Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механические испытания образцов и конструкций

Использование метода акустической эмиссии при механических испытаниях образцов и конструкций полезно для изучения механизма разрушения. Например, анализ кривых, подобных показанным на рис. 115, дает возможность исследовать движение дислокаций во время пластической деформации, а также процесс хрупкого разрушения. Таким образом, этим методом можно оценить хрупкость, вязкость, твердость и другие свойства металлов.  [c.320]


ГЛАВА 7 МЕХАНИЧЕСКИЕ ИСПЫТАНИЯ ОБРАЗЦОВ И КОНСТРУКЦИЙ  [c.156]

Рекомендуемые в справочнике статистические процедуры учитывают специфику механических испытаний и могут быть использованы практически для всех видов механических испытаний образцов и элементов конструкций.  [c.3]

Долгое время считалось, что для статических нагрузок и многих других случаев нагружения справедлив закон подобия. Однако, в особенности для усталостного и хрупкого разрушения, влияние абсолютных размеров тела на его поведение под нагрузкой (понижение долговечности и прочности) стало обнаруживаться настолько часто и сильно, что привело к необходимости учета масштабного фактора (или эффекта) при проектировании, расчетах и механических испытаниях образцов и элементов конструкций.  [c.312]

В практике испытания образцов и конструкций среди средств определения деформаций большое практическое значение получили механические,, оптические, электронные преобразователи, основанные на изменении сопротивления проволоки, фольги, полупроводниковых материалов.  [c.147]

Механические свойства конструкционных материалов определяют экспериментально специальными механическими испытаниями образцов, причем вид механического испытания назначают в зависимости от условий нагружения детали, подлежащей изготовлению из данного конструкционного материала. Механические свойства стали определяют при статических, динамических и циклических режимах приложения нагрузок, а также при пониженных, нормальных или повышенных температурах. Испытуемые образцы можно нагружать по различным схемам (одноосное растяжение — сжатие, чистый или поперечный изгиб, кручение). В за-виси.мости от времени воздействия нагрузки на испытуемый образец испытания могут быть кратковременными или длительными. Почти все методы механических испытаний стали (за исключением метода испытания твердости) являются разрушающими, что исключает возможность стопроцентного контроля механических свойств деталей машин или элементов конструкций и обусловливает весьма высокие требования к точности механических испытаний образцов (или контрольных деталей).  [c.454]

Масштабный фактор (или иначе называемый масштабный эффект) тесно связан с физической природой прочности и разрушения твердых тел. Механические свойства сплава, особенно при знакопеременных или повторяющихся нагружениях, зависят от абсолютных размеров испытываемых образцов и конструкций даже в случае полного соблюдения подобия их геометрической формы и условий испытания [48, 61, 88, 144]. Предел выносливости гладких образцов понижается с увеличением их размеров, что оценивается коэффициентом влияния абсолютных размеров сечения. Для материалов с неоднородной структурой (литые стали, чугуны) влияние размеров образца на выносливость более резко выражено, чем для металлов с однородной структурой. Наиболее значительно снижается усталостная прочность с ростом размеров образца [48, 88] в случае неоднородного распределения напряжений по сечению образца (при изгибе). Форма поперечного сечения образца, определяющая объем металла, находящегося под действием максимальных напряжений, существенно влияет на выносливость образца. При плоском изгибе влияние на предел выносливости размеров прямоугольных образцов больше, чем цилиндрических. При однородном распределении напряжений по сечению гладких образцов (переменное растяжение — сжатие) масштабный эффект практически не проявляется. Характерно, что при наличии концентраторов напряжения масштабный эффект наблюдается при всех, без исключения, видах напряженного состояния. Чем более прочна сталь, тем сильнее проявляется масштабный эффект.  [c.21]


В связи с неоднородностью свойств конструкционных материалов и отклонениями в режимах технологии производства деталей характеристики механических свойств образцов и элементов конструкций носят случайный характер и могут принимать существенно различные значения при повторении испытаний с возможно полным соблюдением их условий. Поэтому найденные из опыта характеристики механических свойств дают лишь приближенную оценку фактическим свойствам.  [c.44]

