Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

АКУСТИЧЕСКАЯ ВОЛНА Распространение акустической волны

Кроме того, эти уравнения описывают также трехмерную акустическую задачу распространения звуковых волн в неоднородной среде. Если скорость звука с есть функция точки, а плотность среды р постоянна, то волновое уравнение для давления U имеет вид (5.1), где  [c.44]

Теоретическое рассмотрение статистических задач в нелинейной акустике следует разделить на два класса. В первой группе задач акустическое поле (узкополосный шум, интенсивный шум с широким спектром, смесь сигнала и шума и т. д.) задается на входе в нелинейную среду и ставится вопрос, как по мере распространения статистические характеристики поля будут изменяться. Вторая группа — это когда в самой среде имеется случайное акустическое поле (например, шум, поле турбулентных пульсаций и т. д.) и в такой среде распространяются либо регулярные волны конечной амплитуды, либо случайные нелинейные волны. Распространение звуковых волн малой амплитуды в турбулентной среде будет нами рассмотрено в гл. 7.  [c.108]


До сих пор не говорилось о том, каким образом может быть измерена скорость звука. Выше мы обращали внимание на отклонение свойств газа от идеального состояния и отмечали, что скорость Со относится к безграничному пространству. На практике, особенно в области низких температур, скорость звука измеряется в относительно небольшой колбе, которая должна иметь постоянную температуру. В настоящее время наиболее точные измерения скорости звука осуществляются при помощи акустического интерферометра с цилиндрическим резонатором. Акустические волны возбуждаются в трубе излучателем, расположенным на ее конце длина волны находится измерением перемещения отражателя между соседними резонансными максимумами. Положение стоячих волн определяется по импедансу излучателя. В этом состоит одна из трудностей акустической термометрии по сравнению с газовой. В газовой термометрии измеряемые величины, объем и давление, являются величинами статическими, хотя и существуют проблемы, связанные с сорбцией, о которой говорилось выше. В акустической термометрии измеряемые величины носят динамический характер — это акустический импеданс излучателя, например, при 5 кГц, вязкость и теплообмен со стенками трубы. Все это оказывается источником специфических трудностей при измерении, и для правильной интерпретации результатов измерения необходимо полное понимание физической сущности процессов распространения акустических волн.  [c.101]

При распространении акустической волны от источника с увеличением расстояния, на которое она распространяется, происходит ее ослабление. Основные причины ослабления — расхождение лучей (дифракционное ослабление) и затухание волн. Если рассматривать ультразвуковые колебания (УЗК) как частный случай акустических, то их излучатель в виде круглого диска диаметром 2а (рис. 6.19, а), генерирует пучок, который не расходится в ближней зоне участка объекта. Сам данный участок при этом имеет цилиндрическую форму, протяженность которой вычисляется [ю формуле  [c.168]

В соответствии с (77.14) = 0 в случае слабой волны (р1 = ро ъ p Ро)) это вполне согласуется с опытом, в соответствии с которым при распространении акустических возмущений газ находится в слабом колебательном состоянии и средняя скорость поступательного движения частиц равна нулю.  [c.294]

Многие движения можно рассматривать как движения, возникающие из состояния покоя, когда в начальный момент времени 1у = О, а следовательно, и со = 0. Такие движения должны быть потенциальными и во все последующие моменты времени. В приложениях движения жидкостей и газов во многих задачах рассматриваются как потенциальные. Таковы, например, волновые движения воды, движения воздуха в случае распространения акустических (звуковых) волн, различные непрерывные движения жидкостей и газов, вызванные движением в них твердых тел, струйные движения жидкости и многие другие.  [c.153]


Амплитуда каждого дифрагированного луча в процессе распространения снижается пропорционально (г расстояние от точки ввода вдоль луча), в то время как амплитуда падающей волны остается постоянной. Здесь и далее, где приводятся законы распространения дифракционных волн, подразумевается, что падающая волна имеет плоский фронт. Разумеется, объемные падающие волны, излучаемые акустическими преобразователями конечных размеров, имеют фронты, отличающиеся от плоских, вследствие чего законы распространения волн дифракции отличаются от приводимых. Тем не менее для лучшего понимания свойств волн дифракции целесообразно представлять падающую волну в виде плоской.  [c.39]

