Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Описание элементов конструкции

I. Описание элемента конструкции и нагрузок. Рассмотрим элемент конструкции в виде бесконечной полосы  [c.353]

При проектировании сборочных работ в некоторых случаях целесообразно пользоваться упрощенными, но более экономичными методами описания элементов конструкции — геометрическими примитивами - например, прямоугольной моделью формы и расположения объектов. В этой модели объект представляется как прямоугольный параллелепипед, грани которого параллельны плоскостям координат (рис. 1.2.13). Контур формы при этом определяется параметрами,  [c.43]


В последние годы расчет на прочность элементов конструкций интенсивно совершенствуется за счет широкого использования электронных вычислительных машин (ЭВМ). Открываются возможности более полного описания элементов конструкций с учетом реальных свойств материалов, характера нагружения и условий разрушения.  [c.495]

ЭЛЕМЕНТЫ КОНСТРУКЦИИ ДВИГАТЕЛЯ 6. 3.1. Описание элементов конструкции [10- 13]  [c.318]

Описание элементов конструкции  [c.319]

В отличие от существующих методов расчета по допускаемым напряжениям в общем машиностроении и по разрушающим нагрузкам в авиации и ракетной технике, где вероятностная природа нагрузок и несущей способности скрыта либо в коэффициенте запаса прочности, либо в коэффициенте безопасности, в данной работе характеристики вероятностного описания нагрузок и несущей способности непосредственно входят в формулы для определения размеров поперечного сечения, обеспечивающих заданную надежность элемента конструкции. Такой подход более адекватно отражает реальную работу элемента конструкции.  [c.3]

Настоящая монография является одной из попыток среди такого рода работ подойти к проблеме разрушения, базируясь на системном подходе, лежащем на стыке механики деформируемого твердого тела, механики разрушения и физики прочности и пластичности. В книге изложены разработанные авторами физико-механические модели хрупкого, вязкого и усталостного разрушений, позволяющие анализировать повреждение материала при сложном нагружении в условиях объемного напряженного состояния. Приведены подходы к описанию кинетики трещин при статическом, циклическом и динамическом нагружениях элементов конструкций. Кроме того, в работе рассмотрены методы и алгоритмы численного решения упруговязкопластических задач при квазистатическом (длительном и циклическом) и динамическом нагружениях.  [c.3]

Прогноз субкритического развития трещины при вязком разрушении во многих случаях, как известно, проводится на основании концепции /д-кривых. Данная концепция весьма формальна и не отражает физической сущности рассматриваемого явления. Так, увеличение сопротивления росту трещины по мере ее развития, выраженное зависимостью Jr AL), связано с неоднозначностью описания НДС у вершины движущейся трещины с помощью /-интеграла реально сопротивление разрушению материала у вершины растущей трещины (критическая деформация е/) остается постоянным. Кроме того, Уд-кривые не инвариантны к схеме нагружения и типу образца, что ставит под сомнение их использование для анализа предельных состояний элементов конструкций с трещинами.  [c.266]


Конечная цель сварочного производства — выпуск экономичных сварных конструкций, отвечающих по своим конструктивным формам, механическим и физическим свойствам тому эксплуатационному назначению и условиям работы, для которых они создаются. Обеспечение рациональных форм и определение оптимальных сечений элементов конструкций относится к задачам проектирования. Получение необходимых механических и физических свойств сварных соединений — главная задача, решение которой должны обеспечить технологические процессы сварки. Теория сварочных процессов призвана давать правильное описание совокупности явлений, которые составляют сущность процесса сварки.  [c.5]

Так как температура в камере сгорания достигает 2500—3200 К, а температура на входе в канал генератора 2400—2600 К, существуют значительные трудности в выборе материалов стенок. Эти трудности обусловливаются тем, что к материалу стенок канала предъявляются требования по обеспечению большого ресурса работы и способности выступать в роли проводящих и непроводящих элементов при высоких температурах и при высокой химической активности рабочего тела (продукты сгорания с добавкой калия). Для выполнения этих требований и обеспечения совместимости элементов конструкции друг с другом применяются описанные нами покрытия.  [c.210]