Практика показывает, что механические свойства, определенные на стандартных образцах, часто не соответствуют прочности реальной сварной конструкции, что объясняется существенным различием характера напряженно-деформационного состояния при испытании образцов и работе реальной конструкции. Поэтому иногда механические испытания после сварки проводят на образцах, моделирующих с определенным приближением работу сварного соединения в конструкции.  [c.498]

Приведенные данные экспериментально подтверждают совпадение критериальных уравнений для механически подобных образцов и свидетельствуют об удовлетворительной реализации подобия напряженно-деформированных состояний испытанных конструкций.  [c.91]

Условия большинства механических испытаний почти всегда отличаются от режимов деформирования и нагружения материала конструкции в рабочем состоянии. Этим объясняются значительные несоответствия между характеристиками прочности материала, полученными при испытании образцов, и конструктивной прочностью [90].  [c.246]

Для коррозионно-механических испытаний образцов из различных материалов с односторонним подводом коррозионной среды к поверхности образца может быть рекомендована и другая конструкция камеры, состоящая из металлического корпуса 1 (см. рис. 33, в) с эмалированной внутренней поверхностью, крышки  [c.103]

При наличии соответствующего требования в проекте производства работ или технологической документации на монтажную сварку конструкции проводится дополнительная аттестация, при которой сварщики должны сварить пробные стыковые образцы. Образцы сваривают из той же стали в том же пространственном положении и с использованием тех режимов сварки, материалов и оборудования, которые будут применяться при монтажной сварке конструкций. Только при удовлетворительных результатах механических испытаний образцов сварщик допускается к сварке монтируемой конструкции. Пробный образец стыкового сварного соединения подвергают следующим механическим испытаниям статическое растяжение (3 вырезанных образца), статический изгиб (2 вырезанных образца), ударный изгиб металла шва стыкового соединения (3 вырезанных образца, при наличии в проекте производства сварочных работ или технологической документации на монтажную сварку конструкции). Размеры свариваемых пластин, а также форма и размеры образцов для механических испытаний, вырезанных из пробного образца, после внешнего осмотра и измерения стыкового шва, должны соответствовать ГОСТ 6996—66.  [c.142]

Полностью воссоздать при лабораторных испытаниях образцов сложное напряженное состояние, свойственное реальным деталям при их работе, весьма трудно. Наиболее надежным было бы испытание деталей в натуру с приближением испытания к условиям практической работы деталей. Однако такие испытания при высокой их стоимости дают только частные решения и при небольшом изменении способа нагружения, температурных условий, размеров детали, конструкции и т. п. могут сильно отклоняться от условий службы детали при эксплуатации. Поэтому задача состоит в выборе таких механических испытаний образцов, которые 1) достаточно надежно определяли бы поведение металла при нагрузках, прилагаемых в эксплуатации, и тем самым давали бы конструктору возможность предварительной оценки наиболее важных служебных свойств деталей и 2) позволяли бы проверить полученное качество материала деталей, т. е. соответствие данной партии деталей стандартным свойствам, даваемым данной маркой материала при заданных условиях обработки.  [c.7]


На рис. 1 показан примерный характер диаграмм растяжения, полученных при испытании стандартных плоских образцов, изготовленных из того же материала, что и опытные стержни. Испытания проводились отделом механических испытаний ЦНИИ строительных конструкций. Все плоские образцы рвались обычно по линии, составляющей угол 30° с продольной осью образца (с направлением усилия) и со срединной плоскостью образца после образования незначительной шейки (рис. 2).  [c.149]

Изломы сварных соединений исследуют после механических испытаний образцов, а также после разрушения сварных конструкций. По излому можно определить характер разрушения - пластическое или хрупкое, а также выявить дефекты - поры, трещины, неметаллические включения и др.  [c.229]