Помехи, связанные с распространением поверхностной волны по выпуклости сварного шва (см. рис. 5.43, б положение преобразователя G), удается существенно уменьшить, если разделить излучатель G и приемник G", направив их так, чтобы акустические оси пересекались на передней кромке или оси сварного шва. При этом амплитуда сигналов от возможных дефектов практически не меняется, а амплитуда сигнала поверхностной волны, трансформирующейся в поперечную вне зоны пересечения акустических осей, существенно снижается.  [c.283]

В зависимости от направления колебаний частиц по отношению к направлению распространения волны волны акустические бывают различных типов. В жидкостях и газах возникают только продольные волны (табл. 1.4), в которых направления колебаний частиц и волны совпадают. В твердых телах наряду с продольными возникают поперечные волны, в которых движение частиц перпендикулярно распространению волны. Кроме того, вдоль свободной поверхности твердого тела могут распространяться поверхностные волны (Рэлея), частицы в которых движутся по эллипсу в плоскости, перпендикулярной поверхности. В металле эти волны практически затухают на глубине 1,5 X. Скорости распространения перечисленных волн, зависящие от свойств среды, связаны между собой соотношениями  [c.20]

Ультразвуковая волна распространяется от излучателя через контактирующую среду в металл и встречает на своем пути дефект и границу (дно) изделия. Так как большинство дефектов заполнено воздухом или шлаком, имеюш,ими небольшие акустические сопротивления, то ультразвуковая волна, падаюш,ая на дефект или дно, полностью отражается от них. Регистрация и анализ этих изменений распространения УЗ колебаний в изделии позволяют судить о его качестве (наличии дефекта).  [c.25]

Широкое распространение в практике контроля получил импульсный акустический метод, основанный на определении параметров распространения упругих волн в материале изделия. Между скоростью распространения и упругими характеристиками материала имеется аналитическая функциональная связь, описываемая зависимостью Мц = (Р(а). где к — коэффициент,  [c.77]

Метод акустической эмиссии имеет также и некоторые недостатки. Основным недостатком, ограничивающим широкое распространение метода, является сложность расшифровки результатов контроля, обусловленная тем, что на волновой процесс акустической эмиссии накладываются паразитные акустические параметры многократно отраженных волн, шумов от работы машин, нагружающего тела и окружающей среды. Применение фильтров и систем защиты только частично снижает влияние этого воздействия. Уникальность оборудования и отсутствие его промышленного изготовления не позволяют распространить метод дальше сферы экспериментального применения.  [c.88]

Допустим, одпако, что все трудности первого этапа преодолены и вклад каждой машины в акустическое поле помещения известен. Далее следует выяснить, по какой причине конкретная машина дает наибольший вклад в шумы и вибрации помещения в данном частотном диапазоне. Здесь возможны три случая либо внутри машины имеется сильный источник звука, либо по пути распространения от источника в точку наблюдения акустический сигнал слабо затухает или даже возрастает вследствие хорошей звуковой прозрачности прилегающих конструкций, либо то и другое вместе. На этом этапе нужно исследовать распространение вибраций по конструкциям, их излучение в воздух и выявлять источники звука внутри машины. Эти проблемы неизмеримо шире и сложнее, чем задача разделения источников. Первая из них требует знания законов распространения упругих волн по инженерным конструкциям и их излучения. При решении второй проблемы нуя<ио изучить физическую природу звукообразования внутри машины, составить акустическую модель машины как генератора звука и затем решить задачу разделения внутренних источников.  [c.8]


Быстродействие акустических дефлекторов зависит от апертуры отклоняемого луча D и скорости распространения акустической волны т. е. т = DIv. - тогда  [c.84]