Эскиз конструкции аналога, полученный из базы графических данных, приведен на рис. 6.3. Поскольку в базе данных хранятся описания отдельных элементов конструкции, то имеется возможность получить изображение нужного элемента, в данном случае маховика (рис. 6.4).  [c.199]

Чаще всего метод Бубнова — Галеркина используется как вспомогательный прием, который позволяет достаточно просто получить в аналитической форме приближенное описание деформации отдельного элемента конструкции при одном или нескольких первых членах ряда (8.35). Эти выражения затем могут использоваться в других исследованиях. Хотя описание метода велось на примере двумерной области интегрирования А, но он, естественно, применим и для одномерных, и для трехмерных задач. Он применим также и к системам дифференциальных уравнений.  [c.254]

При решении большинства инженерных задач необходимо знать, с какими скоростями различные частицы жидкости проходят через определенные элементы конструкций или инженерных сооружений или подходят к ним. Поэтому способ описания движения Эйлера принят основным.  [c.36]

Принудительная параметризация предполагает описание арифметическими выражениями или отношениями совокупности связанных друг с другом геометрических элементов конструкции. Любой параметр геометрического элемента можно представить его значением, или переменной, или выражением. Например, рассмотрим параметризацию формообразующих контуров шатуна (рис. 1.20). Предположим, что его геометрические параметры заданы в виде следующих математических выражений 01 = 02 = 80, К1 = 25, К1 + 10 = 35, К2 = 15, К2 + 10 = 25, 01 - К1 - 15 = 40, 02-К2-15 = 50.  [c.29]

Ниже последовательно рассмотрены общие закономерности поведения конструкционных материалов с развивающимися в них усталостными трещинами в условиях многопараметрического воздействия. Предложено единое кинетическое описание поведения материала на основе анализа параметров рельефа излома с введением представления об эквивалентном уровне напряжения. Обобщены количественные характеристики процесса роста усталостных трещин в элементах конструкций воздушных судов гражданской авиации, полученные в рамках проведения исследований причин их разрушения в условиях эксплуатации. Помимо того, рассмотрены вопросы эксплуатационного контроля с корректировкой периода осмотра конструкций на основе данных количественной фрактографии проведен обзор способов торможения или задержки роста усталостных трещин в элементах конструкций.  [c.22]

На основе развитых к настоящему времени подходов, используемых в описании закономерностей роста трещин от начальных дефектов в элементах конструкций, представляется возможным рассчитать период роста трещины и на его основе определять долговечность [68]. Испытания пластин из алюминиевых сплавов по специально разработанным программам, моделирующим условия нагружения крыла самолета [15, 24, 68-72], показывают высокое соответствие прогноза с результатами эксперимента. Эти расчеты подтверждают справедливость предположения о развитии усталостных трещин в течение всего периода нагружения конструкции даже от незначительных по величине дефектов.  [c.47]


Вместе с тем, для удобства анализа закономерностей роста трешин суммирование затрат энергии рассматривают применительно к наиболее простой ситуации — одноосное нагружение путем растяжения или изгиба до достижения предельного состояния. Оно соответствует переходу от устойчивого (без нарушения целостности) состояния металла, воплощенного в форме образца или элемента конструкции, к неустойчивому, а следовательно, неуправляемому процессу быстрого (мгновенного) развития разрушения. Использование простейшей ситуации в анализе поведения металла позволяет использовать механические (напряжение, деформация) и геометрические характеристики (длина трещины, ширина и толщина образца, элемента конструкции) для установления однозначной связи между затратами энергии и используемыми комбинациями вышеуказанных характеристик. Выполняемый анализ должен служить цели определения затрат энергии на процесс распространения трещин на основе именно механических характеристик в наиболее широком диапазоне их изменения с тем, чтобы затем использовать энергетические (универсальные) характеристики в описании более сложного, предполагаемого эксплуатационного разрушения элемента конструкции.  [c.78]