При предварительном контроле основного и сварочных материалов устанавливают, удовлетворяют ли сертификатные данные в документах заводов-поставщиков требованиям, предъявляемым к материалам в соответствии с назначением и ответственностью сварных узлов и конструкций. Осматривают поверхности основного материала, сварочной проволоки н покрытий электродов в целях обнаружения внешних дефектов. Перед сборкой и сваркой заготовок проверяют, соответствуют ли их форма и габаритные размеры установленным, а также контролируют качество подготовки кромок и свариваемых поверхностей. При изготовлении ответственных конструкций сваривают контрольные образцы. Из них вырезают образцы для механических испытаний. По результатам испытаний оценивают качество основного и сварочных материалов, а также квалификацию сварщиков, допущенных к сварке данных конструкций.  [c.243]

Прямые способы оценки склонности сталей к XT включают сварочные технологические пробы и специализированные механические испытания сварных соединений. Пробы представляют собой сварные образцы, конструкция и технология сварки которых вызывают интенсивное развитие одного или нескольких основных факторов, обусловливающих образование трещин. По назначению пробы разделяют на лабораторные и отраслевые, Лабораторные пробы дают сравнительную оценку материа-  [c.538]

Как видно из сравнения полученных данных, испытания образцов с некомпенсированным изгибом дают заниженную (в данном случае в пределах 25 %) оценку механических свойств соединений с Г-образным мягким швом. Данное обстоятельство необходимо учитывать при оценке свойств соединений конструкций (например, сосудов давления, труб и т.п.), в которых при нагружении отсутствуют данные изгибные эффекты из-за наличия достаточной кольцевой жесткости.  [c.163]

Специфика сварки конструкций из данных сплавов типа ПТ-ЗВ состоит в том, что для выполнения стыковых соединений используются присадочные проволоки с более низкими механическими характеристиками (а , Og), что обуславливает неоднородность их соединений (шов — мягкая прослойка). В результате оболочковые конструкции из сплава ПТ-ЗВ ослаблены мягкими прослойками — прямолинейными по первому варианту изготовления и наклонными по второму варианту. На практике предпочтение отдавалось первому варианту изготовления — сварке в разделку, параллельную нормали к корпусу оболочки. Это было вызвано тем, что испытания образцов, вырезанных поперек сварного соединения из конструкций, выполненных по обеим вариантам, показали значительное снижение прочности соединений, имеющих наклонный сварной шов. Последнее вполне отвечает закономерностям зависимости прочности соединений, ослабленных наклонными мягкими прослойками, от угла наклона последних, рассмотренным в разделе 3.6 настоящей работы, и отвечает мягкой схеме нагружения данных соединений. В конструкциях, имеющих существенную кольцевую жесткость (к ним, в частности, относится рассматриваемая сферическая обо-  [c.189]

Скорость роста длинных усталостных трещин зависит от коэффициента интенсивности напряжения (КИН), и между ними установлена S-образная зависимость при неизменном уровне напряжения, которая аналогична зависимости, представленной на рис. 3.1а. Вид и положение кинетической кривой существенно зависят от условий нагружения и геометрии детали. Поэтому далее, рассматривая процесс развития разрушения, мы будем разделять нагружение материала (образец) в тестовых условиях и при многопараметрическом воздействии на деталь в лаборатории, на стенде или в эксплуатации. Тестовые условия используют для определения механических характеристик материала, когда применительно к испытаниям стандартных образцов оговорены их размеры, частота нагружения, температура, степень агрессивного воздействия окружающей среды и прочее. Элементы конструкций, в большинстве случаев, существенно отличаются по геометрии от стандартных образцов, и условия их нагружения, как правило, не соответствуют тестовым условиям опыта.  [c.132]

При механических испытаниях пластичных материалов более целесообразно применять механизм измерения шейки образца, дающий возможность непрерывно, автоматически определять изменение диаметра образца в процессе испытания при высоких температурах. Процесс измерения сопровождается выдачей соответствующих электрических сигналов, необходимых для записи диаграммы в координатах Р — Ad. Механизм указанного устройства монтируется в герметичном корпусе и крепится с помощью фланцевого соединения к боковой стенке вакуумной камеры. Конструкция механизма измерения шейки образца в основном такая же, как и у механизма измерения деформаций. Различие заключается в форме и расположении измерите ьных рычагов и индикатора (рис. 55). Оба механизма могут работать одновременно. Предусмотрена возможность их крепления к боковым стенкам камеры. Диаметр шейки измеряется с помощью двух рычагов 7 и S, измерительные щупы 9 которых касаются срединной части кольцевой выточки на образце 10. Рычаг 8 жестко закреплен на ползуне 5. Другой рычаг 7 может свободно поворачиваться вокруг оси 6.  [c.131]


