся многочисленные прикладные задачи. Далее рассмотрены канонические уравнения, канонические преобразования и вопросы интегрирования. Значительное место уделено теории возмущений и ее разнообразным применениям. Последняя глава посвящена принципу Гамильтона—Остроградского, принципу наименьшего действия Лагранжа и теории возмущений траекторий.  [c.9]

По определению (5.1.3) и (5.1.7) внутренние суммы в этих равенствах представляют обобщенные силы реакций связей  [c.253]

Определение реакций связей. Идея метода Четаева [6 определения реакций связей заключается в том, что заданные активные силы дополняют одной или несколькими интересующими нас реакциями, понимая систему свободной от связей, порождающих выделенные реакции. Для освобожденной таким образом системы, имеющей на одну или несколько степеней свободы больше исходной, вводят в рассмотрение дополнительные координаты, изменения которых дают освобожденные перемещения вычисляют новые кинетическую энергию и обобщенные силы и составляют уравнения движения, сравнение которых с исходными уравнениями позволяет определить реакции.  [c.33]

Основным различием между уравнениями Лагранжа первого и второго рода систем с конечным числом степеней свободы является то, что уравнения Лагранжа первого рода содержат компоненты реакций связей, а уравнения Лагранжа второго рода эти компоненты не содержат. Достигнуть исключения компонент реакций геометрических и интегрируемых кинематических связей из уравнений движения системы с конечным числом степеней свободы можно, введя соответствующим образом выбранные обобщенные координаты. Если выразить позиционные координаты системы через целесообразно выбранные обобщенные координаты, уравнения геометрических и кинематических интегрируемых связей должны быть тождественно удовлетворены. Это позволяет отделить задачу определения закона движения системы от задачи определения реакций связей [40]. Если на систему наложены кинематические неинтегрируемые связи, задача осложняется, хотя и здесь можно локально достигнуть исключения компонент реакций связей посредством введения неголономных координат (квазикоординат), но полное разделение исследования движения несвободной системы на определение закона движения и определение реакций связей возможно лишь в частных случаях.  [c.56]

По определению обобщенных сил коэффициенты при 6д, представляют собой обобщенные реакции идеальных связей. В силу независимости Ьд,  [c.212]

Таким образом, при определении обобщенных сил реакции идеальных связей выпадают.  [c.527]

Для определения связи дополнительных реакций с дополнительными обобщенными перемещениями первого порядка малости рассмотрим более детально каждое слагаемое выражения (4.96). выполнив, как и для задачи статики, преобразования (4.78)—  [c.146]


В этой части книги мы будем рассматривать следствия общих свойств пространства — времени для ядерных реакций при помощи квантовой механики. Эти следствия, как мы увидим ниже, оказываются значительно богаче, чем в классической механике. Существенно с самого начала подчеркнуть, что нашей задачей является выделение среди всех свойств реакций тех, которые обусловлены очень общими и надежно установленными законами природы. Такое выделение оказывается очень полезным. Оно позволяет свести изучение сложных характеристик реакции к определению необходимого числа действительных параметров (обобщенный фазовый анализ), связать, на первый взгляд, совершенно различные процессы строгими соотношениями. Кроме того, оно дает возможность контролировать и уточнять данные опыта и, наконец, позволяет устанавливать важнейшие характеристики частиц (их спин, четность, изотопический спин).  [c.109]

Вопрос об исключении неизвестных сил реакций встречается уже в статике при нахождении условий равновесия системы материальных точек. Наиболее общим принципом, позволяющим получить условия равновесия системы материальных точек, является принцип виртуальных перемещений (или виртуальной работы). Как было отмечено в 3 гл. I, виртуальным перемещением системы называется перемещение, которое система совершает при виртуальном варьировании ее обобщенных координат. Под виртуальным варьированием при этом понимается бесконечно малое изменение координат, совместимое с наложенными на систему связями и совершаемое в фиксированный момент времени. Принцип виртуальных перемещений обычно формулируется для специального, достаточно широкого класса связей, называемых идеальными связями. По определению связь является идеальной, если силы реакции этой связи при любом виртуальном перемещении системы не совершают никакой работы, т. е.  [c.91]

Вдоль главной диагонали матрицы тензора кинетических напряжений, определенного в переменных Эйлера, как видно из формулы (2.78), располагаются слагаемые, входящие в кинетическую энергию системы, а также плотность р и соответствующие реакции внутренних связей, введенные в состав как консервативные силы. Как известно из лагранжевой механики, кинетическая энергия системы является основной величиной, определяющей движение системы. По-видимому, этим и объясняется возможность составления уравнений движения без привлечения остальных компонент тензора Н1к к построению системы уравнений (4.13), определяющих обобщенные импульсы.  [c.97]