При падении ультразвуковой волны на границу раздела двух сред в общем случае часть энергии ультразвуковой волны отражается, а часть — преломляется, проходит во вторую среду. Степень преломления падающей волны во второй среде определяется соотношением акустических сопротивлений сред (акустическое сопротивление представляет произведение плотности среды на скорость распространения ультразвука в ней). Чем больше разница акустических сопротивлений,тем больше интенсивность отраженной волны. Для отражения ультразвуковой волны от не-сплошностей в контролируемом металле необходимо, чтобы размеры несплошности были соизмеримы с длиной волны или больше ее. Если размеры дефекта меньше длины волны, то ультразвуковая волна огибает его.  [c.503]

В том случае, когда степень неоднородности двухфазной смеси (размер частиц дисперсной фазы и расстояние между частицами) меньше длины волны возмущения, по отношению к волне среда ведет себя как непрерывная. При этом для определения скорости звука можно воспользоваться уравнением Лапласа = (Эр/0p)j. При распространении акустических волн в однофазной среде имеет место явление дисперсии, проявляющееся в зависимости скорости звука от частоты звуковой волны. Зависимость эта молекулярной природы. Говоря о дисперсии скорости звука в двухфазной среде, можно отметить, по крайней мере, две формы ее проявления. Первая характерна для двухфазной среды в целом и связана с тремя происходящими в ней релаксационными явлениями с процессом массообмена между фазами - фазовым переходом, процессом теплообмена - выравниванием температур между фазами и процессом обмена количеством движения — выравниванием скоростей между фазами. Даже в случае равновесной двухфазной среды при распространении в ней звуковой волны равновесие между фазами нарушается и в ней протекают релаксационные процессы. Вторая форма возникает из-за дисперсии звука в среде-носителе и природа ее та же, что дисперсии в однофазной жидкости. Для нее характерна область высоких частот, когда длительность существования молекулярных ансамблей в жидкости или в газе соизмерима с периодом звуковой волны.  [c.32]

Р., обусловленная распространением звуковых волн в веществе, с к-рой связано поглощение звука, ваз. релаксацией акустической.  [c.328]

Волной называется распространение колебательного процесса в пространстве. Частным случаем волн являются акустические волны, представляющие собой распространение в упругой среде слабых возмущений.  [c.204]

Наиболее прямой и простой способ такой проверки обосновывается в теории распространения акустических волн в разреженных газах. В самом деле, пока длина акустической волны во много раз превосходит среднюю длину свободного пути молекул, акустическая волна будет распространяться нормально, если в газе не происходит никаких превращений веществ. Но если длина акустической волны станет сравнимой со средней длиной свободного пути молекул, то в этом случае наступит явление акустической дисперсии. Исходя из того или иного вида уравнений аэродинамики разреженного газа, можно предсказать законы этой дисперсии. Таким образом, открывается возможность непосредственной проверки основных положений указанных уравнений.  [c.54]

Третий и последний аспект акустической интерферометрии, который следует рассмотреть, связан с формой нормальных мод в процессе распространения акустических волн в трубе. Строго говоря, необходимо решить волновое уравнение для цилиндрического канала с жесткими стенками, на одном конце которого находится излучатель, являющийся источником гармонических колебаний, а на другом — отражатель. Метод Крас-нушкина [47], который в дальнейшем был развит Колклафом  [c.107]

Рис. 58. Скорость распространения акустических и поверхностных волн при расслоонном течении воздушно-водяной смеси в горизонтальном канале при атмосферном давлении. Рис. 58. <a href="/info/582160">Скорость распространения</a> акустических и <a href="/info/19383">поверхностных волн</a> при расслоонном <a href="/info/495928">течении воздушно</a>-водяной смеси в горизонтальном канале при атмосферном давлении.
В рассматриваемых испытаниях распространение акустических волн исследовали как в пустой плети, так и в плети, заполненной водой. В системе АС-6А/М были установлены частотные фильтры на диапазон 10-200 кГц. Генерацию волн напряжения осуществляли с помощью сломов грифеля твердостью 2Н и диаметром 0,5 мм, вставленного в карандаш со специальной насадкой (источник Су-Нилсена). Сломы производили на разных расстояниях от приемников. Импульс акустической эмиссии фиксировал блок регистратора типа РАС-3 А. Согласно теоретическим представлениям, в данной конструкции должны существовать симметричная 502 и асимметричная АО моды, распространяющиеся со скоростями 5,4 и 3,3 мм/мкс соответственно.  [c.198]