Кроме того, с применением методов тепловой микроскопии могут быть решены задачи, в которых в основном рассматривается механическое поведение материала либо в условиях, реально приближающихся к эксплуатационным, либо при технологической обработке материала. При этом главная цель исследований заключается в изучении характера накопления повреждений и разрушения материала для обоснования методов расчета на прочность элементов конструкций. Информативность метода при этом определяется приближением размеров образца к стандартным (для механических испытаний), а также возможностью программированного задавать нагрузку, моделирующую реальные температурные и силовые воздействия.  [c.292]

В результате испытания образцов на растяжение или сжатие мы получаем объективные механические характеристики материала — предел текучести, предел прочности и удлинение при разрыве. Спрашивается, достаточно ли их, чтобы полностью характеризовать поведение материала в реальных условиях работы конструкции. Опыт практической работы подсказывает, что в основном все-таки достаточно. Но встречаются исключения, заставляющие относиться к этому вопросу с большим вниманием.  [c.49]

Машины для испытаний на растяжение-сжатие разделяют по назначению на машины широкого применения, специализированные и целевые. Машины широкого применения предназначены в основном для научных исследований. Конструкция их должна быть такова, чтобы на них можно было реализовать разнообразные режимы испытаний и испытывать образцы различных конфигураций, размера, из разных материалов. На специализированных машинах проводят контрольные и приемочные испытания материалов для определения стандартных механических характеристик, поверочные и контрольные испытания однотипных изделий.  [c.30]

При механических испытаниях основными испытуемыми объектами являются натурные конструкции, отдельные агрегаты или элементы, а также сосуды, работающие под давлением. Выбор формы и размеров образца для испытаний материалов при сложном неодноосном нагружении зависит от конструкции захватов и параметров испытательной машины.  [c.8]

Сопоставление сопротивления усталости монолитной и многослойной стали. Сравнительная оценка сопротивления усталости монолитной и многослойной стали должна, но-видимому, рассматриваться с позиций проявления влияния масштабного фактора, вызывающего снижение пределов выносливости образцов или элементов конструкций по мере роста их размеров [21. Исследования [2—5], выполненные на гладких цилиндрических образцах, свидетельствуют о том, что масштабный фактор наиболее сильно проявляется при изгибе и кручении. По мере увеличения диаметра образца от 7,5 до 200 мм снижение пределов выносливости [2—5] может достигать 30—50 %. В меньшей степени роль масштабного фактора проявляется при осевом нагружении [2], однако, и в этом случае его влияние может быть существенным. Предположим, что сопротивление усталости тонколистового металла в многослойных конструкциях окажется повышенным в сравнении с монолитным. С целью проверки этого предположения выполнены сравнительные усталостные испытания многослойных и однотипных монолитных образцов (рис. 1), изготовленных из малоуглеродистой стали марки Ст. Зсп. Химический состав и механические свойства исследованной стали удовлетворяли требованиям ГОСТа 380-71.  [c.257]

Использование метода акустической эмиссии при механических испытаниях образцов и конструкций полезно для изучения механизма разрушения. Например, анализ кривых, подобных показанным на рис. 114, дает возможность исследовать движение дислокаций во время пластической деформации, а также процесс хрупкого разрушения. Таким образом, этим методом можно оценить хрупкость, вязкость, твердость и другие характеристики металлов. Он оказался полезным для изучения усталостного разрушения и коррозионного растрески-ванпя под нагрузкой. В биметаллических изделиях и клеэвых соединениях даже прп нагрузках, не превышающих 30% от разрушающих, можно распознавать плохие соединения по эмиссии, вызванной началом разрушения связи между слоями. Для пластических масс характерно отсутствие эффекта Кайзера при повторных нагружениях каждый раз возникает эмиссия, интенсивность которой несколько уменьшается прп переходе от цикла к циклу. Стеклопластики обладают свойством послезвучаппя , т. е. при неизменяющейся нагрузке эмиссия продолжается (рпс. 117).  [c.291]

