Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Несущая Характеристика

Р-П и P-III разработаны в ЦАГИ, имеют высокие несущие характеристики и хорошо ведут себя на больших углах атаки. Они широко использовались в 30—40-е годы, находят Применение и в наши дин (табл 8, 9).  [c.140]

Точное и адекватное описание внешних воздействий и несущей способности материала конструкции требует привлечения методов теории вероятностей. В связи с этим на первый план выступает такая характеристика конструкции, как надежность, мерой которой является вероятность безотказной работы. В последние годы получили большое развитие методы расчета надежности конструкций, основанные как на теории случайных величин, так и на теории случайных функций.  [c.3]


В отличие от существующих методов расчета по допускаемым напряжениям в общем машиностроении и по разрушающим нагрузкам в авиации и ракетной технике, где вероятностная природа нагрузок и несущей способности скрыта либо в коэффициенте запаса прочности, либо в коэффициенте безопасности, в данной работе характеристики вероятностного описания нагрузок и несущей способности непосредственно входят в формулы для определения размеров поперечного сечения, обеспечивающих заданную надежность элемента конструкции. Такой подход более адекватно отражает реальную работу элемента конструкции.  [c.3]

В результате получим уравнение, связывающее (среднее) давление в несущей фазе и на поверхности дисперсной частицы г = а через осредненные характеристики трех микродвижений в ячейке, определяемых величинами Угь i" =  [c.149]

Увеличение диаметра не только повышает несущую способность, но при данном значении снижает критическую характеристику режима и, следовательно, увеличивает надежность работы подшипника.  [c.349]

Гидродинамические характеристики подшипника определяются расположением шарниров и сохраняются при всех колебаниях эксплуатационного режима. Несущая способность максимальна, а коэффициент трения минимален, если шарнир установлен на расстоянии I = 0,58 I (где I — длина сегмента) от передней (по направлению движения) кромки сегмента (56).  [c.411]

Для обеспечения достаточной несущей способности муфт обычно применяют значительное количество упругих элементов или рабочих участков элементов. Простейшей муфтой этой группы является конструкция с упругими элементами в виде винтовых пружин сжатия (см. рис. 21.21, а), вставленных между торцовыми зубьями полумуфт. Муфта имеет линейную характеристику и малое демпфирование.  [c.435]

В гл. 1—3 книги в форме вопросов и задач рассматриваются основные сведения из аэродинамики, кинематика и динамика газообразной среды, позволяющие глубоко изучить важнейшие математические модели аэродинамики (уравнения Эйлера, Навье—Стокса, неразрывности и цр.). В гл. 4 и 5 приводится необходимая информация о скачкообразных процессах и расчете параметров при сверхзвуковом течении газа (метод характеристик). Широкий круг вопросов и задач, помещенных в гл. 6—8, относится к одному из основополагающих направлений аэродинамики— теории и методам расчета обтекания профиля крыла, а также несущей поверхности как одного из элементов летательного аппарата.  [c.4]


Результаты расчета линеаризованного сверхзвукового обтекания треугольных крыльев можно использовать для определения аэродинамических характеристик несущих поверхностей в виде четырех-, пяти- и шестиугольных пластин. Если задние и боковые кромки таких крыльев сверхзвуковые, то их обтекание характеризуется отсутствием зон взаимного влияния хвостовых и боковых участков, ограниченных пересечением конусов Маха с крылом. Вследствие этого коэффициент давления на поверхности крыла такой, как в соответствующей точке треугольной пластины, и формула для его расчета выбирается с учетом вида передней кромки (дозвуковой или сверхзвуковой).  [c.214]

Инженеры разрабатывали все новые типы ферм, которые назывались их именами, так как каждое изменение формы очертания фермы, расположения и числа элементов решетки в них приводило к разным несущим характеристикам. Поскольку в то время в отсутствие общей теории стержневых конструкций характер изменений не мог быть оценен, каждое изменение фермы понималось как создание ферм нового типа. Основным вопросом развития сквозных конструкций, как было замечено выше в отношении ферм Шведлера, был вопрос оптимального использования несущих элементов, т. е. экономии материала и создания достаточной жесткости при действии на фермы сравнительно больших подвижных нагрузок от тяжелых локомотивов. Вехами этого развития из множества разработанных типов стержневых систем являются фермы Паули, или рыбкообразные фермы, и фермы полупараболического очертания. Инженер Ф. Паули (1802—1883) разработал фермы с верхним и нижним поясами, изогнутыми по форме параболы, с пересекающимися диагональными раскосами и приподнятым железнодорожным полотном (рис. 274). В идеальном виде эта конструкция была реализована в 1857 г. при строительстве моста пролетом 52 м через р, Изар в Гроссеселое. Кривизна поясов задавалась таким образом, что при равномерно распределенной по всему пролету нагрузке поперечное сечение верхнего пояса по всей длине пролета использовалось полностью. Перекрестные раскосы могли работать только на растяжение, возникающее при действии подвижной нагрузки.  [c.139]

