Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стенки камеры

Стенки камер (керамические решетки) специально расширяются по ходу насадки для  [c.377]

Подтекание жидкости к отверстию из ограниченною иространства (рис. 6.1, б), например при выходе из рабочей камеры аппарата, в основном подобно только что описанному. В этом случае поток в выходном отверстии также оказывает подсасывающее действие на поток в камере, ускоряя его движение. Подсасывающий эффект вблизи выхода также распространяется по сферическим или овальным поверхностям и быстро ослабевает с удалением от выходного отверстия вверх по потоку. Только вдали от выходного отверстия линии тока внутри камеры изменяют радиальное направление и становятся параллельными стенкам камеры (рис. 6.1,6).  [c.137]


По своей структуре результаты измерений профилей распределения составляющих вектора скорости качественно сходны во многих исследованиях [146, 184, 208, 236], о чем можно судить по данным рис. 3.5. Составляющие скорости выражены в относительных величинах как отношение к средней скорости истечения струи газа на выходе из соплового ввода V [184]. Эпюры распределения окружной и осевой составляющих скоростей по характеру практически не отличаются от приведенных в [208]. Некоторое расхождение наблюдается в эпюрах распределения радиальной составляющей вектора скорости. В периферийных слоях радиальная составляющая направлена к стенке камеры энергоразделения, а в центральных слоях — к оси. Поверхность смены направления радиальной компоненты на противоположное совпадает с радиусом  [c.107]

Причинами, вызывающими вибрационный режим горения, могут быть пульсации местной концентрации топлива, вызванные использованием малонапорной системы подачи топлива близкое расположение форсунки к стенкам камеры может быть причиной возникновения акустических колебаний, инициирующих неустойчивость рабочего режима. В то же время, источником неустойчивости могут быть спиралевидные вихревые жгуты, разрушающиеся на стенках перфорированной камеры, а также прецессия вихря (см. рис. 3.19).  [c.317]

Диапазон температур, в пределах которого реально работают конструкционные материалы, выходит далеко за рамки указанных нормальных условий. Есть конструкции, где материал находится под действием чрезвычайно высоких температур, как, например, в стенках камер воздушно-реактивных и ракетных двигателей. Имеются конструкции, где, напротив, рабочие температуры оказываются низкими. Е)то — элементы холодильных установок и резервуары, содержащие жидкие газы.  [c.69]

Исследования, проведенные рядом авторов [173], показали, что доля лучистой теплопередачи весьма значительна в общем тепловом балансе камеры сгорания газовой турбины. Следовательно, степень черноты как внутренней, так и наружной поверхностей камеры оказывает существенное влияние на температуру стенки. Поэтому очевидно, что увеличение степени черноты стенок камеры сгорания позволит снизить их температуру и тем самым увеличить надежность газотурбинной установки.  [c.208]

Ионизационная камера. Простейшая ионизационная камера представляет собой замкнутый сосуд, заполненный газом под определенным давлением, внутри которого между электродами создается электрическое поле. Схема включения ионизационной камеры изображена на рисунке 6, а. На схеме ИК — ионизационная камера, А, К — ее электроды, Б — источник, создающий разность потенциалов между электродами, Г — устройство для измерения ионизационного тока. В некоторых ионизационных камерах одним из электродов являются стенки камеры, а другим — стержень или нить, расположенные в сосуде.  [c.38]


СТОЯНИЯХ FIi и Пг) от передней стенки камер (рис. 125). При облучении камеры л -мезонами в ее стенке будут возникать /С°-мезоны  [c.205]

С. С, включенными в схему, совпадений с черепковским счетчиком Ч.С (указанным на рис. 154). Для защиты от космических, частиц и случайных .-мезонов передняя, верхняя и часть задней стенки камеры были закрыты плоскими сцинтилляционными счетчиками А. С, включенными в схему антисовпадений. Чтобы эти счетчики не срабатывали от заряженных частиц регистрируемого эффекта, они были изнутри защищены слоем Fe.  [c.255]