Для определения прочностных характеристик (предела тек чести, предела прочности) сварных соединений различного рода конструкций (сосудов давления, газонефтепроводов, корпусов аппаратов химического оборудования и т п.) из последних на стадии отладки технологии их изготовления вырезают образцы поперек сварного шва, форма и размеры которьпс оговариваются ГОСТ 6996-66. В том сл> чае, когда соединения механически неоднородны, т е. имеют в своем составе %-частки, металл которых обладает пониженным сопротивлением пластическому деформированию по сравнению с основным металлом конструкций, по-л>-ченных при испытании образцов, на натурные констр> кции неизбежно приведет к созданию неверных представлений о их прочностных характеристиках. Это связано с тем, что на практике имеются существенные различия в схеме нагр> жения образцов и конструкций, относительных параметрах соединений и т.д. Кроме того, как отмечалось в работе /104/, большое влияние на получаемые результаты (а , Og) оказывает степень компактности поперечного сечения образцов k = s/t (где и / — размеры поперечного сечения). При этом отмечалось, что для получения сопоставимых резу льтатов по Sj и соединений констру кций и вырезаемых образцов необходимо соблюдение условий подобия по их нагру жению (пластическому деформированию) и по относительным геометрическим параметрам (например, к).  [c.148]

Серийно выпускаемые машины, предназначенные для макрообразцов, обычно не используются для микромеханических испытаний из-за трудности крепления микрообразцов, высоких погрешностей измерения, отсутствия специальной регистрирующей аппаратуры и т. д. Конструкции оригинальных установок для механических испытаний образцов в интервале толщины 10—100 мкм, а также особенности деформации и разрушения пленок и фольг рассмотрены в обзоре [84].  [c.50]

Приемо-сдаточный контроль готовых изделий. Сварные конструкции. После окончания сварки производится 061ДИЙ контроль сварных изделий, предусматривающий осмотр швов, испытание их на плотность, гидравлическое испытание, проверку рентгеновскими лучами или радиолучами, выборочное засверливание и механические испытания образцов.  [c.253]

Можно выделить два основных подхода к определению физико-механических свойств композита — феноменологический и структурный. В рамках первого из них армированные материалы рассматриваются как однородные среды с анизотропными свойствами. Связь между напряженным и деформированным состояниями представляется на основе уравнений теории анизотропных сред. Остающиеся неизвестными параметры уравнений состояния определяются путем механических испытаний образцов из композитного материала. Следует отметить, что армированный материал, как правило, создается вместе с конструкцией, и даже для конструкций относительно простой геометрии его физико-механические характеристики могут оказаться переменными. С этим обстоятельством, выявляющимся, например, при рассмотрении круговой пластинки, армированной вдоль радиальных линий волокнами постоянного сечения, связаны дополнительные трудности в реализации такой программы экспериментов. Отметим также, что в рамках феноменологического подхода остается невскрытой связь между средними напряжениями и деформациями композитного материала и истинными напряжениями и деформациями составляющих его компонентов. Это не позволяет ставить и решать задачи оптимального проектирования композитных оболочеч-ных конструкций.  [c.27]


