Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Виды элементов конструкций и нагрузок

ВИДЫ ЭЛЕМЕНТОВ КОНСТРУКЦИЙ И НАГРУЗОК  [c.6]

I. Описание элемента конструкции и нагрузок. Рассмотрим элемент конструкции в виде бесконечной полосы  [c.353]

Механические свойства конструкционных материалов определяют экспериментально специальными механическими испытаниями образцов, причем вид механического испытания назначают в зависимости от условий нагружения детали, подлежащей изготовлению из данного конструкционного материала. Механические свойства стали определяют при статических, динамических и циклических режимах приложения нагрузок, а также при пониженных, нормальных или повышенных температурах. Испытуемые образцы можно нагружать по различным схемам (одноосное растяжение — сжатие, чистый или поперечный изгиб, кручение). В за-виси.мости от времени воздействия нагрузки на испытуемый образец испытания могут быть кратковременными или длительными. Почти все методы механических испытаний стали (за исключением метода испытания твердости) являются разрушающими, что исключает возможность стопроцентного контроля механических свойств деталей машин или элементов конструкций и обусловливает весьма высокие требования к точности механических испытаний образцов (или контрольных деталей).  [c.454]


Конструкции следует рассчитывать с учетом возможных (для сечений элементов, конструкций и их соединений либо для всего здания или сооружения) неблагоприятных сочетаний нагрузок и воздействий. Вероятность этих сочетаний учитывается коэффициентами сочетаний п , которые вводятся в виде множителей к нагрузкам.  [c.234]

Среди заданных сил в задачах могут быть сосредоточенные нагрузки, изображенные на чертежах к задачам в виде векторов сил веса элементов конструкций распределенные нагрузки с заданной интенсивностью. Если в задачах на тело или систему тел действуют заданные пары сил, то они обычно задаются величиной момента и направлением вращения. Точки приложения сосредоточенных нагрузок всегда указываются в условии к задаче. Точки приложения сил тяжести, как правило, не указываются. Считается, что каждый решающий задачу, приложит эту силу в центре тяжести рассматриваемого тела. На распределенных нагрузках необходимо остановиться более подробно.  [c.44]

В решение этих задач должны внести вклад и техники-строители. Техническая механика как учебная дисциплина призвана вооружить их основами знаний о напряженном состоянии элементов конструкций под действием некоторых видов нагрузок, элементарной теорией расчета элементов конструкций, научить выбирать рациональные и экономичные конструктивные решения. Этой цели отвечает данный сборник.  [c.3]

Динамическая нагрузка меняется в течение короткого промежутка времени. К этому виду нагрузок относятся ударная и переменная нагрузки. Ударная нагрузка вызывается значительной скоростью приложения сил. Такими характерными нагрузками являются удары в деталях дробилок, кузнечных молотов и т. п. Частным случаем ударной нагрузки является внезапная нагрузка, которая прикладывается к элементам конструкции сразу всей своей величиной, например в момент наезда колесных пар локомотива на стыки рельсов и др. В некоторых случаях нагрузки подразделяются на основные, действующие в условиях нормальной работы, и случайные, вызываемые нарушением нормальной работы (ураганный ветер, снегопад и др.).  [c.244]

Проектирование воздушных судов (ВС) гражданской авиации, как и других видов техники, основано на систематизации внешних нагрузок с их последующим использованием для определения ресурса или долговечности тех зон или элементов конструкции, которые наиболее нагружены. По ним может быть установлен минимальный срок эксплуатации или ресурс всей конструкции, начиная с которого весьма вероятно возникновение повреждения и даже разрушение наиболее нагруженных элементов конструкции.  [c.26]