Рабочий процесс плавки начинается с подготовки внутренней поверхности печи. Стенки камеры, водоохлаждаемое кольцо и  [c.323]

Очищенные отливки выходят из камеры через прямоугольное, защищенное шторками отверстие, расположенное в противоположной стенке камеры. Скорость движения конвейера 2 м/мин.  [c.350]

Патрубки в наружной стенке камеры служат для присоединения вакуумного насоса, ввода в камеру пучка предварительно ускоренных  [c.221]

Простейшим примером реактивного движения может служить упомянутое выше движение судна с водометным двигателем. Реактивным можно было бы назвать и движение судна или самолета, поскольку гребные колеса или винт создают струю воды или воздуха, отбрасываемую назад. Однако термин реактивное движение обычно применяют в более узком смысле, имея в виду только движение ракет. В камере двигателя ракеты происходит быстрое сгорание горючей смеси ( топлива ). Образующиеся при этом горячие газы с большой скоростью (обусловленной большим давлением в камере) выбрасываются через отверстие (сопло) в хвосте ракеты. Сила реакции этой вытекающей струи газов, т. е. избыток давления газов на переднюю стенку камеры по сравнению с давлением на заднюю стенку (в которой расположено сопло), сообщает ракете ускорение, направленное в сторону, противоположную струе газов (рис. 311).  [c.532]

Определение величин углов а и Р выполнялось следующим образом. Подбирая длину камеры смешения 5 при постоянном диаметре сопла и постоянном диаметре = 27 или 23 мм, добивались максимальной величины КПД р процесса эжекции газа жидкостью. При подборе оптимальной длины камеры смешения устанавливалось одно из сопел, диаметры которых были перечислены выше. Оптимальную длину камеры смешения подбирали для каждого режима нагнетания жидкости, т.е. для каждого фиксированного давления от 0,9 до 2,4 МПа через каждые 0,1 МПа при практически постоянном давлении эжектируемого газа, которое находилось в пределах от 0,098 до 0,102 МПа. При меньших давлениях газа эксперименты не выполнялись из-за резкого снижения коэффициента эжекции и, как следствие, снижения КПД. Подобрав оптимальную длину камеры смешения для данного режима работы струйного аппарата, определяли расстояние от среза сопла до места, в котором струя касается стенок камеры смешения - сечение 1-1 рис. 8.1, а.  [c.189]

Установив место касания струи стенок камеры - сечение 1-1 (рис. рис. 8.1, я), измеряли расстояние от сечения 1-1 до среза сопла - сечение 0-0. Так как величина КПД 11 процесса эжекции при этом была в пределах от 0,39 до 0,44, то измеренное расстояние S считалось искомой величиной длины начального участка струи.  [c.193]

Как следует из приведенных графиков, величины КПД р и коэффициента эжекции (Jq, полученные в струйных аппаратах с камерой смешения 27 мм, больше величин этих коэффициентов, полученных в аппаратах с камерой смешения диаметром 23 мм. Следовательно, наиболее полно струя расширялась в камере смешения диаметром 27 мм, а в камере смешения диаметром 23 мм струя эжектировала газ с недорасширением. Пограничный слой в камере смешения диаметром 27 мм касается стенок камеры смешения практически в переходном сечении струи (см. рис. 8.10, а), о чем свидетельствуют высокие значения коэффициентов эжекции и полезного действия (см. рис. 8.8, 8.9). В камере смешения диаметром 23 мм пограничный слой касался стенок камеры смешения на начальном участке струи (рис. 8.10, 6), о чем свидетельствуют небольшие значения коэффициентов эжекции L/q и полезного действия Т1 (см. рис. 8.8, 8.9).  [c.193]

Так как струйное течение в конце камеры смешения ограничено стенками, процесс эжекции в этом месте прекращается. В выполненной таким образом камере смешения пограничный слой не касается стенок камеры смешения по всей ее длине, кроме сечения 1-1, чем исключаются потери энергии при трении о твердую поверхность. Внутри такой камеры низконапорная среда свободно проходит между стенками камеры смешения и внешними границами струйного течения, достигая конца камеры смешения.  [c.216]


