Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Система подачи топлива

Причинами, вызывающими вибрационный режим горения, могут быть пульсации местной концентрации топлива, вызванные использованием малонапорной системы подачи топлива близкое расположение форсунки к стенкам камеры может быть причиной возникновения акустических колебаний, инициирующих неустойчивость рабочего режима. В то же время, источником неустойчивости могут быть спиралевидные вихревые жгуты, разрушающиеся на стенках перфорированной камеры, а также прецессия вихря (см. рис. 3.19).  [c.317]


Предварительный подогрев жидкого топлива, интенсифицирующий испарение, позволяет получить в вихревой камере гомогенный состав, существенно облегчающий запуск и высокую устойчивость работы при сравнительно высокой полноте сгорания топлива Т1 = 0,99(9). Техническая характеристика горелочного устройства окислитель — сжатый воздух (давление — 0,1-0,6 МПа, расход 10,0 < С < 20 г/с), топливо (природный газ, керосин, дизельное топливо, отработка), расход G= 2- -3 г/с. Система подачи топлива — вытеснительная по магистрали, соединяющей горелку с вытеснительным бачком. Запуск горелки осуществляется открытым факелом через специальные продувочные окна.  [c.351]

Жидкостно-реактивный двигатель, схема которого приведена на рис. 14.6, состоит из камеры сгорания 1 с соплом 2, системы подачи топлива 3, в которую входят баки, насосы, агрегаты управления. Рабочие компоненты топлива — горючее и окислитель — подаются в камеру сгорания через форсунки 4, перемешиваются там и сгорают. Продукты сгорания расширяются в сопловом канале. При этом часть теплоты, которой они обладают, превращается в кинетическую энергию вытекающей среды. Скорость истечения га-  [c.173]

При насосной системе подачи топлива основное повышение давления его компонентов создается не в баках, а насосами 12, 16 (см. рис. 6.6, в, г). Привод насосов осуществляется газовой турбиной 15. В большинстве случаев в качестве источника газа для привода турбины турбонасосного агрегата (ТНА), включающего насосы и турбину, используются жидкостные газогенераторы (ЖГГ) 14, работающие, как правило, на основных компонентах топлива ЖРД. Продукты генерации в ЖГГ называются окислительными, если они получены при избытке окислителя (коэффициент избытка окислителя а > 1), и восстановительными, если имеется избыток топлива (а < 1).  [c.265]

Понятие сложной системы условно. Оно может применяться к отдельным узлам и механизмам (гироскоп, двигатель, система подачи топлива к двигателю), к машинам (станок, трактор, самолет), и к системам машин (цех машиностроительного завода, аэродромное оборудование, корабль и его оборудование).  [c.176]

Система подачи топлива к рабочим цилиндрам двигателя (при отдельном насосе) имеет магистрали низкого и высокого давления.  [c.259]

Основной причиной неудовлетворительной работы системы подачи топлива, как выяснилось, оказалась плохая конструкция бункерных шиберов, которые не держали давление. После увеличения размеров шиберов и пневматических линий, добавки воздуха к клапанам шиберов и других мероприятий надежность работы системы подачи топлива существенно улучшилась.  [c.307]


При выполнении топливного хозяйства электростанций применяется, как правило, удвоение транспортных устройств, что называется двухниточной системой подачи топлива. Исключением является подача топлива в бункеры котельной в таре.  [c.393]

F 02 <В — Двигатели внутреннего сгорания (поршневые, вообще) С — Газотурбинные установки, воздухозаборники реактивных двигательных установок, управление подачей топлива в воздушно-реактивных двигательных установках D — Управление или регулирование двигателей внутреннего сгорания F — Цилиндры, поршни, корпуса или кожухи цилиндров, устройство уплотнений в двигателях внутреннего сгорания G — Силовые установки и двигатели объемного вытеснения, работающие на горячих газах или продуктах сгорания, использование отходящей теплоты двигателей с нагревом рабочего тела путем сгорания К—Реактивные двигательные установки М—Системы подачи топлива или горючей смеси для двигателей внутреннего сгорания и составные части этих систем N — Пуск двигателей внутреннего сгорания, вспомогательные средства для пуска двигателей Р—Зажигание в двигателях внутреннего сгорания, работающих без самовоспламенения от сжатия, проверка момента зажигания в двигателях с самовоспламенением от сжатия)  [c.38]