Рассмотренные закономерности роста трещин в двух сечениях одного и того же элемента конструкции — основной стойке шасси самолета Ан-24 свидетельствуют о том, что длительность накопления усталостных повреждений и продолжительность роста трещин могут существенно различаться для разных сечений детали из-за различия в реализуемых механизмах разрушения области мало- или многоцикловой усталости. Сопоставление данных о росте трещин в эксплуатации и на стенде по программам, имитирующим эксплуатационное нагружение детали блоками нагрузок по схеме уборка-выпуск шасси, указывают на правомерность использования параметров рельефа излома в виде шага усталостных бороздок для оценки длительности роста трещин в количестве посадок ВС из условия одна бороздка — одна посадка.  [c.783]

Наконец, следует иметь в виду что расчет и проектирование конструкций из композиционных материалов представляет собой взаимообусловленный итерационный процесс, который не исчерпывается только расчетом или только проектированием. Учет взаимного распределения нагрузок, геометрии элементов, особенностей поведения рассматриваемой конструкции требует комплексного подхода к решению задач расчета и проектирования. Именно такой подход рассмотрен в следующих разделах.  [c.109]

Нагрузки, воздействующие на конструкции, подразделяются на силовые и тепловые. Силовые нагрузки могут приводить к изменению физико-химических свойств материалов, к ползучести и дополнительным температурным деформациям. В ряде случаев этот вид нагрузки может вызвать изменение жесткости отдельных частей, изменение характера распределения внешних поверхностных нагрузок и динамических характеристик самой конструкции. Сравнительно большая тепловая инерция материалов приводит к неравномерному распределению температуры по элементам конструкции. В результате этого возникает неравномерная деформация конструкции, подобная деформация под действием силовых нагрузок. Поэтому обычно и выделяют дополнительные температурные напряжения.  [c.23]

В процессе эксплуатации элементы конструкций могут подвергаться постоянным или переменным нагрузкам. Переменные нагрузки, в свою очередь, подразделяются на детерминированные и случайные. К детерминированным относятся нагрузки, основные характеристики которых изменяются по заданной или известной функциональной зависимости. Примером таких нагрузок служат гармонические, изменяющиеся по строго синусоидальной зависимости (рис. 1,а). Все недетерминированные виды нагрузок относятся к категории случайных и описываются случайными функциями.  [c.23]

Особенностью механических свойств минералокерамики является чувствительность к виду напряженного состояния. Так, предел прочности при статическом изгибе в 3—4 раза выше предела прочности при разрыве характерной особенностью минералокерамики является также очень высокое сопротивление сжатию, которое в 40—50 раз больше прочности при разрыве и в 10 раз больше прочности при изгибе, что делает этот материал особенно перспективным для использования в элементах конструкций, которые подвержены в процессе эксплуатации действию сжимающих нагрузок. Минералокерамика обладает также высокой твердостью, плотностью и электроизоляционными свойствами, что свидетельствует о перспективности использования ее в качестве материала для изготовления электроизоляционных и износостойких деталей.  [c.376]

Вид функции /4 (х- Хф) зависит от типа элемента, его конструкции и комплекса действующих нагрузок.  [c.61]

Вибрации высокой частоты. В отличие от других видов переменных нагрузок, действующих на самолет, акустические нагрузки обладают очень широкими спектрами частот от единиц герц до десятков килогерц и беспорядочным (случайным) изменением во времени и пространстве. Под действием таких нагрузок в тонкостенных элементах конструкции самолета, например в обшивке, возбуждаются интенсивные вибрации высокой частоты. По величине они близки к собственным частотам изгибных колебаний участков обшивки (панелей), заключенных между подкрепляющими элементами (стрингерами, нервюрами, шпангоутами). Совпадение частот акустической нагрузки, имеющей непрерывный спектр, с собственными частотами панелей дает множество местных резонансов в конструкции, а в отдельно взятой панели возможны резонансные колебания не с одной, а одновременно с несколькими собственными формами колебаний.  [c.91]


Марку стали выбирают исходя из вида сооружения (элемента конструкции), условий эксплуатации и расчетных температур, характера и величины действующих нагрузок и т. д. Стали, применяемые для стальных конструкций, подразделяют на условные классы, исходя из отношения Onl [c.264]