В простом открытом газотурбинном цикле камера сгорания с псевдоожиженным слоем под давлением работает как контактный воздухоподогреватель. Часть воздуха после компрессора поступает для сжигания топлива, а остальная часть подмешивается к продуктам сгорания с целью поддержания определенной температуры стенок камеры и температуры горячего газа, подаваемого в газовую турбину. Возможны н другие конструктивные и схемные решения. На рис. 1.6 показана схема ГТУ, оснащенной топочным устройством с псевдоожиженным слоем под давлением. Особенностью данной схемы является подача 1/3 воздуха после компрессора для псевдоожижения слоя, в то время как остальные 2/3 поступают в змеевики, погруженные в слой. Благодаря этому значительно уменьшается количество газов, которые необходи. МО очищать от твердых частиц. Кроме того, такое решение позволяет использовать обычную газовую турбину с  [c.16]

Геометрия опытной установки исключала влияние стенок камеры. В исследуемые трубки устанавливались электронагреватели, обеспечивавшие равномерный тепловой поток. Термопары были зачеканены по периметру трубки, а также на торце прямых и кольцевых ребер. Предварительно изучалось распределение скорости слоя методом окрашенной прослойки. Обнаружено (рис. 10-19),  [c.354]

В процессах с расслоением заряда, как правило, гарантируется минимальное образование СО, объемные концентрации которой в ОГ не превышают 0,2%. Выбросы СпН также ниже вследствие меньших концентраций топлива в бедной смеси основной камеры и, соответственно, у стенок камеры сгорания. Топливная экономичность двигателей с расслоенным зарядом в большей мере зависит от степени доводки камеры сгорания, точности приготовления смеси богатого и бедного составов. В двигателях с расслоением и высокой турбулизацией заряда допустимо увеличение степени сжатия до 12—13ед. с целью повышения индикаторного КПД.  [c.46]

Для лучшего охлаждения внешней поверхности полупроводникового холодильника внешняя поверхность боковых стенок камеры выполнена ребристой с вертикальными алюминиевыми ребрами (рис. 1-16). В плане камера квадратная. Ширина боковых стенок /) = 800 мм, высота /1=1000 мм, высота и толщина ребер соответственно / = 30 мм и 6 = 3 мм. Каждая стейка имеет по 40 ребер.  [c.21]

Микроструктура закрученного потока представляет особый интерес для понимания физического механизма процессов течения и тепломассообмена. На структуру турбулентного течения в камере энергорааделения вихревых труб значительно влияют особенности радиального распределения осредненных параметров и кривизна обтекаемой газом поверхности. При этом поле турбулентных пульсаций закрученного ограниченного потока всегда трехмерное и имеет особенности, отличающие его от турбулентных характеристик незакрученных течений [15, 18, 30, 181, 196]. На рис. 3.11,а показаны интенсивность турбулентности е закрученного потока в системе координат, связанной с криволинейной линией тока, где — продольная, — поперечная и ц — радиальная составляющие турбулентных пульсаций в зависимости от относительного расстояния до стенки камеры энергоразделения y/R.  [c.115]

Традиционно неадиабатные вихревые трубы рассматривались лишь как охлаждаемые. Развитие областей внедрения вихревых энергоразделителей в системы охлаждения, термостатирования теплонапряженных деталей и узлов агрегатов энергетической, авиационной и некоторых других отраслей [7, 8, 38, 39, 73, 145, 194] потребовало постановки опытов по исследованию характеристик вихревых труб при подводе тепла к подогреваемему периферийному потоку через стенки камеры энергоразделения от внешнего источника. Экспериментальные исследования [73, 145, 194] по определению влияния внешнего теплового потока, подводимого от внешнего источника тепла через стенки камеры энергоразделения, были проведены на двух вихревых трубах с цилиндрической проточной частью и геометрией по своим параметрам близкой к оптимальной, по рекомендациям А.П. Меркулова [116]. Снижение эффектов охлаждения обохреваемой от внешнего источника вихревой трубы по сравнению с адиабатными условиями можно оценить относительной величиной  [c.281]

