Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства материалов при переменных напряжениях

СВОЙСТВА МАТЕРИАЛОВ ПРИ ПЕРЕМЕННЫХ НАПРЯЖЕНИЯХ  [c.23]

Свойства материалов при переменных напряжениях  [c.25]

Эпюры распределения 549 Напряжеиия переменные — Свойства материалов при переменных напряжениях 32—36 — Цикл 32  [c.635]

Прочность деталей, испытывающих напряжения, переменные во времени, обеспечивается расчетом, в основе которого положено экспериментальное изучение механических свойств материалов при переменных напряжениях. Расчеты на прочность при переменных напряжениях имеют свою специфику в данном случае в основу расчетов положен большой статистически обработанный экспериментальный материал, полученный при многократных испытаниях с выявлением различных факторов, влияющих на циклическую прочность.  [c.6]


Эксплуатационные нагрузки, действующие на элементы конструкций из полимерных материалов, нередко претерпевают изменения. Отсюда возникает необходимость в разработке методов расчета деформационных и прочностных свойств полимеров при переменных напряжениях. В настоящее время достаточно полно рассмотрены возможности описания механического поведения полимеров в условиях изменяющихся нагрузок при одноосном напряженном состоянии с помощью линейной теории вязкоупругости и различных вариантов нелинейной теории вязкоупругости [71, 138]. Наибольший практический интерес представляют случаи нагружения при сложном напряженном состоянии. Однако сведений о ползучести полимеров при сложном напряженном состоянии и переменных напряжениях, а также о методах теоретического описания опытных данных в научно-технической литературе крайне мало.  [c.146]

Свойства материалов при напряжениях, изменяющихся во времени, изучены для весьма узкого круга напряженных состояний. В основном прочность материалов при переменных напряжениях изучалась при одноосном неоднородном напряженном состоянии (испытания образцов в условиях изгиба) и неоднородном чистом сдвиге (испытания сплошных образцов в условиях кручения). Сведения об усталостной прочности при одноосном однородном напряженном состоянии и однородном чистом сдвиге менее полны. Еще менее подробно изучена усталостная прочность материалов в общем  [c.587]

Прочность детали после возникновения усталостных трещин в сильной степени зависит от свойств материала, от распределения напряжений в детали — характера ее напряженного состояния. Стремление возможно более полно отразить в расчете влияние всех перечисленных факторов на прочность материалов при переменных напряжениях заставило ввести понятие об эффективном коэффициенте концентрации при переменных напряжениях.  [c.636]

Воздушные провода линий электропередач, подверженные действию ветра, непрерывно находятся в состоянии вибрации, вызывающей в материале проводов переменные напряжения, что приводит к их изломам. Чтобы провода не ломались, их поверхность необходимо предохранять при монтаже. Конструкция зажимов проводов должна исключать трение и удары проводов об их край, а также резкие изменения направления провода внутри и при выходе его из зажима. При помощи демпфирующих устройств вибрация проводов должна быть максимально уменьшена. Провода нужно прокладывать в местах, защищенных от ветра или влияния атмосферы. У изделий из алюминия, а также чистой меди, длительно нагруженных при обычной температуре даже ниже предела текучести, деформация увеличивается. Это явление носит название ползучести, или крипа. Механические и электрические свойства некоторых сплавов приведены в табл. 28.  [c.241]


При переменных напряжениях концентрация напряжений снижает предел выносливости деталей как из пластичных, так и из хрупких материалов. Это объясняется тем, что многократное изменение напряжений в зоне концентратора напряжений приводит к образованию и дальнейшему развитию трещины с последующим усталостным разрушением детали. Снижение предела выносливости при симметричном цикле напряжений оценивают эффективным (т. е. действительным) коэффициентом к о н ц е н г ра-ции напряжений, который кроме геометрической формы деталей отражает свойства материала, или, как говорят, его чувствительность к местным напряжениям.  [c.21]