Периодические колебания горения классифицируются в соответствии с поддерживающими их элементами конструкции двигателя. Частоты в диапазоне 10—200 Гц (низкочастотная неустойчивость) возникают в результате взаимодействия процесса горения и системы подачи топлива. Высокочастотная неустойчивость (выше 1000 Гц, за исключением очень больших камер сгорания) ассоциируется с акустическими характеристик ками объема камеры. Промежуточные частоты обычно обусловлены гидравлическими и тепловыми явлениями в системе впрыска или механическими вибрациями двигателя. Сильные колебания (случайные или периодические) в камере сгорания обычно рассматриваются как нежелательные, поскольку они могут привести к возрастанию тепловых нагрузок на элементы двигателя и, таким образом, уменьшить его ресурс. По аналогии с классическими видами акустических колебаний в цилиндрическом объеме высокочастотная неустойчивость подразделяется на продольную, радиальную и тангенциальную. Случается и сочетание двух или трех видов. Тангенциальные высокочастотные колебания являются самыми разрушительными. Зачастую размах таких колебаний достигает величины среднего давления в камере, а тепловой поток в стенку возрастает при этом, больше чем на порядок. Сохранение таких колебаний в течение 0,3 с обычно приводит к разрушению камеры сгорания.  [c.173]

Модели нагружения. Эти модели содержат схематизацию внешних нагрузок по координатам, времени, а также по воздействию внешних полей и сред. Силовые нагрузки, действующие на конструкции, можно разделить на три группы 1) объемные или массовые силы 2) поверхностные силы 3) сосредоточенные силы. Объемные нагрузки действуют на каждую частицу внутри тела. К таким нагрузкам относятся собственный вес конструкции, силы инерции, силы магнитного притяжения и т.п. Поверхностные нагрузки распределены по значительным участкам и являются результатом взаимодействия различных конструктивных элементов одного с другим или с другими физическими объектами (например, давление жидкости или газа на стенки сосуда, давление ветра на оболочку градирни и т.п.). Если силы действуют на небольшую поверхность конструкции, то их можно рассматривать как сосредоточенные нагрузки, условно приложенные в одной точке. По характеру действия нагрузки можно разделить на статические и динамические. Статическая нагрузка возрастает от нуля до своего номинального значения и остается постоянной во время эксплуатации конструкции. Переменное, или динамическое, нагружение — нагружение, изменяющееся во времени. Часто встречающимся видом переменного нагружения являются циклические нагрузки, характеризующиеся периодическим изменением значения и/или знака. Модели нагружения должны учитывать воздействие полей и сред. Наиболее существенным является воздействие температурного поля. Изменение температуры элементов конструкций вызывает температурные деформации. Если они не удовлетворяют уравнениям совместности деформаций, то в элементах конструкций возникают температурные напряжения, значения которых часто оказываются соизмеримы со значениями напряжений, возникающих от воздействия внешних сил. Кроме того, изменение температуры влияет на механические характеристики конструкционных материалов. В некоторых случаях приходится учитывать влияние нейтронного облучения, электромагнитного поля, воздействие коррозионных сред.  [c.401]

Эквивалентные режимы испытаний проводят, когда время действия эксплуатационных нагрузок велико и воспроизведение аналогичных условий нецелесообразно. Тогда за меньший срок времени осуществляют эквивалентные испытания, подтверждающие работоспособность основных элементов конструкций за время их эксплуатации. Эквивалентные режимы испытаний необходимы, если в естественных условиях не всегда можно воспроизвести вид и характер изменения нагрузок во времени, например, создать случайные режимы нагружения с заданными законами распределения и спектральными плотностями случайных нагрузок. В этих и других случаях необходимо заменить эксплуатационный режим нагружения эквивалентными режимами.  [c.357]