Изучение распространения акустических волн в объекте осуществляли путем возбуждения акустических импульсов при помощи источника Су-Нилсена. Датчики устанавливали на расстояниях 1,8 3 7 и 12 м. В месте сломов располагали приемник для запуска системы регистрации в момент слома грифеля. Измеряли время распространения сигнала от источника до приемника и его амплитуду. Импульс эмиссии регистрировали, используя прибор РАС-ЗА.  [c.201]


Оценим величину сотахЯ=Узвй, где Иап = УС/р — скорость распространения акустических волн. В 5.1 мы получили г зв = 5-10 м/с. Если принять для твердых тел a=3-lQ м, то =л/ая=10 <> м и Штах, 5-Ю " -10 вяг5-Ю з с , ЧТО ПО порядку Величины соответствует частотам тепловых колебаний атомов в твердых телах.  [c.147]

Скорость распространения акустической волны вдоль дискретной цепсгчки в отличие от скорости распространения волны вдоль упругой струны [см. формулу (5.6)] зависит от длины волны  [c.148]

Три нижние ветви (рис. 5.15), которые при малых k стремятся линейно к нулю, называют акустическими, а остальные Зг—3) являются оптическими, среди них также различают ветви продольных и поперечных колебаний. Скорость распространения продольных волн больше скорости распространения поперечных волн, так как частоты колебаний продольных волн больше частот колебаний поперечных волн (сйх.>шт2>сйтч) -  [c.160]

Велосиметрический метод. В этом методе используется влияние дефектов на скорость распространения упругих волн в изделии и длину пути волн между излучателем и приемником упругих колебаний. В контролируемом изделии возбуждают непрерывные или импульсные низкочастотные УЗК (20— 70 кГц). Дефекты регистрируются по изменению сдвига фазы принятого сигнала или времени распространения волны на участке между излучающим и приемным вибраторами дефектоскопа. Эти параметры не зависят от силы прижатия преобразователя к изделию, состояния акустического контакта и других факторов, поэтому  [c.300]

Акустические величины. Акустические волны в жидкостях или газах характеризуются одной из следующих величин изменением давления р, смещением и частиц из положения равновесия, скоростью V колебательного движения, потенциалом ф смещения или колебательной скорости [39]. Следует отличать изменение давления (в дальнейшем просто давление), связанное с распространением акустических волн, от среднего давления в среде. Все перечисленные величины взаимосвязаны v = grad (р, v = du/dt, р = —р (Эф/5/), где t — время р — плотность среды.  [c.4]

Погрешность, обусловленная влиянием акустического контакта, исключается при использовании бесконтактных способов излучения и приема акустических волн. Для этой цели применяют электромагнитно-акустические преобразователи, широкополос-ность которых позволяет формировать импульсы полуволновой длительности, что важно для достижения высокой точности. ЭМА-преобразователи легче возбуждают поперечные, а не продольные волны. Это также удобно для измерения скорость распространения поперечных волн меньше, чем продольных, измеряемый интервал времени увеличивается и соответственно уменьшается погрешность Небольшая чувствительность ЭМА-преобразователей не препятствует использованию этого способа в приборах групп А и В, характеризующихся высокой амплитудой  [c.403]

Пространство, в котором распространяются УЗ волны, называют акустическим (ультразвуковым) полем. Распространени . волны в нем связано с переносом энергии. Количество энергии, переносимой волной за единицу времени через единицу площади, перпендикулярной к направлению распространения, называют интенсивностью ультразвука, которая в плоской волне пропорциональна квадрату амплитуды звукового давления и обратно пропорциональна акустическому сопротивлению среды  [c.21]