Для восстановления первоначальных магнитных свойств магнитомягкие материалы подвергают отжигу, который снимает внутренние напряжения и вызывает рекристаллизацию зерен. Магнитные свойства зависят от размера зерна. Поверхностные слои зерен вследствие искажения строения кристаллов характеризуются повышенной коэрцитивной силой. При мелкозернистом строении суммарная поверхность зерен в единице объема больше, чем при крупнозернистом материале, поэтому в материале, состоящем из мелких зерен, влияние поверхностных искажений слоев сказывается сильнее и у него коэрцитивная сила больше. Внутренние напряжения нередко связаны с наличием в материале различных загрязнений, например кислорода в чистом железе, примесей или присадок кобальта, хрома, вольфрама. Используя примеси, усложняющие кристаллическую решетку, вводя технологическую операцию закалки, а иногда добиваясь ориентации структуры доменов в магнитном поле, получают магнитотвердые материалы. При перемагничивании ферромагнетиков в переменных магнитных полях всегда наблюдаются тепловые потери энергии. Они обусловлены потерями на гистерезис и динамическими потерями. Динамические потери вызываются вихревыми токами, индуцированными в массе магнитного материала, а отчасти и так называемым магнитным последействием, или магнитной вязкостью. Потери на вихревые токи зависят от электрического сопротивления ферромагнетика. Чем выше удельное сопротивление ферромагнетика, тем меньше потери на вихревые токи. Магнитное последействие особенно заметно проявляется в магнитомягких материалах в области слабых полей.  [c.272]

В книге приведены общие соотношения для расчета гармонических составляющих э.д.с. накладного датчика в зависимости от коэрцитивной силы, остаточной и максимальной индукции ферромагнитных материалов при одновременном воздействии Переменных и постоянных полей. Даны рекомендации по выбору оптимальных значений намагничивающих полей и конструктивных элементов датчиков. Рассмотрены основные типы феррозондов с поперечным и продольным возбуждением. На основании общих соотношений теории дислокаций описаны процессы упрочнения, ползучести, изменения магнитных и механических свойств металлов при деформации и усталости нагружения. Даны рекомендации по применению методов и приборов по контролю качества термообработки и упругих напряжений, однородности структуры.  [c.2]

Обычно 70—90% общего числа циклов, необходимых для разрушения детали при неизменной амплитуде напряжений, деталь работает без видимой трещины, и только в оставшиеся циклы развивается трещина, приводящая к излому детали. В зависимости от величины переменных напряжений изменения в материале детали происходят различными темпами и число циклов повторения напряжений до разрушения оказывается тем меньше, чем выше напряжения. В тех случаях, когда происходят изменения свойств материала детали в условиях эксплуатации под действием высоких или низких температур, коррозии и других факторов, сопротивление усталости может резко измениться.  [c.223]

Экспериментальные и расчетные исследования полей напряжений и деформаций и свойств материалов являются основой для разработки критериев разрушения при неоднородном дефор мированном состоянии (в зонах и вне зон концентрации), а также методов расчета элементов конструкций на циклическую прочность. Усовершенствование и развитие этих методов наряду с их апробированием при проектировании машин и конструкций, подвергаемых действию переменных тепловых и механических нагрузок, используется при разработке нормативных материалов по прочности.  [c.9]


Для оценки действительного понижения усталостной прочности в зависимости от концентрации напряжений при переменных нагрузках вводится эффективный (практический) коэффициент концентрации, представляющий собой отношение предельных номинальных напряжений, вызывающих разрушение деталей, не имеющих и имеющих концентраторы напряжений. Эффективный коэффициент концентрации напряжений меньше теоретического (расчетного) коэффициента и только для высокопрочных материалов с малой пластичностью эффективный коэффициент концентрации почти равен теоретическому. Чем выше прочность стали и хуже пластические свойства, тем сильнее влияние надрезов, причем с увеличением размера образца влияние надреза увеличивается. Чем менее пластичен материал, тем выше эффективный коэффициент концентрации напряжений и наоборот. Пластичные материалы обладают способностью сглаживать неблагоприятные для усталостной прочности пики напряжений концентратора.  [c.410]