При осуществлении испытаний гладких лабораторных образцов следует иметь в виду, что эффекты циклического упрочнения, циклического размягчения, релаксации напряжений при циклическом нагружении, а также влияние последовательности приложения нагрузок и остаточных напряжений, которые могут сопровождать процесс накопления усталостных повреждений, в образце должны быть такими же, как и в опасной точке моделируемого элемента конструкции. Некоторые данные, подтверждающие необходимость этого, содержатся в работах [16—181.  [c.275]

По своей конструкции и внешнему виду козловые краны и мостовые перегружатели весьма сходны. Большепролетные козловые краны и мостовые перегружатели выполняют с одной гибкой и одной жесткой опорой. Гибкая опора соединяется с пролетным строением с помощью плоского или сферического шарнира, обладающего тремя степенями свободы. Такое соединение предотвращает возникновение распорных сил, неблагоприятно воздействующих на подкрановые пути и элементы ходовой части, исключает влияние температурных деформаций и обеспечивает расчетное распределение нагрузок на опоры независимо от профиля подкранового пути. В ряде случаев мостовые перегружатели вместо крановой тележки имеют поворотные краны (рис. 26), значительно увеличивающие возможности использования машины.  [c.41]


Расчет по методу допускаемых напряжений можно представить как частный случай расчета по методу предельных состояний для первой группы при одинаковых для всех видов нагрузки значениях коэффициента перегрузки. Вместо одного общего запаса прочности, принимаемого при расчете по методу допускаемых напряжений, в методе по предельным состояниям используют три коэффициента безопасности - по материалу м, по перегрузке п,- и по условиям работы то, устанавливаемые на основе статистического учета действительных условий работы конструкции. Поэтому метод расчета по предельным состояниям позволяет лучше учесть действительные условия работы элементов металлоконструкции и степень воздействия каждой из действующих нагрузок, а также лучше учитывают механические свойства материала.  [c.495]

В случае соблюдения законов подобия и равенстве чисел Fo, Hj, где Пг — один из комплексов-аргументов, определяющих условия теплообмена на граничных поверхностях, должно выполняться равенство значений относительных предельных нагрузок образца и элемента конструкции, т.е. (Р/Ро)обр = (Р/Ро)эл- Это означает, что при построении обобщенной характеристики элементов конструкции из КМ в виде соотношения между экспериментально определяемыми значениями предельных нагрузок при повышенной и нормальной температурах Кр = P/Pq могут быть применены методы теории подобия. Очевидно, что они могут использоваться также при определении предельных нагрузок элементов конструкций в случае подобных режимов нагрева. Отметим, что предельные напряженные состояния образцов при совместном действии внешней нагрузки и температуры определяются в основном критическими значениями напряжений, деформаций, перемещений и т.д., т.е. критическими значениями зависящих от температуры физических величин, из которых образованы остальные комплексы или симплексы, входящие в критериальные уравнения рассматриваемой задачи.  [c.27]

К жестким компенсирующим муфтам относятся зубчатые (ГОСТ 5006—55) и цепные муфты, а также упругие, которые в отличие от жестких компенсирующих муфт обеспечивают поглощение возможных ударов, резкого изменения скорости и нагрузок на ведущем валу за счет введения в конструкцию упругих элементов. Типичной конструкцией этого вида является муфта со змеевидной пружиной, описание которой приводится ниже.  [c.477]

Деформированное состояние сложной оболочечной конструкции характеризуется не только жесткостью основных ее элементов, но и такими особенностями, как наличие упругого заполнителя и внутреннего давления видом действующих нагрузок местом их приложения и взаимным влиянием жесткостью подкрепляющих шпангоутов и упругостью диафрагм (сферических или конических оболочек, связанных со шпангоутами). Введение понятий эквивалентная жесткость и эквивалентная нагрузка значительно упрощает схему расчета сложной оболочечной конструкции.  [c.129]