При синергетическом описании эволюции открытых систем рассматриваются переходы от одних механизмов самоорганизации (способы диссипации энергии при разрушении материала) к другим в критических точках неустойчивости, которые названы точками бифуркации [43-46]. В точках бифуркации система претерпевает принципиальные изменения в способности реагировать на подводимую энергию извне, а следовательно, кинетические уравнения в точках бифуркации должны дискретно сменять любой свой вид, либо дискретно меняются параметры этих уравнений. Чтобы применить к металлу указанный подход описания эволюции открытых систем с целью изучения распространяющихся трещин в элементах конструкций при многопараметрическом воздействии, необходимо показать существование в металле строго упорядоченных процессов (механизмов) разрушения и доказать независимость их реализации от условий или параметров внешнего воздействия.  [c.100]

Приведенный постулат является следствием известного парадокса в математике, который гласит, что пи одна система в процессе своей эволюции не может быть описана с достаточной полнотой, поскольку никогда заранее не известно, сколько переменных должно быть использовано для описания поведения этой системы. Применительно к разрушающемуся элементу конструкции этот принцип означает, что всегда существует неопределенность в том, каким именно было эксплуатационное нагружение, вызвавшее разрушение конструкции. Отмеченная неопределенность становится понятной применительно к металлическим элементам конструкций, если учесть другой принцип эквивалентности условий нагружения, который гласит следующее  [c.100]

Таким образом, предельное состояние элемента конструкции с усталостной трещиной в эксплуатации достигается при некотором уровне эквивалентной вязкости разрушения материала. В результате этого предельная длина трещины может быть отлична от той, что соответствует стандартным условиям испытаний материала. Это отличие полностью определяется величинами поправочных функций на реализуемые условия нагружения. Введение представления об эквивалентных характеристиках материала для описания его поведения в условиях эксплуатации позволяет после разрушения элемента конструкции проводить оценку значимости факторов эксплуатационного воздействия на материал в момент его разрушения.  [c.118]

Нерегулярное нагружение элемента конструкции в эксплуатации может быть описано с единых позиций синергетики в соответствии с изложенными выше представлениями. При сохранении ведущего механизма разрушения или до нарушения принципа однозначного соответствия процесс накопления повреждений в открытой системе описывается единственным образом по одному из уравнений синергетики. Нерегулярное нагружение вызывает усиление или уменьшение флуктуаций в зависимости от того, насколько близко на переходных режимах внешнего нерегулярного воздействия система подходит к точке бифуркации. Если поведение системы рассматривается вдали от критических точек, то ее описание сводится к анализу управляющего параметра, характеризующего реакцию материала на воздействие в любой момент времени.  [c.126]

Рассмотренные принципы синергетики и основные простейшие подходы описания эволюции открытых систем полностью применимы к металлическим материалам, испытывающим различные эксплуатационные воздействия. Наличие в материале основного аккумулятора энергии в виде пластически деформированной зоны предразрушения до зарождения трещины и в вершине трещины при ее распространении обеспечивает устойчивое поведение материала вплоть до начала нестабильности. Сохранение устойчивого поведения материала при внешнем воздействии на стадии распространения трещины в течение значительного периода эксплуатации конструкции служит основной причиной тщательного анализа роли внешних условий воздействия, влияющих на устойчивость системы, что может вызвать процесс быстрого окончательного разрушения. На базе синергетического анализа появляется возможность управлять процессом эволюции состояния металла или элемента конструкции в условиях многопараметрического эксплуатационного воздействия и поддерживать устойчивость его поведения с развивающейся трещиной (поведения системы), по крайней мере, в период между двумя соседними эксплуатационными проверками с помощью методов неразрушающего контроля.  [c.127]

Поэтому перейдем к описанию единой кинетической диаграммы для металлических материалов, подвергаемых многопараметрическому воздействию в эксплуатации при работе элемента конструкции.  [c.183]