При проектировании конструкций, работающих под действием переменных (периодических) нагрузок, необходимо уметь прогнозировать их длительную прочность и долговечность. Для этого необходимо знать характер нагружения элементов конструкции, закон изменения напряжений во времени и усталостные свойства материалов.  [c.324]

В книге изучаются физико-механические свойства материалов, напряжения и деформации при растяжении, сдвиге, кручении, изгибе и при сложном сопротивлении прямых и кривых стержней. Изучаются законы устойчивости элементов конструкций, а также поведение материалов лри действии динамических и переменных нагрузок.  [c.2]

Определение дугостойкости электроизоляционных материалов. Под дугостойкостью понимают способность диэлектрика выдерживать воздействие электрической дуги без недопустимого ухудшения его свойств. Различают стойкость электроизоляционных материалов к действию электрической дуги при высоком свыше 1000 В) переменном напряжении и малых токах и при воздействии дуги, создаваемой постоянным напряжением до 1000 В. Характеристикой дугостойкости при испытаниях переменным напряжением служит время воздействия дуги до наступления пробоя. При испытаниях действием дуги постоянного напряжения материалы разделяются на классы в зависимости от реакции на воздействие дуги. Существующие методы испытаний позволяют лишь сравнивать дугостойкость различных материалов они не дают возможности распространить результаты испытаний, проводимых в условиях чистых и сухих лабораторий, на рабочие условия применения материалов, где влияние окружающей среды, грязи, влаги может существенно изменить дугостойкость материала. Выбор того или иного метода испытаний зависит от особенностей испытуемого материала, его назначения и устанавливается стандартом или техническими условиями на материал или изделие.  [c.397]

Первое предположение часто не подтверждается при описании макроскопических деформаций, когда обнаруживается нелинейность вязкоупругих свойств. Однако это не является основанием для отрицания возможности применения методов линейной вязкоупругости, поскольку отклонения от линейного поведения (в указанном смысле) могут быть вызваны влиянием постепенного накопления микроразрушений, а не нелинейностью вязкоупругих свойств. В работе [20] показано, что при описании поведения линейных вязкоупругих материалов при различных скоростях деформирования е справедливы обобщенные кривые деформирования с использованием приведенных переменных. В том случае, если поведение материала можно описать методами линейной вязкоупругости, результаты измерений при различных скоростях деформирования и температурах должны образовывать единый график при построении зависимости приведенного напряжения аТо/ еТа от приведенной деформации е/бОт- Обобщенная зависимость строится в логарифмических координатах. Если температура Т постоянна, то эту зависимость можно построить в координатах o = lga/e и e = lgs/s.  [c.42]

Данные о прочности материалов при действии переменных напряжений чаще всего получают в результате испытаний стандартных образцов малого диаметра. Поэтому оценка прочности деталей машин требует учета влияния на выносливость следующих основных факторов формы и абсолютных размеров детали состояния поверхности и свойств поверхностного слоя изменения режимов нагружения.  [c.24]

Изделия в вулканизационных формах прессуются в поле переменных температур и давлений при сложнонапряженном состоянии. Часто имеет место наряду с объемной деформацией течение, что должно приводить к появлению обратимой высокоэластической деформации, вследствие чего наблюдается эластическое восстановление. В процессе формирования свойств материалов изделия при вулканизации изменяется соотношение обратимой и необратимой деформаций, которое зависит от температуры, вида напряженного состояния, величины деформации, режима механического нагружения в пресс-формах и формирующихся свойств материалов вулканизуемого изделия. От этих же так называемых технологических факторов будет зависеть и эластическое восстановление, вызывающее усадку. Характерной особенностью усадки, связанной с эластическим восстановлением, является неравенство равновесных линейных усадок в различных направлениях — изменение формы, т. е. прямое следствие эластического восстановления. Изменение формы наблюдается даже в условиях практически всестороннего сжатия, как это бывает при прессовании образцов-дисков [268]. В этом случае изменение формы должно происходить за счет объемной сжимаемости. Данные рис. 2.5.15 показывают, что при малых давлениях р О усадки по диаметру и высоте становятся одинаковыми и основной вклад в усадку вносит термическое сокращение оно происходит для равномерно нагретых тонких образцов-дисков по достижении равновесных значений температур и усадок достаточно равномерно во всех направлениях.  [c.103]


