Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механические статические испытания

МЕХАНИЧЕСКИЕ СТАТИЧЕСКИЕ ИСПЫТАНИЯ  [c.167]

Чем отличаются механические статические испытания от динамических  [c.220]

Механические свойства, определяемые при статических испытаниях  [c.61]

При статических испытаниях на растяжение помимо перечисленных определяют еще две механические характеристики материала  [c.198]

Статические испытания на растяжение относятся к самым распространенным видам испытаний. Это объясняется тем, что, во-первых, при сравнительно простом оборудовании в исследуемой зоне образца можно создать однородность напряженного состояния для всех его точек и, во-вторых, по механическим характеристикам материала, полученным при статическом испытании на растяжение, часто можно судить и о поведении материала при других видах деформации.  [c.274]


В течение 5—7 минут надо рассказать о назначении механических испытаний и дать их классификацию. Затем следует перейти к статическим испытаниям на растяжение, показать на плакате стандартные формы образцов. Кратко (также пользуясь плакатом) рассказать об испытании на растяжение образца из низкоуглеродистой стали.  [c.75]

Механические характеристики материалов (т. е. величины, характеризующие их прочность, пластичность и т. д., а также модуль упругости и коэффициент Пуассона) определяются путем испытаний специальных образцов, изготовленных из исследуемого материала. Наиболее распространенными являются статические испытания на растяжение. Для некоторых строительных материалов (камня, цемента, бетона и т. д.) основными являются испытания на сжатие. Испытания проводятся на специальных машинах различных типов.  [c.33]

Из приведенных рассуждений вытекают следующие выводы. В случае водородного роста трещин можно выделить три состоя-, ния, которым отвечают три интервала изменения коэффициента К [374, 435]. Первое состояние характеризуется тем, что физикохимические процессы в данной системе металл — водород не обеспечивают выполнение условий начала роста трещины. Этому состоянию соответствует интервал изменения К S К,л, где K,h — пороговый коэффициент интенсивности. Второе состояние характеризуется медленным докритическим подрастанием трещин при Kth < К < /Сн, когда рост трещины тормозится процессами доставки водорода в очаг разрушения. Здесь Кся — критический коэффициент интенсивности в условиях водородного охрупчивания материала. Наконец, третье связано с закритическим ростом трещины при К > Ксн, обеспечиваемым при данном распределении водорода в системе чисто механическим фактором — уровнем нагружения. В последнем случае развитие трещины по своему характеру (но не по микромеханизму роста) близко ее развитию при статических испытаниях в обычных условиях. При этом параметр трещиностойкости по физическому смыслу наиболее близок к характеристике обычной вязкости разрушения Ki (хотя, вообще говоря, ей не тождествен).  [c.326]

Испытания материалов можно классифицировать также по видам деформации. Различают испытания образцов на растяжение, сжатие, срез, кручение и изгиб. Наиболее широко применяют статические испытания материалов на растяжение. Объясняется это тем, что механические характеристики, получаемые при испытании на растяжение, позволяют сравнительно точно определять поведение материала при других видах деформации. Кроме того, этот вид испытаний наиболее легко осуществить.  [c.75]


Ударные испытания образцов типа I ио ГОСТ 9454—60 проводили на копре МК-ЗОА, статические испытания таких же образцов на изгиб проводили на гидравлической машине. Термическая обработка образцов нормализация при 860—880° С, закалка в масле с 950—1050 С и отпуск при 620—720 С с охлаждением на воздухе. Механические свойства Од 880 МПа <Тд = 1,05 ГПа ь=12,1 % а =0,64 МДж/м-[182]  [c.264]

Большое значение приобретает испытание на выносливость в вопросах изменения прочности материала под влиянием таких факторов, как концентрация напряжений, способ обработки, размер детали и т. д. Влияние этих факторов не отражается на результатах статических испытаний по определению механических характеристик материала и выявляется только испытаниями на выносливость.  [c.39]

