Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Разрушения хрупкие конструкций

Выше были рассмотрены условия старта макротрещины, обусловленного хрупким или вязким зарождением разрушения в ее вершине. Сам факт такого старта в общем случае не является гарантом глобального разрушения элемента конструкции. Так, для развития трещины по вязкому механизму требуется непрерывное увеличение нагрузки до момента, когда трещина подрастает до такой длины, при которой дальнейший ее рост может быть нестабильным [33, 253, 339, 395]. При хрупком разрушении нестабильное развитие трещины начинается сразу после ее старта, но тем не менее трещина может остановиться, не разрушив конструкции, что может быть связано с малой энергоемкостью конструкции (не хватает энергии на обеспечение динамического роста трещины) или определенной системой остаточных напряжений (попадание трещины в область сжатия).  [c.239]


К настоящему времени разработаны различные варианты структурных моделей накопления повреждений в зернистых (типа металлов), волокнистых и слоистых (типа синтетических структур и полимеров) материалов. Кроме моделирования различных типов разрушения - хрупкого, пластичного и т.д. на уровне физических процессов предлагается методика по прогнозированию остаточного ресурса машин и конструкций с учетом их структурной организации [21].  [c.131]

Разрушение - это действительно процесс сложной внутренней перестройки металла под действием нагрузок. При этом происходит ослабление и разрыв межатомных связей. Если разрушение хрупкое, все предварительные процессы структурной перестройки скрыты от нас. Получается, что мы узнаем о давно идущем процессе разрушения в последний момент Чтобы уметь предсказывать и предупреждать такие ситуации, необходимо изучать процессы, которые происходят со структурой металла под различными нагрузками и учитывать их при проектировании и эксплуатации конструкций. Появилась новая наука - механика разрушения  [c.19]

Возникновений хрупкого состояний материала и разрушение элементов конструкций  [c.6]

Величина для малоуглеродистых низколегированных сталей находится в пределах от 70 до 140. В соответствии с этой зависимостью энергия уки, а следовательно, и величина напряжений, необходимых для развития трещины, уменьшаются с увеличением скорости ее распространения. Скорость развития трещины v для конструкционных сталей достигает значений 1000— 1500 м)сек, и yk уменьшается на порядок и более. При такой скорости развития трещины напряжение, необходимое для динамического развития трещины, уменьшается до 0,2 от значения напряжений при статическом инициировании хрупкого разрушения. С этим связано пониженное сопротивление хрупкому разрушению элементов конструкций при динамическом нагружении.  [c.50]

Таким образом, для определения сопротивления хрупкому разрушению элементов конструкций и машин необходимо располагать данными о максимальных нормальных напряжениях а э и минимальной температуре Гэ при эксплуатации, а также данными о сопротивлении разрушению применяемого металла при соответствующих условиях нагружения (см. рис. 4.1).  [c.65]

Особый интерес к проблеме хрупкого разрушения возникает в связи со случаями внезапного разрушения ответственных конструкций, на поверхность которых нанесены хрупкие износостойкие покрытия. Для оценки надежности материалов с покрытиями необходимо экспериментальное определение их склонности к зарождению трещин, а также определение способности материалов противостоять процессу развития трещины или разрушению. Эти показатели объединяются в общее понятие — вязкость разрушения.  [c.135]


Рассмотренная авария дает только общее представление о характере возможных хрупких разрушений реальных конструкций машин. В то же время исследователей и создателей новой техники интересуют статистически обобщенные сведения о типичных разрушениях ее деталей и узлов. Ниже приводятся эти данные, полученные нами по разработанной методике (см,, гл. I).  [c.85]

С другой стороны, для некоторых хрупких материалов в определенных условиях возникновение высоких напряжений в точке влечет за собой разрушение всей конструкции, и расчет по напряженному состоянию в точке вполне оправдан. Точно так же местные напряжения необходимо учитывать при расчетах на усталостную прочность.  [c.45]

Область пластической работы конструкционной стали превосходит область упругой работы ее раз в 200. В связи с этим работа материала в пластической области является огромным резервом прочности конструкций, вследствие которого конструкция, как правило, не разрушается (в смысле разделения целого на части), а теряет несущую способность из-за больших остаточных деформаций. Практически разрушение стальных конструкций происходит лишь в случае перехода материала из пластичного в хрупкое состояние.  [c.113]

Указанные уравнения и критерии обоснованно применяют при оценке прочности конструкций из малопластичных металлов (высокопрочные стали, алюминиевые и титановые сплавы) и при определении критических размеров дефектов вне зон концентрации для элементов из пластичных материалов. В связи с этим в качестве одной из основных выдвигается задача исследования механических закономерностей разрушений (хрупких, квази-хрупких и вязких) ири наличии дефектов, допускаемых современными требованиями контроля.  [c.21]