Влияние дефектов на усталостную прочность сварных соединений. При значительных переменных напряжениях прочность сварных соединений определяется их сопротивлением усталостным разрушениям. Последние обычно характеризуются пределом выносливости, который зависит от концентрации напряжений, создаваемой формой соединения или дефектом сварки, от величины и знака остаточных напряжений, а также от свойств применяемых материалов. Технологические дефекты — подрезы, непровары, несплавления и трещины создают значительную концентрацию напряжений и снижают долговечность соединений. При определенных условиях дефекты типа пор и шлаковых включений, не опасных при статическом нагружении, могут вызвать преждевременные усталостные разрушения. Ниже приведены данные  [c.282]

Самым расходуемым материалом при электросварке являются конечно же электроды. Поступающие в продажу электроды в большинстве своем рассчитаны на параметры наиболее простых сварочных аппаратов, то есть переменный ток и относительно невысокое напряжение холостого хода. Поэтому при покупке мало кто задумывается о более тонких свойствах электродов. Скорее более важную роль при выборе играет цена да еще качество горения дуги, о котором чаще всего приходится судить на основании практического опыта. Репутацию того или иного типа электродов также может определять имя производителя, указанное на пачке упаковки. Хотя надо сказать, что качество поставляемых электродов может меняться от партии к партии, также  [c.149]

Из практики эксплуатации известно, что в таких условиях разрушение деталей возможно при напряжениях, значительно меньших, чем в случае, когда они неизменны. Поэтому естественно, что конструкторов-машино-строителей ие могут удовлетворить методы расчета, в основу которых положено использование механических характеристик материалов, полученных лин1ь нри статических испытаниях. Расчет деталей машин, как правило,, должен вестись на основе экспериментального изучения механических, свойств материалов при переменных напряжениях.  [c.581]

Установлено, что даже при незначительных уровнях внешних нагрузок в изделиях из композиционных материалов возникают микротрещины, которые вместе с различными видами воздействий (влажность, температура) существенно снижают физико-механические свойства композиционных материалов. Трещина является источником концентрации напряжений, это приводит к снижению несущей способности эксплуатируемого изделия, особенно при переменных напряжениях. Вследствие различия показателей деформативности и коэффициентов линейного теплового расши-"решгя  [c.17]

Домённая поляризация. Доменная поляризация присуща особому классу твердых диэлектриков — сегнетоэлектрикам, получившим свое название от сегнетовой соли, на которой впервые были обнаружены те особенные свойства, которые характеризуют этот класс материалов. Сегнето-электрическими свойствами обладают некоторые неорганические кристаллы. Эти кристаллы состоят из областей — доменов, представляющих собой как бы большие диполи с определенными электрическими моментами. Таким образом, сегнетоэлектрики отличаются от полярных диэлектриков тем, что последние имеют полярные молекулы, а первые — спонтанно поляризованные области, существующие в материале и до наложения внешнего поля. Под влиянием приложенной разности потенциалов происходит однообразная ориентация электрических моментов всех доменов в поле она приводит к созданию очень большого суммарного электрического момента, к большому поляризационному заряду, к большому емкостному току. Следовательно, такие материалы обладают очень большой диэлектрической проницаемостью. Ориентация доменных электрических моментов под влиянием электрического поля (доменная поляризация) связана с известным искажением кристаллической решетки. Как при других видах, поляризации, так и при доменной при постоянном напряжении после установления поляризации вызванный ею ток становится равным нулю. При переменном напряжении вследствие непрерывно происходящего изменения направления электрического поля токи доменной поляризации существуют в течение всего времени приложения напряжения. Доменная поляризация наблюдается при разных частотах вплоть до сверхвысоких радиочастот. Токи доменной поляризации имеют не только большую реактивную составляющую, но и большую активную составляющую, благодаря чему сегнетоэлектрики имеют сравнительно большой tg б. Особенностью сегнетоэлектриков является своеобразная зависимость диэлектрической проницаемости от температуры. На рис. 2-6 показана зависимость от температуры относительной диэлектрической проницаемости одного из промышленных материалов сегнетоэлектриков — титаната бария (BaTiOз), впервые изученного в качестве диэлектрика Б. М. Вулом и И. М. Гольдман. Эта кривая снята при напряженности электрического поля 3 кВ/м. При температуре, близкой к абсолютному нулю,  [c.39]