Существенное повышение несущих характеристик крыла может быть достигнуто за счет применения закрылков. Сразу отметим одну особенность крыльев с закрылками Су ах такого крыла при отклонеиии закрылка мало зависит от того/ какой Су мах имел исходный профиль, а определяется практически только типом применяемого закрылка. Самый простой закрылок, получивший наибольшее распространение на зарубежных легкомоторных самолетах, и его характеристики показаны на рнс. 110,5. Такие же закрылки используются на самолетах нашего любителя Петра Альмурзина. Более эффективными являются щелевые, двухщелевые и подвесные закрылки (см. рнс. II3.fi). Су мах крыла с однощелевым закрылком может достигать 2,3—2,4 и с двухщелевым — 2,6—2.7. Во многих учебниках аэродинамики приводятся методики геометрического построения формы щели. Но практика показывает, что теоретически вычисленная щель все равно нуждается в доводке и тонкой настройке в аэродинамической трубе в зависимости от конкретной геометрии профиля, формы крыла и тому подобного. При этом щель либо работает, улучшая характеристики закрылка, либо не работает вообще, а вероятность того, что теоретическим путем, без продувок удастся выбрать единственно возможную форму щели, крайне мала. Обычно это не удается даже профессиональным аэродинамикам. Потому в большинстве случаев на любительских самолетах щели на закрылках, даже если они есть, не дают никакого эффекта, и сложный щелевой закрылок работает, как простейший. Конечно, щелевые закрылки можно использовать и fta любительских самолетах, но прежде чем нх установить, в каждом конкретном случае стоит хорошо подумать. Если же есть возможность воспользоваться геометрическими соотношениями щелей и закрылков уже испытанных и хорошо зарекомендовавших себя самолетов, это стоит сделать. В качестве примера в табл. 6 приведены геометрические координаты профиля закрылка (см. рнс. 113, В) самолета Кри-Кри (хорда закрылка 165 мм).  [c.138]

Кри-Кри — ламинаризированный планерный профиль, разработанный западногерманским аэродинамиком Вортма-ном и несколько модифицированный конструктором Кри-Кри французом Коломбаном Относительная толщина профиля - 21,7%, за счет чего достигаются высокие несущие характеристики. Как и 0АШ-1, этот профиль требует точнейшего соблюдения теоретического контура и отличного качества отделки поверхности крыла. В табл, 13 приведены координаты профиля, пересчитанные на хорду крыла самолета Кри-Кри , равную 480 мм  [c.141]


Подставим в формулу (2.2) известные вероятностные характеристики нагрузки q t) и несущей способности R. Принимая во внимание, что должно выполняться равенство Н - Ядад, для определения размера поперечного сечения h получим выражение  [c.58]

Полученная формула (4-64) позволяет теоретически определить требуемую скорость в зависимости от аэродинамической характеристики частицы v , степени развития турбулентного режима несущей среды n = /(Re), соотношения сил взаимодействия частиц и гравитации со стенкой Кст, геометрического симплекса Djdi. В безразмерном виде имеем  [c.139]

Пищенко А, М., О влиянии твердых частиц, переносимых потоком, на турбулентные характеристики несущей жидкости, сб, Исследование турбулентности одно- и двухфазных потоков , изд-во Наукова думка , Киев, 1966.  [c.411]

Решение задачи о характеристиках свободной струи, несущей твердые или капельно-жидкие примеси, с учетом описанной модели явления приведено в работе [5]. Сравнение расчета этих характеристик с экспериментальными данными [87] показало вполне удовлетворительную их сходимость. Согласно расчетам [5] запыленная струя становится уже и дально-бойнее не только тогда, когда в ней содержатся тяжелые примеси, но и тогда, когда чистая газовая струя распространяется в запыленном газовом потоке. Выше было отмечено, что если примесь не имеет начальной скорости (папрн.мер, когда газовая струя вытекает в спутный лоток газа большей плотности), то затухание скорости происходит быстре(, чем в незапы-ленном потоке, т. е. интенсивность расширения такой струи увеличивается с увеличением плотности спутного потока. Это кажущееся противоречие [5] объясняется тем, что в случае распространения газовой струи в запыленном потоке на степень расширения струи влияют два фактора с одной стороны, большая плотность окружающей среды, с увеличением которой степень расширения струи увеличивается, а с другой стороны, подавление турбулентности частицами, попадающими из внешнего потока в струю, которое с ростом концентрации частиц в потоке растет и, следовательно, уменьшает степень расширения струи. Согласно расчету, второй фактор оказывает более сильное влияние на степень расширения струи, чем плотность окружающей среды.  [c.317]