Данный метод эффективен в основном для стеклопластиков с четкой периодической структурой, не имеющей дефектов. Точность определения прочности в стеклопластиках с хаотическим расположением стекловолокна будет зависеть от степени распределения наполнителя и его местной ориентации. В стеклопластиках с ориентированной и тканой структурами значительные погрешности при определении прочности будут зависеть от свилеватости волокна и ошибок в укладке стеклопакетов. Поэтому выбор оптимального направления прозвучивания, в котором проявляется высокая чувствительность, является весьма важным при определении прочности. Следует отметить, что для точного определения прочности стеклопластиков необходима высокая точность определения акустических параметров. В настоящее время наиболее высокая точность достигнута при определении скорости распространения ультразвуковых волн, чего не.льзя сказать в отио-  [c.84]

ШеМйи коэффициента затухания, точность определения которого достигает 15—20%, хотя его относительное изменение в зависимости от изменения прочности стеклопластика значительно превышает относительное изменение скорости. То же самое можно отметить и в отношении интенсивности ультразвуковой энергии и частотного спектра импульса. На эти параметры оказывают значительное влияние состояние поверхности изделия, контакт преобразователей с поверхностью материала, явления интерференции и дифракции упругих волн в материале из-за геометрических характеристик изделия. Поэтому па данном этапе развития акустических методов, на наш взгляд, наиболее целесообразным является использование скорости распространения упругих волн.  [c.85]

Наиболее широкое распространение получил импульсный акустический метод, основанный на определении скорости распространения упругих волн в различных структурных направлениях стеклопластика непосредственно в изделии. Многими исследователями получены эмпирические уравнения однопараме-тровой связи между механической и одной какой-либо физической характеристикой. В основном эти уравнения связывают прочность или упругость материала со скоростью распространения упругих волн. Оценка физико-механических свойств (прочность, упругость) стеклопластика в изделии только по скорости упругих волн, как правило, недостаточно надежна. Сравнительно низкое значение коэффициента корреляции и существенное отклонение фактических значений прочности от рассчитанных по корреляционному уравнению ограничивают широкое применение этого метода на практике.  [c.151]

В разделе 2 рассматриваются задачи третьей и четвертой груин. Вопросам расиространения упругих воли по инженерным конструкциям посвящена обширная литература [216, 239, 283, 300, 325, 352], поэтому авторы ограпичились сравнительно простыми конструкциями, но постарались применить наиболее общие методы расчета и обсудить ряд теоретических вопросов, с которыми приходится сталкиваться при расчете распространения волн практически каждой машинной конструкции. Главными из них являются диснерсия волн, определяющая характер распространения акустической энергии, и спектральные свойства конструкций. Исследуются также полнота и ортогональность нормальных волн в твердых волноводах. Значительное место отведено анализу щи1ближенных теорий колебаний топких стержней. По методам борьбы с вибрациями и шумами машин имеется особенно много публикаций [45, 71, 81, 136, 185, 281, 331, 353, 375, 376, 384]. Однако почти все они носят ярко выраженный прикладной характер, поэтому в книге излагаются теоретические основы методов ослабления акустической активности машин.  [c.12]

В горных породах с большой концентрацией дислокаций имеет место переносное разрушение, когда трещинообразование определяется смыканием отдельных микротрещин и его скорость соответствует скорости распространения упругой волны. Для исследования процесса применим косвенный метод, когда с помощью герметизированных электродов канал разряда в образце формируется на фиксированном расстоянии от поверхности и оптической скоростной фоторегистрацией определяется время прорыва на поверхность продуктов электровзрыва, а осциллографической регистрацией - динамика изменения электрического сопротивления канала разряда в предположении, что моменту выхода трещин на поверхность будет соответствовать его резкое падение за счет разгрузки. Полученные результаты на ряде горных пород подтверждают механизм переносного разрушения с фронтом акустической волны.  [c.67]