Нестационарное изменение переменных напряжений в деталях машин, когда максимальные и минимальные напряжения переменны во времени, встречается часто. Закономерности изменений прочностных СВОЙСТВ материалов при нестационарных нагружениях изучены пока недостаточно. Известно, напри-мер, что можно предел усталости /О материала значительно повысить пу-тем тренирования, т. е. предварительным ступенчатым циклическим нагружением с постепенно возра-стающими напряжениями. В дей-ствительных условиях не встречается постепенного ступенчатого повышения напряжений в деталях во мно- 28 гих случаях напряжения ниже пре-дела усталости чередуются с напряжениями выше предела усталости, действующими ограниченное 22 время. Перегрузки, действующие непродолжительное время, но систематически повторяющиеся много раз за время работы детали могут повышать и понижать предел усталости. Пример кривой повреждаемости для стали 5 (по Н. П. Щапову), т. е. кривой, отделяющей область, в которой циклические перегрузки на участке ограниченных чисел циклов, не вызывают снижения предела усталости показан на фиг. 1 кривая эта лежит значительно ниже кривой выносливости.  [c.327]

Явление разрушения металла под действием переменных напряжений в течение некоторого времени (или количества циклов) называется сяю/госотныл разрушением. Под усталостью материалов понимается изменение механических и физических свойств материалов при длительном действии циклически изменяющихся по времени напряжений.  [c.79]

Анализ случаев поломок деталей машин свидетельствует о том, что большинство поломок связано с явлением так называемой усталости материалов. Явление усталости металлов заключается в разрушении деталей машин вследствие возникновения в них многократно изменяющихся переменных напряжений, значительно меньших, чем предел прочности или даже предел текучести материала. Опасность этого явления заключается в том, что деталь, выполненная из пластичного металла и нагруженная до напряжений, казалось бы, неопасных, внезапно разрушается без появления остаточных деформаций, которые сигнализировали бы о надвигающейся катастрофе. Долгое время существовало мнение, что при работе детали в условиях циклически меняющихся напряжений, происходит изменение в кристаллическом строении металла. Это мнение основывалось на том, что материал с достаточными пластическими свойствами при длительной работе в условиях переменных напря-  [c.327]


Ул<е более ста лет назад было замечено, что части машин и сооружений, подвергающиеся длительное время переменным напряжениям, могут разрушаться внезапно без заметных остаточных деформаций при напряжениях, значительно меньших предела прочности материала. Это явление было названо усталостью материалов. Для выяснения причины этих поломок прежде всего стали прове-. рять, не снижается ли предел прочности материала после длительного действия переменных напряжений. Однако опыты показали, что длительно действующие переменные напряжения не изменяют механических свойств материала. Не подтвердилось и предположение, что переменные напряжения изменяют структуру материала и делают его хрупким. Это предположение основывалось на том, что материал с достаточными пластическими свойствами при переменных напрях ениях разрушается, как хрупкий, без заметных остаточных деформаций.  [c.346]

Старение деталей машин, их несущая способность и прочность при переменной нагруженности зависят от концентрации напряжений, абсолютных размеров, свойств материалов и качества поверхностного слоя деталей, окружающей среды п других факторов. Металлографические, рентгеновские и исследования, выполненные с помощью электронных микроскопов, позволили открыть ряд новых явлений, сопровождающих повторную деформацию и последующее (часто внезонное) разрушение материалов под действием повторных нагрузок. Это явление называется пределом выносливости металлов. Субми-кроскопические трещины усталости образуются на ранней стадии деформирования, после числа циклов, составляющего 10—20% общей долговечности. Видимая трещина образуется незадолго до окончательного разрушения детали. С помощью методов дефектоскопии в ряде случаев можно контролировать величину и скорость распространения трещин в деталях машин и определять пределы безотказной работы при медленно развивающихся трещинах усталости.  [c.223]