Для определения потенциальной энергии необходимо решить многократно статически неопределимую систему. Обобщенная сила Qi по координате находится из суммы работ активных сил (включая реакции неидеальных связей) на обобщенном возможном перемещении 6с г (все остальные обобщенные перемещения равны нулю). Таким образом получают решение статически неопределимой балки, у которой в сечениях 1— введены дополнительные жесткие опоры, а в сечениях 2 и 7 отсутствует поворот сечений. Коэффициенты жесткости Сг,- представляют собой реакции rij фиктивных опор, расположенных над каждой из масс при прогибе под массой т< = 1.  [c.51]

Итак, при исследовании движения системы в случае наличия односторонних связей изучение закона движения, т. е, определение обобщенных координат как функций времени, нельзя отдв-лять от исследования реакций связей, как это можно выполнить в случае существования лишь двусторонних связей.  [c.137]

Определение идеальных удерживающих связей представляет собой обобщение известных физических фактов. Такие связи не рассеивают энергии на возможных перемещениях. Основной принцип статики для систем с идеальными удерживающими стационарными связями отсюда устанавливается легко. Действительно, дополним заданные силы Zv, Fv, всеми силами реакции i vi, R y, Rvz, тогда нашу механическую систему согласно аксиоме связей мы можем мыслить как систему сощершенно свободных точек, находящихся под действием сил X, + R,x, Yv + Rw, Zv + i v2. Для совершенно свободных точек имеем следующие уравнения равновесия  [c.73]

Принцип Эйлера — Лагранжа позволяет определять реакции связей. Действительно, если к заданным активным силам, действующим на механическую систему, добавим все реакции связей, то из принципа Эйлера — Лагранжа получим уравнения Ньютона для системы совершенно свободных точек. Однако практически более интересным является метод определения отдельных реакций. Идея этого метода заключается в том, что заданные активные силы дополняют одной интересующей нас реакцией, но зато систему понимают свободной от связи, порождающей одну и именно эту интересующую пас реакцию. Для освобожденной таким образом механической системы, имеющей на одну степень свободы больше, определяют дополнительную голоноыную координату q, изменение которой дает освобожденное перемещение в системе вычисляют новые Г, обобщенную силу Qq в освобожденном движении, подставляют значения переменных для действительного движения в уравнение Лагранжа  [c.171]

Поскольку механизмы являются многозвенными системами, то фиксированным положениям каких-либо звеньев могут соответствовать при определенных условиях два или несколько положений других звеньев. Эта особенность отображается многозначностью функции положения. Поскольку в механике машин изучают реальные механизмы и машины, звенья которых имеют массу и конечные размеры, то на их истинное движение влияют силы инерции, реакции связей и другие силы, под действием которых звенья механизмов и машин движутся однозначно. Счедсвательно, каковы бы ни были функции положений звеньев, передаточные функции должны быть однозначными в каждое данное мгновение, или, что то же, при любом значении обобщенных (независимых) переменных величин.  [c.45]


В третьей главе содержится решение некоторых плоских ко нтактных задач взаимодействия ребер с пластинами. В отличие от первых двух глав решение строится иа основе уравнений теории плоского обобщенного напряженного состояния пластины без введения упрощающих гипотез. Ребра считаются присоединенными к пластинам по линии, ширина участка контакта не учитывается. В связи с математическими трудностями, возникающими при построении функций Грина для пластин конечных размеров (в случае плоской задачи) в литературе, за небольшим исключением, рассмотрены плоскость, полуплоскость и полоса с ребрами конечной и бесконечной длины. В силу высокой концентрации напряжений вблизи концов ребер такие решения приближенно могут описывать напряженное состояние и характер реакций взаимодействия в окрестности концов ребер и для пластин конечных размеров, если, ргйумеется, ребро не доходит до границы пластины. В данной главе делается акцент на решение контактной задачи, состоящей в определении касательных реакций взаимодействия между пластинами и ребрами. Напряжения в пластинах не исследуются, но необходимые для этого формулы естественно получаются при формулировке задачи.  [c.121]

Тем же методом совместного решения систем линейных уравнений можно решать и все задачи, связанные о определением ускорений и реакций в кинематических парах. Метод может быть распространен и на механизмы всех других семейств и родов. Он может быть обобщен и на механизмы, у которых ведущим является звено, не связанное со стойкой. Рассмотрим, например, механизм, показанный на рис. 27, а. Для него надо составить уравнения, связывающие скорости или ускорения звеньев цепей FAGD и BE, которые накладывают на движение звена 1 с заданной скоростью oj две связи. Имеем для  [c.248]