Процесс разрушения элемента конструкции в эксплуатации отражен в реакции материала на все многообразие условий его нагружения, выраженное в формировании определенной морфологии рельефа излома в направлении развития усталостной трещины. По параметрам рельефа излома, таким, например, как усталостные бороздки, может быть восстановлена кинетика распространения усталостной трещины в терминах — скорость процесса разрушения по длине трещины. Если исходить из того, что каждому диапазону воздействия или условиям нагружения, или их сочетанию соответствует своя реакция материала, приводящая к реализации определенного механизма разрушения, то тогда по параметрам рельефа излома легко определить, в каком диапазоне воздействия работал материал. Но в таком случае для каждого диапазона или условий нагружения должна быть построена своя базовая или тестовая кинетическая кривая, и уже она может быть использована для описания процесса роста усталостных трещин в строго установленных границах ее использования. При рассмотрении реализованного процесса роста трещины на основе изучения, например, параметров рельефа излома или слежения за ростом трещины в ходе периодического эксплуатационного контроля получаемой информации достаточно, чтобы по данным эксплуатационного контроля решать вопросы об обеспечении  [c.187]

Подавляющее большинство разрушений элементов конструкций в эксплуатации, в том числе и авиационных, происходит в условиях макроскопической ориентации плоскости треш ины нормально к поверхности детали. Одновременно с этим доминирует нормальное раскрытие берегов трещины при разнообразном многопараметрическом внешнем воздействии, о чем свидетельствуют параметры рельефа излома, формируемые в направлении роста трещины. Следует подчеркнуть, что речь идет не только о подобии ориентировки трещины, но и о подобии между последовательностью реализуемых механизмов разрушения при распространении трещины в эксплуатации в случае многоосного нагружения и в лабораторном опыте, когда осуществлено одноосное циклическое растяжение образца с различной асимметрией. Указанное геометрическое и физическое подобие позволяет ввести универсальное описание процесса роста усталостных трещин по стадиям при многопараметрическом внешнем воздействии.  [c.233]

Соотношение (5.48) может быть использовано для полного описания роста малых и больших усталостных трещин при реализации нагружения с постоянной деформацией. Из этого может быть сделан важный вывод. В случае выявления линейной зависимости шага усталостных бороздок (скорости роста трещины) от ее длины при неизвестном внешнем нагружении элемента конструкции можно утверждать, что были реализованы условия роста трещины, подобные внешнему воздействию с постоянной деформацией.  [c.248]

Общее описание конструкций с легким заполнителем, представленное в разделе VII гл. 4, справедливо и для трехслойных оболочек, диапазон применения которых простирается от панелей фюзеляжа самолета, комовой пологой сферической переборки космического корабля Аполлон и элементов конструкций глубоководных аппаратов до строительных перекрытий и куполов.  [c.246]

Даны формулировка, феноменологическое описание и экспериментальное обоснование фундаментальных закономерностей циклической пластичности конструкционных металлов при нормальных, повышенных и высоких температурах, необходимые для решения соответствующих краевых задач, анализа условий разрушения при неоднородном деформируемом состоянии в проблеме механики деформируемого тела и приложения в расчетах элементов конструкций при малоцикловом нагружении..  [c.273]

Рассмотрены процессы повреждения и разрушения материалов и элементов конструкций и формулировки критериев разрушения на основе подхода, включаюшего механику деформируемого твердого тела, механику разрушения и физику прочности и пластичности. Приведены подходы к описанию кинетики трещин при статическом, циклическом и динамическом нагружениях элементов конструкций. Рассмотрены методы и алгоритмы численного решения упруговязкопластических задач при квазистатическом (длительном и циклическом) и динамическом нагружениях. Основу книги составили результаты, полученные авторами.  [c.2]

В настоящее время имеется большое количество работ, посвященных анализу прочности и долговечности материалов и элементов конструкций. В ряде публикаций проблема прочности и разрушения рассматривается с феноменологических позиций— на базе концепций механики деформируемого твердого тела. К другому направлению относятся работы по развитию физики прочности и пластичности материалов, в которых анализ рузрушения проводится на атомарном и дислокационном уровнях, т. е. на микроуровне. В этих исследованиях весьма затруднительно включение в параметры, управляющие разрушением, таких основных понятий механики, как, например, тензоры деформаций и напряжений или жесткость напряженного состояния. Поэтому в последнее время интенсивное развитие получило направление, которое пытается соединить макро- и микроподходы при описании процессов повреждения и разрушения материала и формулировке критериев разрушения.  [c.3]