Этот приближенный метод практически вполне удовлетворителен, если еще учесть, что упругим материалом демпфера является резина, механические свойства которой обычно точно неизвестны. Модуль упругости резины при сдвиге G равен 5—9 кг1см . Коэффициент демпфирования должен определяться из эксперимента. Допускаемое переменное напряжение резины на сдвиг равно 3 /сг/с.м2. Обычно [150] 0 /0 = О,15 О,3.  [c.325]

Требование к болтовому материалу в отношении повышения механических свойств, диктуемое условиями нагружения, особенно при переменных и ударных нагрузках, а также при высоких температурах, привело к использованию наряду с мало- и среднеуглеродистыми сталями сталей легированных, обеспечивающих длительную службу резьбового изделия. Одпако основная масса рыночных крепёжных изделий (примерно до М24) обезличенного напряжения изготовляется из мало- и среднеуглеродистых сталей, что диктуется не только чисто экономическими соображениями, но и условиями массовой фабрикации этих изделий. Основные тенденция по линии технологического процесса этой группы изделий сводятся в части заготовительных операций к холодной высадке головок болтов и холодной же штамповке гаек. Роль горячей штамповки из года в год снижается не только на малых и средних размерах, но и на больших, где часто более целесообразным находят замену болтов связями с двумя гайками (болт-шпилька) и механическую обработку гаек из круглой или шестигранной заготовки. В части резьбы метод воспроизведения таковой накаткой является превалирующим, обеспечивая качество изделия в части формы, размера, чистоты поверхности и уплотнения поверхностного слоя. Повышение качества накатанной резьбы при длительных переменных нагружениях отмечены был,1 выше на стр. 188. Использование холодной высадки и накатки резьбы раряду с по-  [c.198]

Если напряжение на электродах больше определенного значения, так называемого напряжения зажигания, то электрическая дуга возникает как при постоянном, так я при переменном токе. Величина этого напряжения зависит от температуры слоя, давлениян рода псевдоожнжающего газа, а также от свойств частиц слоя. При повышении температуры слоя уменьшается удельное сопротивление большинства твердых материалов и в сочетании с возрастающей проводимостью газовой фазы это увеличивает тенденцию к образованию дуговых разрядов в слое. Диаметр частиц слоя и форма их также играют важную роль.  [c.179]

Анализ показывает, что для реализации данной идеи (явно физического характера) совсем необязательно стремиться отобразить весьма сложную структуру реального материала. Вполне удовлетворительные для рассматриваемой задачи результаты дает формализованное представление микронеоднородности, принятое при построении структурных моделей среды. Простейшим механическим аналогом моделей этого типа для случая одноосного напряженного состояния является стержневая ( столбчатая ) модель Мазинга. Стержни (или подэлементы, если иметь в виду, что моделирз ется поведение элементарного объема материала) наделены в ней свойствами упругоидеальнопластического тела, а микронеоднородность характериззются распределением пределов текучести. Отсюда Мазинг получил известный принцип, определяющий диаграмму деформирования при разгрузке и нагружении противоположного направления. Дальнейший анализ показал, что возможности данной схемы намного шире, она позволяет описать множество внешне разнообразных проявлений анизотропии при повторно-переменном изотермическом и неизотермическом нагружениях склерономных (не обладающих временными свойствами) материалов, находящихся в циклически стабильном состоянии.  [c.168]