Эти к уравнений представляют собой дифференциальные уравнения движения механической системы в обобщенных координатах, они впервые были получены Лагранжем в его Аналитической механике и потому называются уравнениями Лагранжа. Важно обратить внимание на то, что, во-первых, число уравнений Лагранжа равно числу независимых обобщенных координат данной системы, т. е. равно числу ее степеней свободы, и, во-вторых, что неизвестные реакции совершенных связей, наложенных на систему, в эти уравнения не входят. Уравнения Лагранжа представляют собой систему к дифференциальных уравнений второго порядка с к неизвестными функциями д ,. .., Если проинтегрируем эти уравнения, то найдем координаты механической системы 911 > 9йКак функции времени I, а потому будем знать положение этой системы в любой момент времени, и, следовательно, движение системы будет полностью определено. Таким образом, когда уравнения Лагранжа для данной механической системы составлены, то решение второй основной задачи динамики, т. е. определение движения системы под действием заданных сил, сводится к математической задаче интегрирования этих уравнений.  [c.555]

Вместе с развитием неголономных связей и теории общего их вида приобретают значение новые методы в поисках решений классических задач аналитической механики. Такие новые методы базируются, можно сказать, на двух теоремах. Первая теорема высказана в работах П. В. Воронца в первых десятилетиях нашего века в следующей формулировке каждый первый интеграл уравнений движения некоторой механической системы может считаться уравнением связи, наложенной на систему с соответствующими реакциями, равными нулю . Действительно, примем данный первый интеграл за связь и составим уравнения движения с множителем. Далее, учитывая, что первый интеграл тождественно удовлетворяет левым частям всех уравнений с множителем, мы придем к тому, что данный множитель должен быть равен нулю. Обратная же теорема должна читаться следующим образом. Положим, дана механическая система с заданными, пусть идеальными в смысле Лагранжа — Даламбера, связями и активными силами. Имеются динамические дифференциальные уравнения данной системы. Положим, требуется найти янтеграл заданного вида для дайной системы уравнений. Тогда, 1при-няв данный интеграл за уравнение дополнительной связи, будем составлять уравнения движения с подобной связью. Интеграл же может быть любой аналитической структуры, поскольку мы умеем уже составлять уравнения движения при связях любой, если можно так сказать, неголономности. Далее, если мы решим расширенную систему уравнений движения, т. е. уравнений с множителем вместе с уравнением связи, то могут быть две возможности находятся уравнения движения системы, т. е. обобщенные координаты основной задачи в функциях времени и вместе с ними определяется множитель в функции времени. Но, если при каких-либо параметрах системы, или предполагаемого первого интеграла, или при некоторых начальных данных, множитель обратится в ноль, то тогда действительно уравнение связи окажется первым интегралом данной задачи. Возьмем, к примеру, классическую задачу о движении твердого тела вокруг неподвижной точки. Мы знаем, с каким трудом добывались решения этой задачи и как, по существу, их мало. Всего три случая — общего решения, да и общность относится только к начальным условиям, а на другие параметры — распределение масс и положение центра тяжести — налагаются определенные условия. Частных интегралов больше, но все они находились с трудом (вспомним, например, случай Гесса). Данные же методы наиболее естественны нри выяснении вопроса, является ли заданная связь -первым интегралом уравнений движения данной системы как свободной.  [c.13]

О реакциях неудерживаюш,их связей. Для неудерживаюш,ей идеальной связи неопределённый множитель может принимать значения только одного знака. Если связь не напряжена, то множитель Л равен нулю. В случае одной неудерживаюгцей связи условие ухода со связи математически соответствует моменту изменения знака неопределённого множителя. Однако если неудерживающих связей несколько, то изменение знака неопределённого множителя одной (или нескольких) связей ещё не означает, что именно данная связь (связи) ослабляется. Это сигнал о том, что модель движения с одним составом напряжённых связей (рассматриваемых как удерживающие) должна быть заменена моделью движения с другим составом напряжённых связей. Задача определения связей, ослабевающих или остающихся напряжёнными в любой момент времени, решается с помощью принципа наименьшего отклонения Больцмана-Болотова [7] и его обобщений [13, 109.  [c.83]

Рассматривается система, подчиненная голономным связям, имеющая п степеней свободы. Ее конфигурация задается обобщенными координатами. .., дМысленно отбросим некоторое число связей, реакции которых подлежат определению. Число степеней свободы возрастет до п- -т и для задания конфигурации понадобится ввести еще т обобщенных координат + р. .., дп+т- ь1бор их подчиним условию, чтобы их нулевые значения приводили к первоначальной системе. Иными словами, движение системы рассматривается с привлечением избыточных координат дп+ . Яп+т причем уравнениям связей (1.4.8) придается максимально простой вид  [c.327]



Смотреть страницы где упоминается термин Определение обобщенных реакций связей : [c.338]    [c.455]    [c.470]    [c.86]    [c.2]   
Смотреть главы в:

Курс лекций по теоретической механике  -> Определение обобщенных реакций связей



ПОИСК



Вал Определение реакций

Определение реакций связей

Реакции обобщенные — Определение

Реакции связей

Реакции связей обобщенные

Реакция обобщенная

Связи реакции связей



© 2025 Mash-xxl.info Реклама на сайте