Закономерности разрушения материала при длительном нагружении достаточно хорошо могут быть описаны с помощью разработанной физико-механической модели межзеренного разрушения, которая базируется на математическом описании процессов зарождения и роста пор, обусловленного как пластическим деформированием, так и диффузией вакансий, а также на введенном в гл. 2 при анализе внутризеренного вязкого разрушения понятии — потере микропластической устойчивости. Модель позволяет прогнозировать долговечность при статическом и циклическом длительном нагружениях элементов конструкций в условиях объемного напряженного состояния и переменной скорости деформирования. В частности, с помощью указанной модели могут быть описаны процессы залечивания межзе-ренных повреждений при сжатии и рассчитана долговечность в условиях циклического нагружения при различной скорости деформирования в полуциклах растяжения и сжатия.  [c.186]

Выполненный обзор литературы позволяет сделать вывод, что для описания влияния коррозионной среды можно использовать подходы, основанные на применении линейной механики разрушения. На наш взгляд, для проведения расчетных исследований кинетики усталостной трещины в коррозионной среде наиболее приемлем метод, изложенный в работе [168], с помощью которого можно рассчитать скорость развития трещин в коррозионной среде при различной частоте нагружения на основании данных о скорости их развития на воздухе. В случае, если КИН при соответствующей длине трещины в элементе конструкции будет больше, чем Ks , количество циклов, необходимое для роста трещины при этом условии, можно считать нулевым. Такое допущение дает консервативную оценку долговечности элемента конструкции, что в инженерной практике вполне допустимо.  [c.200]


Посредством базы данных осуществляются информационные связи модулей программной системы конструирования одни модули в процессе своей работы формируют и записывают данные в намять ЭВМ, а другие - считывают эти данные. Кроме того, имеется возможность пополнения базы данных за счет йвода описаний новых конструктивных элементов или программ, формирующих изображения новых базовых элементов конструкции.  [c.204]

Для высокоскоростных летательных аппаратов кратковременного действия применение теплозащитных покрытий является эффективным средством снижения температурного уровня в элементах конструкции. Используя численный метод, описанный в задаче 17.17, исследовать влияние толщины теплозащитного покрытия на уровень температур в носовом профиле крыла летательного аппарата. Носовой профиль наготовлен из хромоникелевой нержавеющей стали 12Х18Н10Т. На внешнюю поверхность профиля нанесен слой покрытия толщиной б. Покрытие имеет следующие физические свойства а — X 1 ср) — 0,2 10 mV Ь =  [c.272]

Иногда целесообразна оценка динамической трещиностойко-СТИ1 т. е. трещиностойкости материалов при нагружении с большими скоростями. Кроме того что многие детали машин и элементы конструкций работают в условиях ударных нагрузок и тем самым привлекают к себе внимание специалистов в области механики разрушения и конструкторов, создаюш их образцы новой техники, интерес к динамической треш иностойкости определяется также и развитием теории остановки трещин [235, 243]. Как известно, в хрупких материалах трещина может перемещаться с большой скоростью, поэтому для описания кинетики ее распространения и остановки необходимо учитывать динамические эффекты.  [c.147]

Исследования алюминиевых сплавов АК4-1Т2 и 120Т1 в диапазоне частот нагружения 0,17-25 Гц показали небольшое влияние частоты нагружения на скорость роста трещин [5]. Рассмотренный диапазон частотного спектра является характерным для нагрузок, действующих в силовых элементах конструкции крыла и планера самолета. С целью оценки значимости выявленных отличий в характеристиках, используемых в описании роста усталостной трещины при разных частотах нагружения, были использованы статистические методы в исследованном диапазоне КИН 9,5-21,5 МПа-м / . С возрастанием частоты нагружения от 0,17 до 5 Гц ее влияние на скорость роста трещины не выявлено. Дальнейшее возрастание частоты нагружения приводит к снижению скорости роста трещины.  [c.343]