Каждое из указанных испытаний не определяет всех механических свойств металла и не отражает полностью его поведения в готовых деталях различного назначения, а лишь обнаруживает те его свойства, которые характерны для данного напряженного состояния (для данного вида иснытания). Различие в прочности, пластичности и других механических свойствах образцов и готовых деталей или конструкций объясняется следующим 1) напряженное состояние, создаваемое при каком-либо механическом испытании, не воспроизводит того сложного напряженного состояния, которое в действительности возникает в условиях эксплуатации. Готовая деталь (или конструкция) часто подвергается совместному воздействию различных по характеру нагрузок. Так, например, коленчатый вал двигателя воспринимает не только изгибающие нагрузки, но работает в условиях кручения и повторно-переменных статических и динамических нагрузок 2) надрезы, например в виде галтелей, шпоночных канавок и т. д., имеющиеся в готовых деталях, изменяют распределение напряжений по сечению и объему и создают концентрацию напряжений. Поэтому многие механические свойства, особенно вязкость и пластичность, в готовой детали сложной формы с резкими переходами по сечению могут быть по величине существенно отличными и ниже значений этих же свойств, определенных при испытании гладкого образца (если даже условия нагружения детали и образца одинаковы) 3) в деталях, имеющих большие размеры, чем испытуемый образец, встречается относительно больше пороков металла (ликвация, поры, микротрещины), понижающих механические свойства.  [c.116]

Расчетное исследование НДС образцов из стали 15Х2МФА (рис. 1.4), подвергнутых растяжению в области низких температур, было проведено с целью анализа параметров, характеризующих сопротивление хрупкому разрушению материала [131]. Подробно результаты расчета и эксперимента будут изложены в подразделе 2.1.4. В настоящем разделе мы хотим продемонстрировать работоспособность метода решения упругопластических задач в части учета геометрической нелинейности. Дело в том, что перед разрушением испытанных образцов при Т = —100 и —10°С происходила потеря пластической устойчивости (зависимость нагрузки от перемещений имела максимум). Очевидно, что расчетным путем предсказать потерю несущей способности конструкции можно, решая упругопластическую задачу только в геометрически нелинейной постановке. При численном моделировании нагружение образцов осуществляли перемещением захватного сечения образца от этапа к этапу задавалось малое приращение перемещений [131]. При этом анализировали нагрузку, действующую на образец. Механические свойства стали 15Х2МФА, используемые в расчете, представлены в подразделе 2.1.4. На рис. 1.4 представлены зависимости нагрузки от перемещений захватной части образца. Видно, что соответствие экспериментальных данных с результатами расчета хорошее. Наибольшее отличие расчетной максимальной нагрузки от экспериментальной составляет приблизительно всего 3 % различие в среднеинтегральной деформации при разрушении образца е/ = —1п (1—i j) (i ) — перечное сужение нет-  [c.32]

При исследовании сварных соединений необходимо ориентироваться на испытание образцов, в которых воспроизведены условия сварки и эксплуатации конструкций. Необходимо также учитывать особенности дефектов сварки, которые имеют остроту концентратов, существенно отличную от остроты трещины. Например, радиус в вершине непро-вара или несплавления может изменяться от 0,001 до 2 мм. Этот онцентратор может работать как трещина и в то же время иметь значительные отличия от нее с увеличением радиуса в вершине. Поэтому формс1льный подход при оценке трещиностойкости сварных конструкций может привести к серьезным ошибкам. В связи с этим представляется весьма важным моментом прежде всего определение влияния начального радиуса концентратора на ei о критическое раскрытие 6 . Для этой цели воспользуемся результатами работы /27/, где для оценки сопротивляемости сварных соединений квазихрупким разрушениям был предложен критерий — критический коэффициент интенсивности деформаций, учитьгаающий изменение механических свойств метал га в зоне концентратора в процессе термопластического цикла сварки и величину радиуса в его вершине. При этом  [c.82]

Для определения механических характеристик сварных соединений оболочковых констр>кций необходимо прежде всего замерить геометрические размеры соединений, вырезаемых образцов и в конструкции, после чего подсчитываются относительные параметры к о) (0) (к) (на основании данных о месторасположении сварного щва в оболочке, см. рис. 2.1), Затем по зависимостям (3.62) — (3.65) подсчитывается соответствующее поперечном>> сечению образца значение К -х (отвечающее конкретной геометрии мягкой прослойки). И, наконец, по (3.68) определяется величина А% с учетом эксперидсентальных значений тв(О) полученных в результате испытания вырезаемых образцов.  [c.155]