Для первого предельного состояния и II случая нагружения при каждой комбинации нагрузок (см. табл. 1.5,8) определяются расчетные усилия в элементах конструкции (1.5.78) и расчетные изгибающие моменты в них (1.5.79). Предельное условие имеет вид  [c.168]

Расчетные нагрузки на металлические конструкции строительных башенных кранов и их сочетания по ГОСТ 13994—81 даны в табл. II 1.3.4 и соответствуют методике расчета по предельным состояниям. В ГОСТ 13994— 81 даны сочетания нагрузок для расчета на прочность и устойчивость конкретных элементов конструкций. Условия прочности и устойчивости крана и элементов металлических конструкций имеют вид  [c.477]

Итак, развитие усталостных трещин в процессе эксплуатации элементов конструкций и деталей системы управления ВС является длительным. Это позволяет эффективно проводить их контроль и осуществлять эксплуатацию по принципу безопасного повреждения при обеспечении надежности функционирования систем даже при однократном пропуске трещины, поскольку число полетов с развивающейся трещиной составляет от одной до нескольких тысяч. При определении повреждающего цикла следует исходить из того, что основную роль в развитии трещины играет блок нагрузок от вибраций, которые накладываются на статическую нагрузку, возникающую в момент функционирования системы в полете. В зависимости от вида элемента конструкции вибрации вызывают продвижение трещины или могут не оказывать влияние на ее продвижение. В первом случае имеет место формирование мезоусталостных линий с площадками излома между ними, а во втором случае каждый акт функционирования элемента конструкции в полете связан с формированием каждой усталостной бороздки. В зависимости от условий работы разное число усталостных бороздок может характеризовать один полет ВС. Однако и в этом случае может быть проведена оценка числа бороздок за полет, поскольку начало функционирования и повторение этих действий в полете имеют некоторые различия, что отражается в различии профиля усталостных линий и бороздок, а также в различиях закономерности изменения шага бороздок по направлению роста трещины. Все это несколько усложняет интерпретацию  [c.753]

При решении вопроса о применении отдельных видов пластиков следует учитывать их специфические особенности. Так например, слоистые пластики (текстолит, гетинакс, дельта-древесина или лигнофоль и др.) анизотропны, т. е. имеют различные свойства в различных направлениях, зависящие главным образом от расположения слоёв и соотношения наполнителя и смолы в готовом материале. Высокое сопротивление воздшштвию вибрационных нагрузок хотя и выгодно отличает пластмассы от металлов, однако повышенная хрупкость (и не всегда достаточная прочность) прессованных деталей из порошкообразных пластмасс ограничивает их применение в силовых элементах конструкций. Термореактивные, а в особенности термопластичные материалы подвержены пластической деформации (текучести на холоду) под влиянием постоянно действующих нагрузок физико-механические свойства большинства пластиков сильно зависят от температуры и влаасности среды, в которых должен работать материал размеры деталей из пластмасс могут изменяться не только под влиянием постоянно действующих нагрузок и окружающей среды, но и в результате изменений, происходящих в процессе старения.  [c.293]

Кузов автомобиля — помещение для иассаи иров или груза. К кузову относят также оперение — облицовку радиатора, капот, крылья, подножки, буферы. В процессе развития автомобиля кузов приобрёл, помимо своих основных функций (защита пассажиров н груза от ветра, пыли, непогоды и обеспечение рациональных условий перевозки), ещё, и функции уменьшения лобового сопротивления и частичного или полного (при безрамной конструкции) восприятия толкающих усилий и нагрузок от элементов подвески и веса механизмов автомобиля. Кузов должен придавать автомобилю красивый внешний вид.  [c.147]