Определяя работоспособность материала по данным стандартных статических испытаний, нельзя ограничиваться только характеристиками прочности и пластичности в условиях ползучести. Кроме этих величин необходимо располагать сведениями о закономерностях развития пластической деформации на разных этапах ползучести. Такую дополнительную информацию можно получить с помощью механического уравнения состояния и уравнений температурно-силовой зависимости характеристик жаропрочности, в которых отражена закономерность накопления деформации и повреждений на разных стадиях процесса.  [c.81]

Анализ изломов всегда целесообразен для выяснения причин разброса механических свойств при испытаниях. До сих пор к существенному разбросу, например, значений долговечности при усталостных и длительных статических испытаниях относятся как к чему-то неизбежному, связанному в основном с технологией изготовления образца и другими методическими особенностями. Выяснение действительных причин разброса ме-  [c.5]

Возможность проведения таких микроструктурных исследований реализована в установке ИМАШ-11 (см. гл. III). На этой установке изучали особенности изменения структуры образцов на примере термостойких ориентированных стеклопластиков АГ-4С и ЭФ-С в зависимости от интенсивности и продолжительности теплового воздействия при одностороннем программированном нагреве. Стеклопластик ЭФ-С представляет собой анизотропный прессованный волокнистый материал, связующим в котором служит эпоксидно-фе-нольная смола, а наполнителем являются стеклонити. Стеклопластик АГ-4С— это анизотропный прессованный волокнистый материал на основе модифицированной фенольно-формальдегидной смолы. Выбор стеклопластиков ЭФ-С и АГ-4С для исследования обусловлен тем, что уже накоплены основные данные о механических свойствах этих эффективных и широко применяемых в высокотемпературной технике материалов при их статических испытаниях в условиях нормальных температур и изотермических режимах нагрева [77 114] .  [c.263]

Машины для кратковременных механических испытаний подразделяют на три группы в зависимости от скорости приложения нагрузки 1) машины для статических испытаний (8 =10- Ч-10- с- ) 2) машины для испытаний при умеренных и динамических скоростях (е=10-2ч-102 с- ) 3) машины и установки  [c.40]

Кратковременные статические испытания, представляющие собой основной вид испытаний для определения механических характеристик материалов. Длительность испытаний— от десятков секунд до нескольких минут (е=10- ч-  [c.62]

Установление квазистатического однородного напряженного и деформационного состояния в образце достигается в результате интерференции упруго-пластических волн [373]. Время и степень выравнивания напряжений по длине образца определяются частотой взаимодействия волн, обратно пропорциональной длине образца. Поэтому с повышением скорости деформации обеспечение необходимой равномерности возможно только при сокращении длины образца [136]. При высокоскоростных испытаниях выравнивание напряжений по длине рабочей части образца требует определенного времени, сравнимого с временем испытания. С повышением скорости деформирования это время составляет все большую часть времени испытания при неизменной длине образца. По этой причине для высокоскоростных испытаний неприемлемы пропорциональные образцы, принятые для статических испытаний. Их применение приводит к локализации деформации и разрушения вблизи нагружаемого конца при достижении так называемой критической скорости удара [81, 129], а также к появлению ряда других аномальных эффектов, не характеризующих действительное механическое поведение материала.  [c.90]


Универсальная гидравлическая машина МУГ-500 производства Армавирского завода предназначена для статических испытаний различных конструкций и образцов больших размеров и позволяет установить пределы допустимых напряжений в конструкциях, исходные данные для уточнения методов расчета отдельных связей и сборочных единиц конструкций, а также влияние различных физико-механических свойств материалов, технологических факторов на прочность и устойчивость конструкций.  [c.247]

Вязкие разрушения в условиях однородного линейного напряженного состояния возникают, как правило, при однократных статических испытаниях на растяжение лабораторных цилиндрических или плоских образцов. В соответствии с действующими стандартами при этом определяют характеристики механических свойств От (или < 0,2). э также относительное  [c.19]