Форсажная камера двигателя короткая, что достигнуто применением малых скоростей потоков в зоне смешения. Многозонная система подачи топлива (четыре коллектора в потоке газа внутреннего контура и три — в потоке воздуха внешнего контура) позволяет регулировать тягу на форсаже в широком диапазоне, причем включение форсажа происходит практически без скачка тяги. На двигателе для сглаживания возмущений в виде колебаний давления воздуха в процессе запуска форсажной камеры и на переходных режимах в целях уменьшения воздействия форсажной камеры на устойчивость работы вентилятора специальное устройство плавно снижает давление топлива в уже включенных коллекторах. В форсажной камере установлен перфорированный тепловой экран с поперечными гофрами для организации охлаждения стенок и устранения нежелательных эффектов акустического резонанса.  [c.104]

Рис. 5.3. Схема жидкостно-ракетного двигателя (ЖРД) с турбонасосной системой подачи топлива Рис. 5.3. Схема <a href="/info/26480">жидкостно-ракетного двигателя</a> (ЖРД) с <a href="/info/409874">турбонасосной системой подачи</a> топлива
Периодические колебания горения классифицируются в соответствии с поддерживающими их элементами конструкции двигателя. Частоты в диапазоне 10—200 Гц (низкочастотная неустойчивость) возникают в результате взаимодействия процесса горения и системы подачи топлива. Высокочастотная неустойчивость (выше 1000 Гц, за исключением очень больших камер сгорания) ассоциируется с акустическими характеристик ками объема камеры. Промежуточные частоты обычно обусловлены гидравлическими и тепловыми явлениями в системе впрыска или механическими вибрациями двигателя. Сильные колебания (случайные или периодические) в камере сгорания обычно рассматриваются как нежелательные, поскольку они могут привести к возрастанию тепловых нагрузок на элементы двигателя и, таким образом, уменьшить его ресурс. По аналогии с классическими видами акустических колебаний в цилиндрическом объеме высокочастотная неустойчивость подразделяется на продольную, радиальную и тангенциальную. Случается и сочетание двух или трех видов. Тангенциальные высокочастотные колебания являются самыми разрушительными. Зачастую размах таких колебаний достигает величины среднего давления в камере, а тепловой поток в стенку возрастает при этом, больше чем на порядок. Сохранение таких колебаний в течение 0,3 с обычно приводит к разрушению камеры сгорания.  [c.173]


Моделирование реальных условий работы материалов в газовых турбинах может осуществляться разными методами [7, 8]. Стендовые установки для проведения таких испытаний, как правило, состоят из горелок для сжигания газообразного или жидкого топлива, системы подачи топлива и воздуха, камеры сгорания и специального отсека для размещения образцов, где они могут закрепляться стационарно или в специальных держателях, допускающих быструю смену образцов. Чаще всего испытывают образцы цилиндрической формы, хотя иногда используют образцы аэродинамической формы или какой-либо другой конфигурации. Для получения на поверхности образцов слоя загрязняющего осадка в рабочий объем установки может вводиться соответствующее загрязняющее вещество, например морская вода, либо прямым впрыскиванием в камеру сгорания, либо подмешиванием в топливо.  [c.52]

В каждой пламенной трубе КС есть 19 вихревых горелок. Такая многомодульная конструкция позволяет получить более однородное температурное поле на входе в ГТ и осуществить более гибкое управление системой подачи топлива.  [c.228]

Газотурбостроение, химическое и нефтяное машиностроение, насосы, атомная энергетика, системы подачи топлива, газа и др.  [c.51]