Инженеры разрабатывали все новые типы ферм, которые назывались их именами, так как каждое изменение формы очертания фермы, расположения и числа элементов решетки в них приводило к разным несущим характеристикам. Поскольку в то время в отсутствие общей теории стержневых конструкций характер изменений не мог быть оценен, каждое изменение фермы понималось как создание ферм нового типа. Основным вопросом развития сквозных конструкций, как было замечено выше в отношении ферм Шведлера, был вопрос оптимального использования несущих элементов, т. е. экономии материала и создания достаточной жесткости при действии на фермы сравнительно больших подвижных нагрузок от тяжелых локомотивов. Вехами этого развития из множества разработанных типов стержневых систем являются фермы Паули, или рыбкообразные фермы, и фермы полупараболического очертания. Инженер Ф. Паули (1802—1883) разработал фермы с верхним и нижним поясами, изогнутыми по форме параболы, с пересекающимися диагональными раскосами и приподнятым железнодорожным полотном (рис. 274). В идеальном виде эта конструкция была реализована в 1857 г. при строительстве моста пролетом 52 м через р, Изар в Гроссеселое. Кривизна поясов задавалась таким образом, что при равномерно распределенной по всему пролету нагрузке поперечное сечение верхнего пояса по всей длине пролета использовалось полностью. Перекрестные раскосы могли работать только на растяжение, возникающее при действии подвижной нагрузки.  [c.139]


При оценке возможности разрушения элемента конструкции или при проектировании неразрушающейся конструкции расчетчик должен уже на начальной стадии определить вероятные виды разрушения выявить соответствующие характеристики, по которым аналитически можно судить о степени опасности воздействия нагрузок и условий окружающей среды подобрать материал и геометрию проектируемой детали определить предельные характеристики прочности материала, соответствующие вероятным видам разрушения. Далее он должен рассчитать значения установленных характеристик состояния np i заданных нагрузках и условиях  [c.71]

Массив П1 краевых условий и нагрузок состоит из трех частей а, б, в, котор перфорируются подряд. Массив III, а содержит четыре строки — по две на кажд) край конструкции (для краевых элементов в виде полубесконечных оболочек, кругл пластин и упругих элементов заданной жесткости перфорируются нули). Масс  [c.86]

Стеклотекстолит относится к воло1снистым материалам. В качестве наполнителей применяют стекловолокнистые материалы в виде ориентированных элементарных волокон, стекложгутов или стеклотканей различных переплетений. Вид наполнителя оказывает основное влияние на свойства стеклотекстолита. Прочностные свойства стеклотекстолитов высокие. По удельной прочности они не уступают, а иногда и превышают аналогичный показатель для стали, дюралюминия и титана. Стеклопласты хорошо противостоят действию ударных и динамических нагрузок и обладают способностью гасить колебания элементов конструкций. Они стойки к воздействию растворов электролитов, масел, жидких топлив. Из них изготавливают крупногабаритные конструкции для хранения и транспортировки агрессивных жидкостей.  [c.248]

Долгое время считалось, что для статических нагрузок и других видов нагрулсения безусловно справедлив закон механического подобия, сформулированный в виде теоремы о подобии при упругих явлениях [36]. Однако влияние абсолютных размеров тела на его поведение под нагрузкой, в особенности для усталостного и хрупкого разрушения, стало обнаруживаться настолько часто, что это привело к необходимости учета масштабного фактора при проектировании, расчетах и механических испытаниях образцов и элементов конструкций.  [c.247]

Метод допускаемых напряжений. Расчет по этому методу проводят, если отсутствуют числовые значения коэффициентов перегрузки щ, необходимые для расчета по методу предельных состояний. Этот метод основан на сравнении напряжений (Т, возникающих в элементе конструкции от действия максимальных нагрузок (расчетные случаи II и III), с допускэг емыми напряжениями. Основная расчетная зависимость имеет вид  [c.494]

Так, в работе [88] указывается, что подавляюш,ее большинство отказов и неисправностей трансмиссии можно разбить на пять основных групп I — повреждения усталостного характера в виде выкрашивания рабочих поверхностей, трещин, изломов, возникающих в результате действия циклических нагрузок II — износ валов, втулок, шестерен и других деталей (исключая резино-технические изделия) III — повреждения резино-технических изделий IV — неисправности вследствие нарушения регулировок V — перетирания, появившиеся из-за вредных контактов элементов конструкции.  [c.9]