Задаче статических испытаний отвечает система возбуждения, содержащая механогидравлический преобразователь систему управления на электрическом, механическом или гидравлическом звене гидромеханический преобразователь.  [c.192]

На фиг. 153 представлены кривые, характеризующие изменения механических свойств (процентное возрастание) при снижении температуры от - - 20° до — 70° С для тех же марок стали, что были взяты для испытания на ударную вязкость (см. фиг. 150). Какой-либо зависимости между характеристиками металла при статических испытаниях (на растяжение) и результатами испытаний на удар не отмечается. Процесс испытания на растяжение требует значительного времени, в течение которого образец может заметно изменить перво-  [c.67]

При статическом действии сил некоторые из перечисленных факторов, например, состояние поверхности, не оказывают заметного влияния на прочность металлов. Поэтому механические свойства, определённые при статических испытаниях, не характеризуют сопротивления материала переменным нагрузкам.  [c.70]

Свинец слабо влияет на механические свойства при комнатных температурах. Неблагоприятное действие свинца проявляется при повышенных температурах, при статических испытаниях и особенно в реальных условиях работы подшипника в динамических испытаниях.  [c.203]

Детали, штампованные из литой заготовки дуралюмина, полученной непрерывным методом отливки, нередко дают трещины в сопряжённых зонах истечения металла и текстуру деформации (фиг. 462, см. вклейку). Например, крыльчатки, показывая при статических испытаниях высокие механические свойства, в процессе экспло.атации нередко преждевременно разрушаются.  [c.460]

В табл. 17 приведены данные о влиянии температуры на механические свойства ковкого чугуна обычного состава при кратковременных статических испытаниях.  [c.123]

С. Б. Ратнер. Механические испытания пластических масс. Специфика методов испытаний пластмасс. Статические испытания. Пластмассы , 1960, № 8 Повышение эффективности тормозных устройств. Свойства фрикционных материалов. Изд-во АН СССР, 1959.  [c.113]

Зависимость от характеристик механических свойств определяется ПО данным кратковременных или длительных статических испытаний гладких лабораторных образцов. Влияние величин т , и г на предельную деформацию устанавливается (рис. 1.5, а) из длительных циклических испытаний с учетом упомянутых выше методических трудностей. При увеличении температуры эксплуатации времени нагружения т и коэффициента асимметрии цикла разрушающие деформации падают (кривая малоциклового разрушения смещается вниз и влево). Для макси-  [c.18]

При расчетах циклической и длительной циклической прочности на стадии проектирования и пуска атомных реакторов в соответствии с данными 3 используются характеристики механических свойств применяемых конструкционных материалов, гарантируемые соответствующими техническими ус.ловиями и стандартами. Этими характеристиками являются модули упругости E , пределы прочности од и текучести Оа,2, относительное сужение ф или фй, определяемые при кратковременных статических испытаниях, а также пределы длительной прочности а х и длительная пластичность ф (или 8 ), определяемые из опытов на длительную прочность и ползучесть. Дополнительными характеристиками материалов являются показатели степени кривой  [c.43]

Литые детали, воспринимающие высокие статические или динамические нагрузки, либо работающие в особых условиях (высокие или низкие температуры, высокие давления). Помимо контроля, обязательного для I и II групп, отливки III группы подвергают специальным испытаниям, обусловленным техническими условиями (индивидуальные испытания механических свойств, испытание под давлением, просвечивание и т. д.)  [c.40]

Статическое испытание имеет целью проверку прочности механизма лифта, его кабины, канатов кабины и их крепления, а также действия тормоза. У лифтов, оборудованных лебедкой с канатоведущим шкивом, статическим испытанием, кроме того, проверяется отсутствие проскальзывания канатов в ручьях канатоведущего шкива, а у лифтов с электрическим приводом постоянного тока с двигатель-генераторным агрегатом, кроме того,— надежность электрического торможения на уровне этажной площадки без помощи механического тормоза.  [c.734]