Для управления скоростью вращения КА широкое применение нашли реактивные двигательные установки, представляющие собой системы с одним или несколькими реактивными двигателями малой тяги, объединенные общей системой подачи топлива. Работа таких двигательных установок во многом определяется длительностью активного существования КА, многократными включениями в условиях орбитального вакуума и невесомости, а также ограничением габаритов и веса. Последнее и определяет главный недостаток реактивных двигательных систем, который заключается в постоянном расходовании рабочего тела, запасы которого в полете невосполнимы. Другим недостатком реактивных двигателей является отсутствие возможности регулирования тяги. Поэтому независимо от требований управляющих устройств двигатели при включении развивают одну и ту же тягу и один и тот же управляющий момент.  [c.132]

В неработоспособном состоянии функциональные параметры объекта и, следовательно, его эксплуатационные показатели выходят за допустимые пределы, и объект не способен выполнять хотя бы одну из заданных функций. Например, при поломке двигателя полностью утрачивается его работоспособность и он переходит в неработоспособное состояние — это отказ. При засорении системы подачи топлива мощность двигателя снижается ниже установленного уровня, его работоспособность нарушается и он переходит в неработоспособное состояние — это тоже отказ.  [c.30]

Коррозия деталей двигателя и системы подачи топлива  [c.243]

Механические примеси и вода могут вызвать засорение системы подачи топлива, фильтров тонкой очистки и привести к перебоям и остановке двигателя в топливе они должны отсутствовать.  [c.246]

Покровский г. П. Электроника в системах подачи топлива автомобильных двигателей.— 3-е изд., перераб. и доп.— М. Машиностроение, 1990.— 15 л. ил.— (в обл.) 75 к.  [c.311]

Современные промышленные котельные даже небольшой мощности имеют механизированные системы подачи топлива. В системе топливоподачи при поступлении несортированных углей независимо от способа сжигания твердого топлива (слоевой или камерный) всегда предусматривается его предвари-  [c.14]

Современные промышленные котельные даже небольшой мощности имеют механизированные системы подачи топлива. В системе топливоподачи при поступлении несортированных углей независимо от способа сжигания твердого топлива (слоевой или камерный) всегда предусматривается его предварительное дробление. Топливо в котельные поступает по железной дороге, подвозится автомобильным или водным транспортом.  [c.14]

Персонал, обслуживающий системы подачи топлива, является оперативным, и поэтому так же, как и персонал, обслуживающий Го непосредственно котлы, сдает экзамены по эксплуатации и технике безопасности в объеме выполняемой работы.  [c.17]

Рис. 8. 53. Упругий патрубок системы подачи топлива и окислителя в насос ТНА ЖРД Рис. 8. 53. Упругий патрубок системы подачи топлива и окислителя в насос ТНА ЖРД
Для электростанций, центральных котельных, а также паротурбинных компрессорных и воздуходувных станций и производственных печных установок применяется, как правило, двухниточная система подачи топлива ленточными транспортерами в бункеры установки.  [c.190]

СИСТЕМА ПОДАЧИ ТОПЛИВА  [c.41]

Система подачи топлива двигателя состоит из топливного бака, матерчатого фильтра-отстойника, топливного пасоса плунжерного типа, форсунки и трубопроводов.  [c.46]

Система подачи топлива состоит из подкачивающего насоса, фильтра, топливного насоса высокого давления, форсунок и трубопроводов.  [c.58]

Смесевые бензоэфирные топлива значительно более стабильны, чем бен-зоспиртовые. К тому же не требуется особых ограничений при хранении и транспортировке их на автомобиле. Токсичность паров МТБЭ не выше, чем бензина. Эфирные пары имеют специфический острый запах, но не вызывают, в отличие от паров бензина, образования озона — одного из компонентов в. реакции образования фотохимического смога. Эфирные, как и спиртовые, топлива способствуют образованию паровых пробок в системе питания, которые можно избежать установкой топливного насоса непосредственно в баке или применением проточной системы подачи топлива.  [c.57]