ВОЛНЫ [капиллярные — поверхностные волны малой длины, в которых основную роль играют силы поверхностного натяжения когерентные — волны света, у которых разность их фаз не зависит от времени ленгмюровскне — продольные колебания плотности электронов в плазме Маха — ударные звуковые волны, возникающие при движении тел со скоростями, превышающими фазивые скорости упругих волн в данной среде некогерентные — волны света, разность фаз которых изменяется с течением времени поверхностные <— волны, распространяющиеся на свободной поверхности жидкости или на поверхности раздела несмешивающихся жидкостей акустические — упругие волны, распространяющиеся вдоль поверхности твердого тела и затухающие при удалении от нее электромагнитные — электромагнитные волны, распространяющиеся вдоль некоторой поверхности и затухающие при удалении от нее) поперечные — волны, когда частицы среды колеблются в плоскостях, перпендикулярных к направлению распространения волны (эта среда должна обладать упругостью формы) продольные — волны, если колебания частиц среды происходят в направлении распространения  [c.227]

Результаты сравнения изменения давления по времени при движении ударной волны в воде и в смеси жидкости с пузырьками газа, полученные на описанной выше экспериментальной трубе, приведены в [13]. Из анализа, приведенного в этой работе, следует, что волна давления, распространяющаяся в жидкости при отсутстии пузырьков воздуха, является акустической и распространяется со скоростью, равной скорости звука в воде (примерно 1400 м/с), как в прямом, так и в обратном (отраженная волна) направлении. С введением незначительного по объему количества газа резко снижается скорость распространения прямой волны. За фронтом волны наблюдается интенсивный осцилляционный процесс, вызванный дисперсией и диссипацией энергии, который с течением времени затухает. Распространение отраженной ударной волны в пузырьковой смеси существенно отличается от распространения волны давления в жидкости, не содержащей пузырьков газа. Существенно возрастает амшгитуда отраженной волны по сравнению с прямой. В несколько раз возрастает и скорость распространения обратной волны по сравнению с прямой. Для безразмерной скорости распространения волны давления в газожидкостной среде однородной пузырьковой структуры в [76] получена следующая зависимость ее от отношения давления Pi во фронте волны к его значению ро в невозмущенной части среды  [c.38]

Понятием В. с. можно пользоваться и в др. случаях волнового распространения поперечных волн в струне и изгибных волн в стержне (отношение поперечной силы к скорости элемента струны или стержня) и волн в волноводе акустическом (отношение звукового давления к продольной составляющей колобат, скорости). Во всех случаях оно равно рс, где с — скорость волны соответствующего типа. При наличии дисперсии (напр., в волноводе) нонятие В. с. пригодно только для монохроматнч, воли, причём в этом случае с — фазовая скорость данно11 волны.  [c.310]

Распространение звуковых волн в среде характеризуется их скоростью (см. Скорость звука). В газообразных и жидких средах распространяются только продольные волны, скорость к-рых определяется сжимаемостью среды и её плотностью. В твёрдых телах иомимо продольных могут распространяться поперечные волны и поверхностные акустические полны скорость волн в твёрдых телах определяется комбинацией их констант упругости и плотностью в кристаллах имеет место анизотропия скорости 3., т. с. зависимость её от направления распространения волны относительно кристаллографич. осей. В ряде случаев наблюдается дисперсия звука, обусловленная как физ. процессами в веществе, так и волноводным характером распространения в ограниченных объёмах.  [c.70]

Перенос акустической энергии в кристалле. При распространении плоской волны в анизотропной среде поток энергии отклоняется от волновой нормали. Скорость переноса энергии определяется вектором лучевой скорости е,, равным отношению средней по времени плотности потока энергии I к средней плотности энергии W в волне .,=lf W. Понятие лучевой скорости играет ключевую роль в К., поскольку реально в среде распространяются не бесконечные волны, а иучки конечной апертуры, поэтому направления их распространения задаются переносом анергии, а не фазы (рис. 2). Лучевая скорость совпадает с групповой скоростью  [c.507]