Износ от коррозионной усталости. Этот вид износа проявляется при одновременном воздействии на металл циклических знакопеременных или знакопостоянных нагрузок и коррозионно-агрессивных сред (паров, газов, электролитов, углеводородных или синтетических жидкостей, комбинации газообразных и жидких сред, обеспечивающих развитие химической и (или) электрохимической коррозии под напряжением при циклических нагрузках). Трудно найти ответственное металлоизделие, отдельные детали или узлы которого не подвергались бы износу от коррозионной усталости это — бурильные трубы, канаты, опоры и растяжки, сварные соединения всех видов техники, особенно судов и кораблей гребные винты и валы подшипники скольжения и качения щтанги и тяговые устройства, наружные и внутренние элементы конструкций самолетов и вертолетов, лопатки компрессоров и турбин шасси, рессоры, тор-сионы, подвески валки прокатных станов элементы двигателей внутреннего сгорания, станков, механизмов, приборов.  [c.228]

Понятие качества имеет также весьма широкий смысл. Например, для несущих элементов машин и конструкций, основное назначение которых — воспринимать большие нагрузки без разрушения, значительных дефордМаций и повреждений, качество зависит от соотношения между уровнем нагрузок и сопротивлением элемента этим нагрузкам. В простейшем случае, когда нагрузка задана с точностью до одного параметра q > О, а прочность — с точностью до соответствующего параметра г > О, пространство V одномерное. Его элементы — либо отношения rlq, либо разности г — q.B обоих случаях признаком качества несущего элемента служит запас прочности. В первом случае условие прочности имеет вид и = л/(/ > 1, во втором V = г — q > 0. Если параметры нагрузки и прочности — функции времени (рис. 2.5, а), то может оказаться удобным включить оба параметра в вектор V. При этом пространство V — первый квадрант плоскости г, q (рис. 2.5, б). Допустимая область задана соотношением  [c.37]

Первая попытка совместного рассмотрения инкубациоиной стадии и процесса развития макроскопических трещин была предпринята, по-видимому, автором (1959 г.), который предложил двухстадийную модель усталостного разрушения. Эта модель основана на введении двух мер повреждения, одна из которых характеризует разрыхление (степень подготовки материала к образованию усталостной трещины), вторая —размер магистральной усталостной трещины. Этот подход был предложен для объяснения и описания отклонений от линейного закона суммирования повреждений при изменении порядка приложения нагрузок различной интенсивности. В статьях [7, 14 ] концепция двух стадий разрушения получила дальнейшее развитие и доведена до соотношений, позволяющих прогнозировать показатели долговечности в условиях длительного и циклического нагружения. Основой для объединенной теории послужила модель зарождения макроскопических трещин, которая позволяет сформулировать начальные условия для второй стадии разрушения. Вторая стадия состоит в развитии макроскопической трещины либо до критического размера при котором трещина становится неустойчивой, -либо до предельно допустимого значения, после достижения которого данный элемент конструкции или деталь машины условно рассматриваются как разрушенные. Общее соотношение для размера I (длины краевой трещины, полудлины центральной трещины, радиуса дисковой трещины и т. п.) имеет вид  [c.115]


Смотреть страницы где упоминается термин Виды элементов конструкций и нагрузок : [c.398]    [c.97]    [c.126]    [c.420]    [c.825]    [c.292]    [c.492]    [c.35]    [c.291]    [c.57]   
Смотреть главы в:

Основы сопротивления материалов для чертежников-конструкторов  -> Виды элементов конструкций и нагрузок



ПОИСК



Нагрузка на элементы

Нагрузки — Виды

Элемент конструкции



© 2025 Mash-xxl.info Реклама на сайте