В бескомпрессорном дизеле топливо под большим давлением через форсунку впрыскивается в цилиндр, где оно смешивается со сжатым воздухом и сгорает. Для обеспечения полного сгорания топлива в короткий срок необходимо, чтобы оно было распылено как можно тоньше и равномернее занимало весь объе1 1 камеры сгорания. Наиболее распространенная схема системы подачи топлива в дизелях показана на рис. 75. Топливо из бака / ч рез фильтр грубой очистки 2 поступает к топливоподкачивающему  [c.172]


Ракеты, использующие бинарные жидкие топлива, где каждый компонент находится в отдельном резервуаре, в отношении сохранности на больших глубинах, по-видимому, не более надежны, чем твердотопливные двигатели. Уже па умеренных глубинах давление может разрушить резервуары, что приведет к быстрой утечке горючего и окислителя. При наличии большого количества воды в камере сгорания двигатели с самовоспламенением или с искровым зажиганием не срабатывают. В случае сохранных - резервуаров и исправной системы подачи топлива (насосами или под давлением) двигатели после высушивания мол<но использовать. Все сказанное справедливо также для двигателей, работающих па жидких однокомнонентных (унитарных) и гибридных топливах.  [c.506]

В остальном конструкция установки кипящего слоя, включая воздухораспределительную решетку (живое сечение 2,67%), системы подачи топлива и его приготовления, подвода воздуха и отвода золы, аналогична конструкции для котла ТЭС Ахтме [ФРГ].  [c.211]

Уголь (Q = 22,3 МДж/кг) дробится до размера менее 19 мм. Содержание серы в угле 0,5%, в качестве сорбента используется известняк, отношение Са/8 = 2-ь1. Система подачи топлива, имеющая 100%-ный резерв по всем узлам, состоит из псевдожидкого затвора (герметичного колена), не позволяющего протекать газу из топки в систему подачи топлива, и гравитационных желобов, расположенных на фронте котла. На каждом котле имеется четыре точки ввода топлива. Две растопочные горелки специальной конструкции расположены на боковых стенах топки над плотным слоем.  [c.247]

Выносные подогреватели. Как видно из вышеприведенных схем мазутного хозяйства, в ряде случаев, кроме рассмотренных подогревателей, расположенных внутри хранилпш, мазута, в системе подачи топлива применяют также внешние подогреватели.  [c.46]

Одним из результатов работы, проведенной в конце 1960-х гг. американской Межведомственной комиссией по ракетным двигателям на химическом топливе RPG, стало признание того, что экономичность, устойчивость и работоспособность ЖРД взаимосвязаны. Такой вывод был сделан на основании анализа дробления, испарения и горения распыленного топлива, который стал отправной точкой для поиска технических решений в этих трех направлениях. В результате появилась возможность оптимизировать процесс выбора конструкторских решений, сократив тем самым период разработки и уменьшив массу двигателя. Большинство ЖРД, разработанных до 1970 г., создавались методом проб и ошибок. Случалось, что до нахождения оптимальной конструкции приходилось опробовать до 100 вариантов смесительной головки. Обычно лишь после достижения требуемого уровня экономичности и обеспечения устойчивой работы начинались поиски способов обеспечения требуемого ресурса. Поэтому разработанные ранее ЖРД (эксплуатация некоторых из них еш е продолжается) имели неоптимальное соотношение компонентов топлива, в них использовались специальные устройства для повышения устойчивости, а масса конструкции оказывалась завышенной. Маршевый двигатель ВКС Спейс Шаттл и экспериментальный ЖРД с кольцевой камерой сгорания и центральным телом стали первыми двигателями, разработанными с применением новых методов. Рабочие характеристики ЖРД определяются выбором установочных параметров, к которым относятся свойства компонентов топлива и технические требования к системе подачи топлива, смесительной головке и камере сгорания. Исходя из них, можно рассчитать полноту сгорания, удельный импульс, устойчивость горения и температуру стенки камеры. Достигнутый удельный импульс, как и для РДТТ, представляет собой разницу между термодинамическим потенциалом топлива и потерями, сопутст-вуюш.ими его реализации. Динамическая устойчивость определяется балансом между причинами, вызываюш ими внутрика-  [c.164]