Большое внимание должно быть обращено на устранение хрупких разрушений конструкций из материалов ближайшего будущего алюминиевых, особенно повышенных свойств, титановых сплавов, ситалов и др. В настоящее время за рубежом разработаны специальные методы проектирования сварных конструкций из алюминиевых сплавов. Главными задачами являются создание сварных конструкций при наименьших значениях концентраторов напряжений и возможность создания деформа-тивных конструкций. Чтобы избежать образования концентраторов напряжений, рекомендуется применять элементы из прессованных и штампованных профилей, соединения, свариваемые встык, вместо нахлесточ-ных, создавать плавные сопряжения элементов между собой и т. д. при их работе не только при переменных, но и при статических нагрузках.  [c.139]

Поведение конструкции при нагружении зависит от ее геометрии, свойств материала, величины приложенных напряжений. Уменьшение равномерного удлинения в наклепанных материалах не означает, однако, что следует избегать их использования в различных условиях. В трубопроводах, например, преднамеренно создают большие пластические деформации у внутреннего диаметра, чтобы возникала система благоприятных сжимающих остаточных напряжений, снижающих самоизнос труб. Аналогичны этому гидростатические испытания сосудов высокого давления. Взаимодействие между несколькими переменными будет также рассмотрено ниже в связи с выходом из строя путем быстрого разрушения.  [c.13]

Применим методологию эволюционного подхода к процессам деформирования и разрушения материала [146]. Под автономностью будем понимать отсутствие старения материала и других аналогичных временных явлений при деформировании. Кроме того, будем полагать, что механизмы и процессы разрушения материала не изменяются в течение рассматриваемого периода времени, т. е. стационарны. Повреждениями тела (материала) считаем разрыхление, образование пор и микротреш,ин, их рост, а также другие изменения механических и физических свойств материала при воздействии внешних факторов. В эволюционной системе тело-повреждения накопление повреждений (состояние системы) будем характеризовать интерпретируемым как сплошность скаляром О ф являюш,имся единственной переменной состояния q = ф. К управляюш,им параметрам следует отнести те, которые отражают условия нагружения тела тензоры деформаций и напряжений, температуру, внешнюю среду и другие переменные, суш,ественные для процесса накопления повреждений. Учет всех управляюш,их параметров в эволюционном уравнении (1.5.2) представляет весьма сложную задачу. В то же время важно, чтобы управляюш,ие параметры деформирования и разрушения могли быть найдены из достаточно простых экспериментов. Примем следующий постулат в основе процессов деформирования и разрушения материалов (функционирования системы тело-повреждения ) лежат обш,ие закономерности (1.5.2) накопления повреждений, которые в простейшем случае могут быть записаны в виде  [c.59]

В-пятых, в условии прочности должны учитываться наряду с анизотропией такиё особенности механических свойств материалов, как чувствительность к перемене знака нормальных и касательных напряжений и другие факторы. В простейших случаях условие предельного состояния должно сводиться к обычным формулам сопротивления материалов (условиям прочности при одноосном растяжении, сдвиге и т. п.).  [c.146]


О пригодности магнитострикционного материала для целей электроакустического преобразования судят по величине его характеристик, которые определяют важнейшие свойства преобразователя к.п.д., чувствительность в режиме излучения и приема. Связь свойств преобразователя с характеристиками материала получают из расчетов колебаний магнитострикционных преобразователей (см., например, [14, 47, 48]). Такие расчеты проводят в предположении линейной связи между величинами Я, Б, а и 8, где В, а, е — амплитуды переменной индукции, механического напряжения и деформации, вoзникaюD иe в магнитострикционном материале при наложении переменного магнитного поля с амплитудой Н, меньшей величины постоянного поля подмагничивания Важнейшие динамические магнитострикционные характеристики X = (а/Л)е, Л= (В/а)н (индексы при скобках означают постоянство соответствующего параметра). Величина Я характеризует чувствительность магнитострикционных излучателей по напряжению, т. е. отношение звукового давления на оси излучателя к амплитуде напряжения на его обмотке величина Л определяет чувствительность по току (она же характеризует чувствительность магнитострикционных приемников). Важной характеристикой является коэффициент магнитомеханической связи К, определяющий отношение механической энергии к энергии магнитного поля в сердечнике при работе излучателя на частотах, лежащих значительно ниже резонанса для тех случаев, когда потерями можно пренебречь. Между этими характеристиками существует связь, выражаемая соотношением  [c.120]