Периферийный квазипотенци-альный вихрь, выполняя функцию тепловой защиты стенок камеры сгорания и других элементов конструкции, обеспечивает стабилизацию дугового разряда, офани-чивая рост дуги при увеличении рабочего тока [78, 149, 192]. Вихревая характеристика вихревого плазмотрона имеет восходящий участок, наличие которого улучшает технологические качества устройства, обеспечивая возможность гарантированной устойчивой работы дуги на восходящем участке при отсутствии в электрической цепи питания балластного сопротивления. Эго нетрудно показать, воспользовавшись анализом уравнения Кирм-офа, записанного для цепи электропитания плазмотрона [78]. Горение дуги будет устойчивым, если действительные части корней уравнения Кирхгофа отрицательны  [c.355]

Возможность эффективной тепловой зашиты корпусных элементов от больших тепловых потоков успешно используется и при создании экспериментальных СВЧ плазмотронов [64]. Схемы СВЧ плазмотронов с предполагаемыми картинами течений при прямоточно-вихревой и возвратно-вихревой стабилизации плазмы показаны на рис. 7.30, а на рис. 7.31 показана зависимость мощности плазменного СВЧ излучения поглощаемого разрядом, и тепловой мощности fV , вьшеляюшейся в контуре охлаждения плазмотрона. Результаты опытов приведены в виде зависимости доли тепловых потерь WJW от удельного вклада энергии в разряд У = WJG, где G — расход плазмообразуюшего газа — азота. Результаты численного моделирования показаны на рис. 7.32,а — для традиционной прямоточно вихревой стабилизации и на рис. 7.32,6 — для случая с возвратно-вихревой стабилизацией. В первом случае рабочее тело — плазмообразующий газ — азот в виде закрученного потока подается в разрядную камеру, а во втором случае он подается в дополнительную вихревую камеру со скоростями 100 м/с ((7= 1 г/с) и 225 м/с ((7= 1,5 г/с), соответственно. По мнению автора работы [64] возвратный вихрь сжимает зону нагрева, предохраняя стенки камеры плазмотрона от перегрева. Основная часть газа проходит через разрядную зону, а размер зоны рециркуляции незначителен. В традиционной схеме (см. рис. 7.32,а) входящий газ смешивается с циркулирующим потоком плазмы и основная часть газа проходит мимо разряда вдоль стенок кварцевой трубки. Судя по приведенным модельным расчетам, схема с возвратно-вихревой стабилизацией позволяет снизить максимально достижимую температуру нагрева корпусных элементов примерно в 2,5 раза. Наиболее нагретая часть область диафрагмы, непосредственно примыкающая к отверстию имеет температуру 1400 К. Таким образом, использование возвратно-вихревой стабилизации плазмы позволяет изготовить СВЧ плазмотрон неохлаж-даемым из кварцевого стекла. Дальнейшее моделирование течения  [c.356]


Практически при любой температура на выходе из камеры энергоразделения выше температуры охлажденного потока на выходе из кромочного канала. Эго говорит о том, что в теплообмене с газом через стенки камеры энергоразделення участвует преимущественно нагретый периферийный поток. Эго явление имеет некоторую аналогию с процессом внешнего охлаждения  [c.371]