Собственные частоты системы подачи топлива или других узлов двигателя при динамических нагрузках определяют, возникнет ли неустойчивость с колебаниями той или иной частоты. Процесс горения можно изолировать от системы подачи увеличением перепада давления на форсунках. Если перепад давления на форсунках составляет примерно половину внутрикамерного давления, то низкочастотные колебания возникают редко. Использование демпфирующих устройств или согласование импедансов позволяет снизить требуемый перепад давления на форсунках до величин, меньших половины давления в камере сгорания при обеспечении устойчивой работы ЖРД. Изменения собственных частот системы питания можно добиться изменением длины или объема трубопроводов и коллекторов, а также установкой энергопоглощающих устройств типа четвертьволновых резонаторов или резонаторов Гельмгольца. Собственные частоты механических узлов можно изменять выбором других мест крепления или введением дополнительных креплений. Можно изменять и конструкцию камеры сгорания, чтобы уменьшить диапазон ее чувствительности к колебаниям низкой и промежуточной частот. Увеличение приведенной длины L или отношения длины к диаметру форсуночных каналов обычно повышает устойчивость [69]. Для ЖРД, работающих на водо-  [c.174]

Обкатка и испытание турбокомпрессора. Обкатку и контрольные испытания турбокомпрессоров марки 238НБ-1118010Г осуществляют на стенде КИ-8877. Основные узлы стенда насосная станция, система подачи топлива и масла, пульт управления. Топливо из бака подается насосом через фильтр, трехходовой кран, клапан отсечки и форсунку в камеру сгорания. В камере сгорания горючая смесь воспламеняется и образовавшиеся газы устремляются в турбину турбокомпрессора, вращая его вал. Всасываемый компрессором воздух по кольцевому трубопроводу подается в камеру сгорания.  [c.333]

Как видно из рис. 69, система подачи топлива стенда включает в себя расходный бак 16, сдвоенный фильтр для очистки топлива 20 и подкачивающий насос 19 с перепускным клапаном. Производительность топливоподкачивающего насоса выбирается с избытком в 1,5—2,0 раза по отношению к расходу топлива СПГГ напор должен составлять 2—3 ати. Расходная цистерна (бак) рассчитывается на 6—8 часов работы генератора при полной мощности кроме нее предусматривается цистерна основ-ного запаса топлива с перекачивающими средствами необходимой производительности.  [c.126]


Смотреть страницы где упоминается термин Система подачи топлива : [c.15]    [c.264]    [c.78]    [c.32]    [c.594]    [c.536]    [c.130]   
Смотреть главы в:

Автомобили таврия славута заз-1102 1103 1105 и их модификации Устройство эксплуатация ремонт  -> Система подачи топлива

ZAZ-DAEWOO SENS с 2002 года выпуска  -> Система подачи топлива

Daewoo lanos assol  -> Система подачи топлива



ПОИСК



Влияние теплообмена на работу системы подачи топлива

Вспомогательная аппаратура системы подачи топлива

Выбор типа системы подачи топлива

Подача топлива

Подача топлива к карбюратору. Система впуска и выпуска

Приборы системы подачи топлива

Проверка работы системы подачи топлива

Расчет и выбор оптимального давления в камере сгорания для вытеснительной системы подачи топлива

Сброс давления в системе подачи топлива

Система автомобиля регулирования подачи топлива

Система отключения подачи топлива (ЭПХХ) двигателя

Система подачи топлива (канд. техн. наук доц. М. И. Сороко)

Система подачи топлива вытеснительная

Системы подачи в ЖРД

Турбонасосная система подачи топлива

Уравнения агрегатов системы подачи жидкого компонента топлива

Устройство и работа системы питания карбюраторного двигателя. Подача топлива, очистка воздуха, подогрев горючей смеси



© 2025 Mash-xxl.info Реклама на сайте