Данная методика определения приспосабливающих нагрузок применима для циклически упрочняющихся материалов. Для циклически неупрочняющихся материалов при определении предельного состояния необходимо использовать не теорию приспосабливающих нагрузок, а критерии допустимых деформаций или перемещений [122]. В том случае, когда при переменном нагружении с заданной амплитудой напряжений упругопластические свойств материалов таковы, что с увеличением числа циклов происходит увеличение пластических деформаций, а при заданной амплитуде деформаций наблюдается уменьшение соответствующих напряжений, главным фактором является не циклическое изменение пластиче ских деформаций, а их рост от цикла к циклу.  [c.317]

В справочнике приведены результаты исоледования некоторых материалов, подвергнутых различным дозам ионизирующего облучения. Показана зависимость механических свойств от дозы и вида облучения. Ряд особенностей в поведении стеклопластика связан с его структурной неоднородностью и прежде всего с наличием связующего, которое является не вполне упругим. Эти особенности проявляются при длительном воздействии постоянной или изменяющейся во времени нагрузки. В работе представлены результаты исследования ползучести материала и прочности при переменных нагрузках. Исследованы также некоторые специфические вопросы, связанные с особенностями рассматриваемых материалов, например, влияние размеров образца и концентраторов напряжений различной формы на предел прочности.  [c.5]

Анализ природы усталостного разрушения очень сложен, так как требует изучения неоднородной среды (кристаллиты и меж-кристаллические среды). В сварных соединениях конструкций задача анализа значительно осложняется наличием остаточных напряжений и неоднородностью свойств наплавленного и основного металла 80]. Прочность конструкций при переменных нагрузках зависит главным образом от количества нагружений, амплитуды изменения наггряжения, от формы и размеров испытуемых образцов, рода их материалов, состояния поверхности, вида усилий 15  [c.227]

Степень понижения устойчивости материалов против действия переменных напряжений в коррозионных условиях иллюстрируется в табл. 51, которая воспроизводит данные, собранные Дорей 2 по результатам работы Мак Адама. Необходимо отметить, что кремненикелевая сталь, которая имеет наиболее высокую прочность на разрыв и наивысший предел усталости при испытаниях в воздухе, становится одной из худших при испытаниях в воде. Эти значения, однако, не могут свидетельствовать о том, что кажущиеся преимущества легированных сталей являются иллюзорными, но, однако, они указывают на необходимость особенного внимания к контролю и хранению материалов, для которых значение предела коррозионной усталости падает ниже значения чистой усталости. Кроме этого, при выборе материала для дальнейшего применения предпочтение должно быть отдано материалам, для которых значения предела коррозионной усталости только незначительно меньше значений предела обычной усталости. Хорошие данные, получающиеся для высокохромистой стали при испытаниях в коррозионных условиях, указывают на то, что можно надеяться в дальнейшем получить материалы, имеющие наряду с другими свойствами хо-  [c.610]


Смотреть страницы где упоминается термин Свойства материалов при переменных напряжениях : [c.22]    [c.42]    [c.142]    [c.62]   
Смотреть главы в:

Расчет на прочность деталей машин  -> Свойства материалов при переменных напряжениях

Расчет на прочность деталей машин Издание 3  -> Свойства материалов при переменных напряжениях



ПОИСК



173 — Материалы 179 — Напряжения

Напряжение Свойства

Напряжения переменные 380384 —

Напряжения переменные — Свойства

Напряжения переменные — Свойства материалов при переменных напряжениях 32—36 — Цикл при статических напряжениях

Напряжения переменные — Свойства материалов при переменных напряжениях. 14—28 — Цикл

Напряжения переменные — Свойства статические — Свойства материалов при статических напряжен

Прочность деталей при переменных напряжениях в зависимости от качества и механических свойств поверхностных слоев материала деталей

Свойства материалов



© 2025 Mash-xxl.info Реклама на сайте