Поверхностные акустические волны в кристаллах. На свободной поверхности кристаллов распространяются поверхностные волны, являющиеся аналогами Рэлея волн в изотропном твёрдом теле. Волны рэлеев-ского типа в кристаллах образуются затухающими и глубь кристалла неоднородными волнами. Частицы среды в такой волне движутся по эллипсам, плоскость к-рых наклонена к поверхности кристалла под углом, зависящим от ориентации среза и направления распространения поверхностной волны в плоскости среза. Упругая анизотропия сказывается на характере распространения поверхностных волн точно так же, как и объём1Шх возникает зависимость фазовой скорости от направления распространения и ориентации среза  [c.509]

Др. особенность У.—возможность получения большой интенсивности даже при сравнительно небольших амплитудах колебаний, т. к. при данной амплитуде плотность потока энергии пропори, квадрату частоты, УЗ-волны большой интенсивности сопровождаются рядом нелинейных эффектов. Так, для интенсивных плоских УЗ-волн при малом поглощении среды (особенно в жидкостях, твёрдых телах) синусоидальная у излучателя волна превращается по мере её распространения в слабую периодич. ударную волну (пилообразной формы) поглощение таких волн оказывается значительно больше (т. н. нелинейное поглощение), чем волн малой амплитуды. Распространению УЗ-волн в газах и жидкостях сопутствует движение среды, т. н. акустическое течение, скорость к-рого зависит от вязкости среды, интенсивности У. и его частоты вообще говоря, она мала и составляет долго % от скорости У. К числу важных нелинейных явлений, возникающих при распространении интенсивного У. в жидкостях, относится акустич. кавито1(ия. Интенсивность, соответствующая порогу кавитации, зависит от рода жидкости и степени её чистоты, частоты звука, темп-ры и др. факторов в водопроводной воде, содержащей пузырьки воздуха, на частоте 20 кГц она составляет доли Вт/см . На частотах диапазона У. средних частот в УЗ-поле с интенсивностью начиная с неск. Вт/см могут возникнуть фонтанирование жидкости и распыление её с образованием весьма мелкодисперсного тумана. Акустич, кавитация широко применяется в технол. процессах при этом пользуются У. низких частот.  [c.215]

Степень пригодности полученных соотношений для описания движения разреженных газов можно проверить акапериментально, исследуя дисперсию акустических волн. Формулы акустической дисперсии нетрудно получить, если воспользоваться условиями совместимости Гюгонио — Адамара. Как известно, указанные условия характеризуют процесс образования и распространения фронта. Они позволяют без  [c.62]

В гидравлической лаборатории Миннесотского университета Рапкиным и Олсоном для измерения содержания свободного газа в зоне проточной кавитации был применен а сустический метод, в котором концентрация газа измерялась с помощью скорости распространения акустического импульса эта скорость сопоставлялась с аналогичной скоростью для воды, свободной от газа. Источником звука служил специально спроектированный магнитострикционный датчик (гидрофон), дающий импульс выбранной частоты. Сигнальная волна датчика подавалась на стандартный осциллоскоп, по которому определялось время прохождения звуковой волны. Прибор обеспечивал удовлетворительное измерение концентрации свободного газа в диапазоне от 1 до 300 частей на миллион по объему при нормальной температуре и пониженном давлении.  [c.116]


Смотреть страницы где упоминается термин АКУСТИЧЕСКАЯ ВОЛНА Распространение акустической волны : [c.106]    [c.189]    [c.258]    [c.245]    [c.44]    [c.478]    [c.251]   
Смотреть главы в:

Динамические задачи нелинейной теории упругости  -> АКУСТИЧЕСКАЯ ВОЛНА Распространение акустической волны



ПОИСК



Волна акустическая

Волны распространение

Волнь акустические

Распространение акустических волн



© 2025 Mash-xxl.info Реклама на сайте