Опишем цикл предлагаемой установки изображенный на Т, S-н Р, i — диаграммах (рис. 8.20). В предлагаемой установке в вихревой трубе происходит сепарация конденсата — жидкой фазы хладагента и отвод части несконденсировавшегося газа. Как уже отмечалось, вихревая труба выполняет роль конденсатора и расширительного устройства с переохладителем. После процесса охлаждения 2"—2 рабочее тело через завихритель 13 подается в вихревую трубу 3 в виде интенсивно закрученного вихревого потока. В процессе энергоразделения повышается температура у периферийного потока, перемещающегося от соплового ввода за-вихрителя 13 к крестовине 7. Температура периферийных масс газа на 30—50% выше исходной. Этот факт и высокий коэффициент теплоотдачи от подогретых масс газа к стенкам камеры энергетического разделения 14 приводит к интенсификации теплообмена и уменьшению потребной поверхности теплообмена у конденсатора, а, следовательно, обеспечивает уменьшение его габаритов и металлоемкости. В приосевом вихре, имеющем пониженную температуру за счет расширения в процессе дросселирования и вследствие реализации эффекта Ранка, происходит конденсация. Образовавшиеся капли влаги отбрасываются центробежными силами на периферию. Часть конденсата вытекает через кольцевую щель 18 в конденсатосборник, а другая уносится потоком и вытекает через кольцевое коническое сопло 9 в камеру сепарации 4. По стенкам камеры сепарации жидкая фаза хладагента стекает и отводится в испаритель 10. Из испарителя 10 жидкая фаза прокачивается насосом 11 через охлаждаемый объект 12, охлаждает его и возвращается в испаритель 10. Из испарителя 10 паровая фаза через сопло 17 поступает в вихревую трубу в центральную ее часть в область рециркуляционного течения и через коническое кольцевое сопло 9 выбрасывается в се-парационную камеру 4, откуда в виде паровой фазы всасывается вновь в компрессор 1, сжимается до необходимого давления и вновь возвращается через теплообменник 2 на вход в вихревую трубу 3. По межрубашечному пространству 16 между камерой энергоразделения 14 и кожухом 15 циркулирует охлаждающая  [c.397]

Moro материала в покрываемый металл. К недостатку метода следует отнести его малую эффективность из-за конденсации испаряемого материала на стенках вакуумной камеры. Для уменьшения потерь стенки камеры желательно нагревать до высоки.ч температур, при этом необходи.мое количество пара будет поступать к поверхности покрываемого изделия [52].  [c.108]

Испытания в вакууме. Стабильность оптических характеристик покрытий — их излучательная и отражательная способность — во многом определяется состоянием поверхности. В свою очередь состояние поверхности зависит от собственной температуры покрытия, а также от цротекания различных процессов, возникающих в результате взаимодействия между поверхностным слоем вещества покрытия и окружающей средой. В этом плане осогбый интерес представляет проведение испытаний по установлению постоянства оптических свойств покрытий или одновременном воздействии высоких температур и вакуума. В этом случае излучательная способность будет зависеть не только от температуры, но и от упругости пара вещества покрытия. Испарение покрытия изменяет характеристики излучения и размеры детали. Для определения скорости испарения при эксплуатационных условиях (температура и давление) проводятся испытания в специальных камерах. Наиболее простым и чувствительным является метод испарения с открытой поверхности в вакууме (метод Ленгмюра). Образец с покрытием помещают в вакуумную камеру и нагревают до требуемой температуры, после чего он выдерживается в этих условиях в течение определенного времени. Одна из подобных камер показана на рис. 7-14 [52]. Молекулы испаряющегося покрытия конденсируются на холодных стенках камеры. Для определения скорости  [c.180]

Камера Вильсона представляет собой герметически замкнутый объем Vi (рабочий объем), заполненный каким-либо неконденси-рующимся газом (воздух, водород, гелий, аргон, азот) и насыщенными парами некоторой жидкости, чаще парами смеси жидкостей (вода и спирт). Стенки камеры могут быть изготовлены из стекла или металла, а сама камера может иметь форму цилиндра или параллелепипеда с линейными размерами от 10 сж до 1 ж и более. В современных камерах, предназначенных для исследований космических лучей, рабочий объем измеряется сотнями и тысячами литров.  [c.46]