Характеристики инерционного мелкомасттабного течения несущей фазы  [c.122]

Это означает, что для существования потенциального решения, описывающего микродвил ение несущей жидкости в ячейке в постановке задачи (3.5.1) —(3.5.5), необходимо и достаточно, чтобы осредненное (макроскопическое) движение несущей фазы было потенциальным или близким к нему. В этом случае значения v в решении (3.5.11), (3.5.12) определяются через характеристики среднего движения согласно условию (3.5.14), которое с учетом первого уравнения (3.2.23) при аа <С 1, "С г , rfjpi/rfi = О можно представить в виде  [c.146]

Для получения уравнения для среднего давления нужно уравнение (3.5.25) проинтегрировать по объему ячейки занятому несущей фазой, учитывая формулы (3.2.25), (3.2.26). При этом слагаемые в первых двух квадратных скобках, включающие и 1 211 при интегрировании дадут тот же результат, что и в (3.4.30) для схемы д , когда y r = fl n = Кроме того, выразим Voo через характеристики осредненного движения vi , исходя из (3.5.17). Тогда  [c.149]

В качестве характеристики поля скоростей несущей жидкости в [9—И] использована величина которая называется скоростью в середине между пузырьками и которая связана с использованнымп нами средними скоростями фаз  [c.152]

Увеличение характеристики режима путем применения масел повышенной вязкости также не всегда рационально. Высокая вязкость смазочного масла увеличивает трение п тепловыделение и затрудняет истечение масла из подшганпка, вследствие чего те.мпература масляного слоя возрастает и рабочая вязкость масла падает. В результате несущая спосоопость подшипника при вязком масле может быть меньше, чем при менее вязком. К тому же масло повышенной вязкости затрудняет пуск.  [c.363]

Согласно рис. 408 допустимый ратмер /, при котором Си = 0,07 ч- 0,065 (заштрихованная область на графике), ограничен / = (0.56 ч-0,6) Т.. При изменении этого размера характеристики подшипника резко ухудшаются. Так, например, при / = 0,53 (Ло/1 = 3) число Гюмбеля уменьшается (для подшипника е Т/В = 1) до 0,045, т. е. несущая способность подшипника падает  [c.438]

Алгоритм расчета может быть построен так, чтобы получить обобщенную характеристику работы подшипника, т. е. определить минимальную толщину и среднюю температуру смазочного слоя во всем возможном диапазоне изменений относительных зазоров. Дополнительно могут быть определены расход масла и выполнен расчег на устойчивость работы подтипни-ка. Обоб ценная характеристика, полученная нри минимальных и максимальных вероятностных. значениях вязкости масла, позволяет сразу назначить минимальный и максимальный относительные зазоры по критериям несущей способности, температуры, устойчивости и расходу масла.  [c.393]

Характеристики турбулентности дискретной и непрерывной фаз взвеси твердых частиц в газе экспериментально определя.ли oy, Айриг и Эль Коу [739]. Исследовался поток воздуха с полностью развитой турбулентностью, несущий б.лизкие по размерам сферические частицы из стек.ла (50, 105 и 210 мк) по горизонтальному каналу.  [c.86]

Однако в условиях эксплуатации деталей, в результате наличия надрезов, перекосов, влияния среды и т.п., стадия разрушения (т.е. возникновение и развитие трещины) появляется задолго до исчерпания несущей способности (до максимальной величины нагрузки, выдерживаемой деталью). При этом прочность материала (детали в идеализированных условиях) недоиспользуется или даже не используется вовсе. Длительность процесса разрушения (роста трещины) до полного разрушения занимает значительную часть жизни детали, доходя до 90% и выше. Главное - темп роста трещины, а не факт ее наличия. Поэтому для повышения прочности необязательно повышать среднее сопротивление отрыву - достаточно регулировать процесс появления и, в особенности, развития трещин. В конструкциях применяют различные препятствия, тормозящие развитие трещин и сигнализирующие об их появлении, а также дополнительные элементы конструкции, берущие на себя часть нагрузки при уменьшении жесткости от возникшей трещины. Необходимо развивать методы расчета, пути распространения трещины (траектории трещины), связи ее размеров с внешней нагрузкой и кинематические характеристики движения конца трещины.  [c.118]


Для данного материала известны механические характеристики, полученные при испытаниях на растяжение и сжатие = 340 МПа, а ,р = = 540МПа, 8 = 13%. Можно ли воспользоваться четвертой гипотезой прочности при оценке несущей способности конструкции из данного материала в общем случае  [c.140]