Усиление описанного эффекта может быть получено благодаря выполнению группы отверстий (А. с. 1299767 СССР. Опубл. 30.03.87. Бюл. № 12). В вершине трещины и на удалении от вершины выполняют отверстия симметрично но обеим сторонам плоскости трещины (рис. 8.30). Перед вершиной трещины выполняют два отверстия на расстоянии от ее вершины не более двух диаметров отверстий. В каждое отверстие устанавливают по две полувтулки с упорными буртами таким образом, чтобы упорные бурты соседних полувтулок расположились с разных сторон элемента конструкции. Плоскости разреза всех втулок ориентируют параллельно плоскости трещины, а соседние упорные бурты у отверстий в вершине трещины и перед ней располагают по одну сторону элемента конструкции. Расположение крепежа в отверстиях полувтулок позволяет создать при его затяжке не только радиальный натяг за счет буртов у полувтулок, но и скручивающий момент в плоскостях, параллельных плоскости трещины. Возникновение скручивающего момента служит предпосылкой создания контактного взаимодействия берегов трещины. Оно будет возникать в последующем, когда после частичной остановки трещины или ее задержки она начнет снова распространяться. Контактное взаимодействие берегов трещины (по плоскости скосов от пластической деформации) приведет к рассеиванию энергии от циклической нагрузки, и трещина будет развиваться с низкой скоростью. Причем учитывается и тот факт, что положительное влияние скручивающего момента на снижение скорости роста трещины проявляется при малых углах скручивания [76]. Поэтому в рассматриваемом способе используются полувтулки с буртами, позволяющими создавать именно малые углы скрз ивания.  [c.447]

Для определения ресурса работы элементов конструкций, подвергаемых воздействию циклических нагрузок, с учетом трещпно-стойкости материала необходимы достоверные данные о закономерностях развития усталостных трещин при эксплуатационных условиях их работы [1]. В настоящее время эти данные можно получить только экспериментально в результате испытания образцов на циклическую трещиностойкость при аналогичных условиях исследования [2]. Достоверность и воспроизводимость результатов таких испытаний обусловлена принятой методикой исследования и зависит от способа их аналитической обработки. Применение принципов линейно-упругой механики разрушения для описания явления распространения усталостной трещины [3] обеспечило теоретическую основу для интерпретации результатов исследований, облегчило их использование в расчетной практике и способствовало дальнейщему интенсивному развитию таких исследований.  [c.284]

Возбуждение циклических напряжений в испытуемом элементе на обычных и низких частотах в большинстве случаев осуществляется в нерезонансыом режиме. При высокочастотных испытаниях, наоборот, используется, как правило, резонансный режим возбуждения. На схеме полосой с горизонтальными линиями отмечено то, что данный способ возбуждения используется в перезонансном, а полосой с вертикальными черточками — в резонансном режиме возбуждения циклических нагрузок. Описание рассматриваемых способов возбуждения высокочастотных циклических нагрузок, а также литература по их использованию в конкретных усталостных установках наряду с обзором результатов усталостных испытаний на высоких частотах приведены в [2]. Новые работы по данной проблеме обсуждались на периодически созываемом в Институте проблем прочности АН УССР Всесоюзном семинаре на тему Прочность конструкционных материалов и элементов конструкций при звуковых и ультразвуковых частотах нагружения и отражены в работах [3—5).  [c.331]


Смотреть страницы где упоминается термин Описание элементов конструкции : [c.56]    [c.10]    [c.74]    [c.4]    [c.17]    [c.73]    [c.123]    [c.126]    [c.74]   
Смотреть главы в:

Ракетные двигатели  -> Описание элементов конструкции



ПОИСК



Краткое описание, основные данные н элементы расчета Краткое описание конструкции

Методы цифрового описания положений элементов конструкций в пространстве относительно друг друга

Описание

Описание конструкций

Описание конструкций основных элементов регенеративных воздухоподогревателей

Описание машиностроительных конструкций и их элементов на внутреннем и внешнем языках автоматизированной системы проектироваЭлементы машиностроительных конструкций

Описание программы ПРИНС и реализованных к ней алгоритмов расчета линейно- и нелинейно-деформированных конструкций методом конечных элементов

Элемент конструкции



© 2025 Mash-xxl.info Реклама на сайте