Представим себе вакуумизированную камеру с тонкой перегородкой Я, которую можно устанавливать на различных расстояниях (/7i и Лг) от передней стенки камеры (рис. 260). При облучении камеры я -мезонами в ее стенке будут возникать /( -мезоны  [c.619]

В 1911 г. Ч. Вильсон изобрел прибор, позволяющий обнаруживать пути ионизирующих частиц в пересыщенных водяным паром газах. Камера Вильсона, представляет собой герметически замкнутый объем, запо шенный гелием, азотом или каким-либо другим некоцденсируюпдамся газом. Объем насьшдается парами жидкости, одна из стенок камеры делается подвижной. Непосредственно после прохождения через объем ионизирующей частицы (электрона, протона) происходит расширение газа и даижущаяся через газ частица оставляет на своем пути след (трек).  [c.102]

Исходный газ, имеющий давление Р , температуру Г,, и компонептн. лй состав С, , истекает из сопла / (см, рис. 6.3) в вихревую камеру 2 термотрансформатора, содержащего также диафрагму 3 с отверстием 4 и дроссель 5, между которыми и стенками камеры энергоразделения 6 имеется кольцевое отверстие 7. В камере энергоразделения 6 из исходного газа образуются свободный Я и вынужденный 9 вихри. Свободный вихрь вихревой камеры 2 и камеры энергоразделения 6 и истекает через кольцевое отверстие 7. Вынужденный вихрь 9 находится в приосевой области струйного течения. Между свободным 8 и вынужденным 9 вихрями располагается пограничный слой К), состоящий из газа, перетекающего из  [c.160]

Поскольку визуально точное место касания струи стенок камерьс смешения определить довольно сложно из-за капель, осаждающихся на стенках (рис. 8.6), место касания струи стенок камеры смешения находилось следующим образом.  [c.189]


Смотреть страницы где упоминается термин Стенки камеры : [c.97]    [c.12]    [c.38]    [c.42]    [c.48]    [c.9]    [c.156]    [c.103]    [c.257]    [c.338]    [c.333]    [c.77]    [c.205]    [c.133]    [c.156]    [c.165]    [c.193]   
Динамические системы - 6 (1988) -- [ c.126 ]



ПОИСК



Вакуумная Газы, десорбирующиеся с поверхности стенок камер

Воздействие излучения на первую стенку реакторной камеры

Зависимость Тг. ст от толщины стенки камеры двигателя

Заделка труб в стенках камер и колодцев

Защита огневой стенки камеры сгорания, выполненной из медных сплавов, от высокотемпературной родородной коррозии

Защита стенок камеры двигателя от прогорания с помощью покрытий или путем аккумуляции тепла

Камеры Сила действия потока на стенки Определение

Механизм разрушения огневых стенок камер сгорания, выполненных из стали

Механизмы разрушения огневых стенок камеры сгорания, выполненных из медных сплавов

Определение конвективных удельных тепловых потоков в стенку камеры двигателя

Определение коэффициента теплоотдачи от жидкостной стенки к охлаждающей жидкости аж. ст и температуры жидкостной стенки камеры двигателя Т ж, ст

Определение лучистых удельных тепловых потоков и суммарного теплового потока в стенки камеры двигателя

Определение толщины стенок загрузочных камер, матриц и обойм

Особенности и схемы теплозащиты стенок камеры жидкостных ракетных двигателей

Особенности работы сопла и расчет тяги камеры на режимах перерасширения и отрыва потока от стенки сопла

Отклик первой стенки камеры на микровзрыв

Расположение горелок на стенках топочной камеры

Расчет температуры жидкостной стенки и температуры газовой стенки камеры сгорания и сопла

Теплозащита стенок камеры жидкостных ракетных двигателей и расчет охлаждения

Теплообмен излучением в камере ОТО реактора, представленной в виде замкнутой системы изотермический излучающий газ — изотермическая стенка

Условия работы материала стенок камеры двигателя



© 2025 Mash-xxl.info Реклама на сайте