Как известно, водород широко применяется во многих отраслях техники и промышленности. Вместе с тем, обусловленное водородом повреждение металлов считается в настояш ее время причиной многих аварий и катастроф, приносящих значительный ущерб. Среди разнообразных проявлений вредного влияния водорода на механические свойства (предел прочности, пластичность, характеристики усталости, ползучести и т. п.) особого внимания. заслуживает обусловленное водородом облегчение зарождения и роста трещин в металлах. Связано это с тем, что иезависпмо от того, насколько совершенны технология и качество изготовления, практически все конструкционные материалы и изделия из них содержат дефекты (шш врожденные, или возникшие 1 процессе эксплуатации). При этом водород, воздействующий на металлы, значительно увеличивает их чувствительность к трещина.м и увеличивает вероятность разрушения конструкций, обладающих при обычных условиях достаточной несущей способностью. Таким образом, эксплуатация металлов в атмосфере водорода приводит к необходимости оценки их трещиностойкости, а псследоваппе закономерностей роста трещин в таких условиях приобретает большое значение.  [c.349]

Су1цествующие представления о влиянии на несущую способность сварных соединений такого дефекта как смещение свариваемых кромок базируются на том, что данный дефект вызывает повышенную концентрацию напряжений из-за появления изгибающего момента в упругой стадии работы и потерю прочностных и пластических характеристик за пред ел ом упругости /19, 20, 21 и др./. Кроме того необходимо иметь В виду, что радиус перехода шва к основному ме таллу может быть весьма малым, в пределе стремящимся к нулю. В данном случае оценку напряженного состояния  [c.32]

На рис. 3.16 представлена зависимость средних критических напряжений ст р сварных соединений от относительной протяженности дефекта 1/В. Как видно из aнaл зa полученных результатов, при уменьшении размера дефекта 1/В, увеличении радиуса в вершине дефекта р и повьппении характеристик материалов Е, 5 , Х.р наблюдается повышение несущей способности сварных соединений в условиях квазихрупкого разрушения.  [c.102]

Зависимость (3.50) получена путем статистической обработки опытных данных для широкого класса констру1щион-ных сталей и сплавов. Зная механические характеристики металла шва, по соотношению (3.42), полученному для соединений с дефектом в центре шва, можно оценить несущую способность соединений при квазихрупком разрушении. Для установления допустимых размеров дефектов, не приводящих к квазихрупким разрушениям, необходимо знать уровень номинальных напряжений, действующих в сварном соединении. Из предыдущих разделов было выявлено, что вязкая прочность сварных соединений определяется нетто-сечением сварного шва (без учета эффекта контакт иого упрочнения). То есть для однородных пластин  [c.112]

В настоящее время наибольшее распространение для оценки предельной несущей способности металлоконструкций получили такие методы как метод совместного решения уравнений равновесия и условий пластичности, вариационные методы, метод линий скольжения (метод характеристик), метхзд конечных элементов и другие.  [c.98]

Анализир> я данные расчетные схемы, можно констатировать, что показатель дв хосности нагр жения и = 02 / С[ по мере изменения компонент напряжений в стенке конструкции 02 и 0 изменяется в пределах от О до 1 (1 схема) и от 1 до О (2 схема). Наиболее икгересным с точки зрения оценки несущей способности оболочковых конструкций является первый вариант расчетной с.хемы. В данном случае работоспособность оболочковых констр кций полностью определяется несущей способностью неоднородных соединений. При втором варианте расположения мягкой прослойки возможны два ел>-чая. В первом — несущая способность неоднородных соединений определяется механическими характеристиками более прочного металла. Во втором случае работо-  [c.102]

Определение аэродинамических характеристик несущей поверхности в случае нестационарного движения основано на замене эквивалентной базовой плоскости вихревой системой, состоящей из совокупности дискретнглх косых подковообразных присоединенных вихрей с отходящей от них пеленой нестационарных свободных вихрен. Рассмотрите скорость, индуцированную дискретным подковсобраз-  [c.247]


Смотреть страницы где упоминается термин Несущая Характеристика : [c.63]    [c.58]    [c.110]    [c.238]    [c.97]    [c.148]    [c.174]    [c.200]    [c.17]    [c.21]    [c.85]    [c.86]    [c.97]    [c.170]    [c.187]    [c.245]    [c.254]   
Несущая способность и расчеты деталей машин на прочность Изд3 (1975) -- [ c.7 ]



ПОИСК



ИССЛЕДОВАНИЕ МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК МАТЕРИАЛОВ И НЕСУЩЕЙ СПОСОБНОСТИ ЭЛЕМЕНТОВ КОНСТРУКЦИЙ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ (В.А. Стримсало)

Исследован и модели нагрузка — несущая способность для определения характеристик надежности изделий по результатам многофакторных испытаний

Методы определения характеристик надежности изделий на основании исследования модели нагрузка—несущая способность

Температурные зависимости характеристик сопротивления хрупкому разрушению и методы их определеОпределение несущей способности по сопротивлению хрупкому разрушению

Ток несущий

Характеристики инердионного мелкомасштабного течения несущей фазы



© 2025 Mash-xxl.info Реклама на сайте