На условной диаграмме растяжения (рис. 3.2) отмечены точки и их ординаты, соответствующие механическим характеристикам, полученным при статических испытаниях иа растяжение малоуглеродистой стали. Характерными точками (напряжениями) диаграммы растяжения являются  [c.95]


Повышение температуры влияет на все механические свойства понижает модуль упругости (вследствие уменьшения межатомных сил сцеплений), предел текучести и временное сопротивление. При этом следует иметь в виду, что в условиях малой скорости нагружения разрушение происходит при более низких напряжениях, чем при обычных статических испытаниях.  [c.300]

При статических испытаниях на растян Г., с, помимо перечисленных, определяют еще две механические характеристики материала относительное остаточное удлинение при разрыве  [c.220]

Следует особо подчеркнуть, что при статических испытаниях сварных соединений по ГОСТ6996-66 выявляются их относительные механические характеристики. Действительная прочность сварных соединений в изделиях будет зависеть от соотношения геометрических характеристик сварных швов и размеров поперечного сечения соединений в конструкции /4/. Для их определения по результатам РОСТОВСКИХ испытаний нами разработана специальная методика /4/.  [c.213]

Центральным вопросом в поиске оптимальной структуры сплава является связь его механических свойств со структурными параметрами. Исследования корреляций между деталями структуры и отдельными показателями механических свойств различных сплавов претерпели ряд периодов, связанных с появлением новых представлений о макро-, микро- и субмикроструктуре, с одной стороны, и о статической, динамической усталостной и длительной прочности — с другой. Долгое время предметом изучения было установление зависимостей между размером зерна, меншластиночным расстоянием в перлите и главными показателями прочности, определяемыми при статических испытаниях,— пределом текучести и временным сопротивлением (пределом прочности). Как известно, большим достижением на этом этапе исследований явилось соотношение Петча — Холла  [c.6]

Приведем перечень основных видов испытаний, которые в настоящее время используют при исследовании механических и технологических свойств металлов и сплавов статические испытания в условиях одноосного напряженного состояния испытания на ударную вязкость и вязкость разрущения пластометрические исследования испытания на статическую и динамическую твердость и микротвердость испытания на предельную пластичность и технологические испытания (пробы) испытания в условиях сложнонапряженного состояния испытания на ползучесть, длительную прочность и жаростойкость испытания на циклическую, контактную прочность, усталость н в условиях сверхпластичности высокоскоростные испытания испытания при наложении высокого гидростатического давления испытания в вакууме, ультразвуковом поле, в условиях сверхпластичности и т. д.  [c.38]

Однако важно знать не только как изменяются механические свойства пластмасс в зависимости от их старения (в аппарате искусственной погоды и при атмосферном хранении), но и как отразится старение полимеров на их работоспособности. Для этого необходимо проводить испытания уплотнителей на работоспособность в различных режимах эксплуатации транспортировка системы на большие расстояния, работа по программе, длительное хранение. Рассмотрим результаты такого вида испытаний соединений с капролоновыми прокладками. Были испытаны шесть партий уплотнений. Каждая партия состояла из 24 линз. Методика испытаний предусматривала выдержку партии уплотнительных линз на открытом воздухе, статические испытания давлением 250-10 Н/м при нормальной температуре, при температуре 325 и 223 К, а также вибрационные испытания, имитирующие транспортировку агрегата по трассам с различным дорожным покрытием. Одна из шести партий линз хранилась в течение года на открытом воздухе. У всех линз за испытуемый период раз в месяц измерялся внешний диаметр, внутренний диаметр и высота. По этим параметрам были подсчитаны средние значения по месяцам, которые сведены в табл. 13. Перед каждым замером на линзах проверялось наличие трещин, царапин, а также после замеров каждая линза спрессовывалась в закрытом ниппельном соединении на ручном насосе давлением Р = 300-10 Н/м в течение 5 мин. Во время испытаний температура воздуха изменялась от + 300 К (в июле, августе) до 250 К (в январе, феврале) влажность воздуха была в пределах 40—100%.  [c.131]