Для упрощения процедуры расчета механических характеристик сварных соединений оболочковых констр 1сций по данным испытаний вырезаемых образцов можно предложенный алгоритм представить в виде номограмм. В качестве примера на рис. 3.38 представлена номо-фамма, позволяющая по известным значениям геометрических параметров образцов сварных соединений и конструкций и экспериментальным данным сГт,в(0) полученным при испытании образцов, определить искомые характеристики соединений <7т,в(к) удобства пересчета наиболее приемлемыми являются образцы круглого поперечного сечения, для которых, Рх = 1, Номограмма построена для случая, когда соединение ослаблено прямолинейной прослойкой. Используя расчетные зависимости, приведенные в настоящем разделе, можно по аналогии построить номограммы и для других типичных геометрических форм мягких прослоек.  [c.156]

В качестве примера рационального использования различных методов соединения боралюминия в конструкциях приведены крышка люка самолета F-106 и силовой шпангоут самолета F-111. Крышка люка размером 289x280 мм с радиусом кривизны 1090 мм выполнена клееной. Шпангоут размером 762 х 1220 мм изготовлен из титана и композиционного материала на основе алюминиевого сплава 6061-Т6 и волокон борсик. Для соединения элементов применяли точечную сварку, склейку и механический крепеж. Во время прочностных испытаний образцов разрушение произошло при нагрузках, составляющих 160 и 130% предельной расчетной для крышки и шпангоута соответственно.  [c.198]

Знак нагрузки в инверсивной машине меняют путем изменения компоновки машины, например, путем соответствующего закрепления опорно-захватных траверс или соединения цилиндра с рамой для сжатия или плунжера с рамой для растяжения (рис. 16). Стендовые машины характеризуются отсутствием рамы. По этому принципу делают простые и универсальные машины. По назначению различают следующие основные типы машин с гидравлическим приводом для испытания образцов при растяжеиии-сжатни прессы для стандартных испытаний строительных материалов (ПС) прессы для испытаний конструкций (ПК) разрывные машины для стандартных испытаний материалов (P ) разрывные машины для исследований хрупкости разрушения (РХ) разрывные машины для испытания изделий (РК) универсальные машины для испытаний материалов и исследований их механических свойств (УМ) универсальные машины для исследования конструкций (УК).  [c.58]

Для размещения большого числа образцов в испытательной камере предусматривают съемные полки, которые не должны оказывать значительного сопротивления циркулирующему воздуху. Хороший доступ к испытательному объему обеспечивается тем, что размеры дверного проема соответствуют размерам в свету испытательной камеры. Для регулярного наблюдения за испытуемыми объектами в камере предусмотрено большое окно, чтобы не нарушать параметров испытания камеры из-за открывания дверей для наблюдения. Для обеспечения хорошей теплоизоляции окон и предотвращения конденсации влаги в большинстве конструкций камер окно имеет несколько стекол воздух между ними поддерживают сухим. Для освещения испытательной камеры лучше применять осветительную лампу внутри камеры, а не снаружи за стеклами окна. Некоторые камеры имеют отверстия под смотровыми окнами с рукавами для работы с испытуемыми изделиями. Для измерения электрических параметров приборов и проверки их неисправности работы во время испытания испытательную камеру снабжают вводами подачи электрического напряжения на испытуемые изделия. Кроме вводов камеры имеют проходные технологические отверстия, позволяющие монтировать панель с электровводами, гидравлические и пневматические вводы, тяги для механического управления изделиями и т. д. От-  [c.491]


Смотреть страницы где упоминается термин Механические испытания образцов и конструкций : [c.248]    [c.174]    [c.154]    [c.21]    [c.145]    [c.78]    [c.7]    [c.19]    [c.270]   
Смотреть главы в:

Основы сопротивления материалов для чертежников-конструкторов  -> Механические испытания образцов и конструкций



ПОИСК



Испытание образцов

Испытания конструкций

Механические испытания

Механические испытания образцов

Образцов



© 2025 Mash-xxl.info Реклама на сайте