В машинах фирмы Instron двухколонные рамы с гидравлическим подъемом и фрикционной фиксацией траверсы рассчитаны на нагрузки 100— 500 кН, а для нагрузок 500—2000 кН применяют четырехколонные рамы. Таким образом, машина 500 кН может иметь как двухколонную (тип 8033), так и четырехколонную (тин 8034) рамы. Рамы обоих типов объединены в серию 8000 с единым исполнением на пьедестале с нижним расположением цилиндра. Для фиксации траверсы в серии 8000 применены нормальнооткрытые клеммные зажимы, стягиваемые болтами или гидроцилиндрами. Для расширения возможностей машин при проведении статических испытаний в комплексе фирмы Instron предусмотрены рамы серии 1250 в четырехколонном исполнении, снабженные дополнительным механическим (червячно-винтовым) приводом траверсы. Предусматривается двоякое исполнение привода только для перемещения траверсы (машины мод. 1252, 1250, 1254) со скоростью 200 мм/мин, и для статических и повторно-статических испытаний. В последнем случае скорость привода регулируется (0,05—  [c.103]

С учетом бесчисленного множества возможных комбинаций параметров а, к, т, г экспериментальное обоснование функциональных зависи.мостей (1.3) и (1.4) оказывается связанным со значительными принципиальными и методическими трудностями. В соответствии с этим возникает задача о выборе основных характеристик механического поведения материалов при циклическом нагружении в неупругой области и базовых экспериментов с учетом отсутствия (нормальные или повышенные температуры) и на.личия (высокие температуры) температурно-временных эффектов (рис. 1.2). Исходными для выбора параметров уравнений состояния являются результаты кратковременных и длительных статических испытаний. Данные этих испытаний позволяют установить пределы текучести От, характеристики упрочнения (показатель упрочнения при степенной и модуль упрочнения Gт при линейной аппроксимации / (а, е)) и пластичность (относительное сужение ф - или логарифмическая деформация е/,-). По данным д.лительных статических испытаний определяется скорость ползучести <1е1с1х, длительная прочность Сты и пластичность д.ля данной температуры Ь и времени т. Параметры уравнений состояния при малоцикловом деформировании наиболее целесообразно определять при нагружении с заданными амплитудами напряжений — мягкое нагружение. В качестве основных характеристик сопротивления деформированию в заданном А-полуцикле при этом используются ширина петли и односторонне накопленная пластическая деформация е р При этом ширина петли определяется как произведение ширины петли в первом полуцикле к = 1) на безразмерную функцию чисел циклов Р к)  [c.10]

Случайные величины и законы их распределения. Случайная величина является количественной характеристикой результата опыта и может принимать различные числовые значения, заранее не известные и зависящие от случайных причин, которые не могут быть учтены. Примерами случайных величии являются долговечность образцов при усталостных и длительных статических испытаниях, пределы текучести и прочности, относ1пельное удлинение, твердость, ударная вязкость и другие характеристики механических свойств материалов.  [c.5]



Смотреть страницы где упоминается термин Механические статические испытания : [c.350]    [c.182]    [c.247]    [c.17]    [c.528]    [c.42]   
Смотреть главы в:

Материаловедение Технология конструкционных материалов Изд2  -> Механические статические испытания



ПОИСК



Испытание механическое металлокерамических на выносливость статическую

Испытание статическое

Методы определения механических свойств, при кратковременных статических нагрузках Испытания на растяжение (С. И. Кишкина)

Механические испытания

Механические свойства, определяемые при статических испытаниях

Статические испытания материалов. Основные механические характеристики



© 2025 Mash-xxl.info Реклама на сайте