Преобразование статически неопределимой конструкции в кинематический механизм. Спроектировать конструкцию равнопрочной, т. е. такой, чтобы разрушение ее по всем расчетным сечениям происходило одновременно, как правило, не удается. Это связано не только с уровнем наших знаний о работе конструкций в предельной стадии, но и с требованиями технологии изготовления, транспортирования и монтажа элементов сооружения, с требованиями его возведения и с действием на него в различные моменты различных групп нагрузок. В процессе исчерпания несущей способности отдельных сечений конструкции происходит перераспределение усилий, при этом уменьшается степень статической неопределимости системы. Перед разрушением конструкция в пределах зоны разрушения становится статически определимой системой и при дальнейшем увеличении нагрузки разрушается мгновенно — хрупко или с образованием кинематического механизма. В некоторых случаях может произойти разрушение отдельных элементов конструкции и связанное с этим перераспределение усилий в сооружении. Однако такое перераспределение может и не вызвать разрушения всей конструкции.  [c.178]

Как показано многочисленными исследованиями, в элементах конструкций изготовленных из пластичного материала, находящихся в вязком состоянии и работающих при статических и ударных нагрузках, остаточные сварочные напряжения не отражаются на прочности (сопротивлении разрушению) элементов конструкций. Их влияние в данном случае проявляется лишь в том, что наступление пластических деформаций в отдельных зонах может происходить при более низких нагрузках, чем в элементах, не имеющих сварочных напряжений. В конструкциях из хрупких материалов, а также из материалов пластичных, но находящихся в хрупком состоянии (например, при воздействии объемного напряженного состояния), сварочные остаточные напряжения могут влиять на прочность при статических и ударных нагрузках.  [c.60]

Наличие указанных дефектов создает условия для нарушения силового потока и для возникновения концентрации напряжений, что приводит к опасности появления преждевременных хрупких разрушений. При этом имеющиеся в конструкции остаточные напряжения, ввиду хрупкого состояния материала в зоне трещины, могут складываться с рабочими и снижать работоспособность изделия. Как показывает эксплуатационный опыт, большинство разрушений сварных конструкций связано с развитием имеющихся дефектов и, прежде всего, трещин, непроваров и пр. Наиболее резко дефекты  [c.94]


Образование остаточных напряжений приводит к хрупким разрушениям сварных конструкций. Вопрос о хрупких разрушениях является одним из наиболее злободневных. В практике эксплуатации наблюдаются хрупкие разрушения  [c.137]

Перед испытанием образец доводится до заданной температуры в ванне, или подогреваемой на электроплитке или охлаждаемой при помощи жидкого воздуха. Изображенные на рис. 431 кривые а, б, в показывают, что понижение температуры вызывает резкое уменьшение ударной вязкости и, таким образом, может вызвать хрупкое разрушение частей конструкций. Это явление неоднократно наблюдалось на практике так называемая хладноломкость рельсов, бандажей и других деталей конструкций железнодорожного транспорта неоднократно вызывала большие затруднения.  [c.532]

Процессы, происходящие в металле сварных соединений, могут приводить к хрупким разрушениям сварных конструкций. Опыт эксплуатации ответственных металлических конструкций показывает, что изготовление сварных узлов без трещин еще не устраняет опасности разрушения хрупких материалов при работе в условиях сложного напряженного состояния и низких температур. Причинами разрушений могут быть макроскопические концентраторы напряжений, различного вида несовершенства кристалличе-  [c.41]

Предлагаемая книга, построенная на основе исследований, выполненных автором в ЦКТИ, а также данных отечественного и зарубежного опыта, посвящена комплексному рассмотрению проблемы жаропрочности сварных соединений. В ней изложены основные положения теории жаропрочности сварных соединений и методы ее оценки в лабораторных и стендовых условиях. Основное внимание уделено эксплуатации сварных соединений в стационарных установках, где условия работы наиболее сложны. С особой полнотой оценивается вероятность хрупких разрушений сварных конструкций при высоких температурах, являющихся основной причиной их преждевременного выхода из строя. Даны основные положения выбора материала для высокотемпературных сварных конструкций и изложены требования к их расчету.  [c.4]

Анализ разрушений высокотемпературных конструкций различного назначения, в том числе и сварных, показал, что в подавляющем большинстве случаев они носят характер хрупких меж-зеренных трещин без видимых следов пластической деформации. В связи с этим особый интерес представляет значение  [c.23]

При выборе критерия количественной оценки склонности сварных соединений к локальным разрушениям могут быть использованы общие положения теории хрупких разрушений сварных конструкций. По существующим представлениям в любой сварной конструкции неизбежны участки с высокой концентрацией напряжений и деформацией за счет резкого изменения сечения,  [c.139]

Как отмечалось ранее (п. 8), основной причиной снижения надежности сварных узлов при высоких температурах являются хрупкие разрушения. В конструкциях из теплоустойчивых сталей необходимо обращать внимание прежде всего на вероятность их появления в швах, околошовной зоне и мягкой прослойке зоны  [c.192]

Дальнейшие работы в области прочности и надежности по критериям сопротивления вязкому и хрупкому разрушению направлены на создание инженерных методов количественной оценки вероятностей разрушения для конструкций, имеющих исходную дефектность, сварные соединения и изготавливаемых из сталей повышенной пластичности. Некоторые из достигнутых результатов этого направления использованы в энергетическом и химическом машиностроении при расчетном определении несущей способности сосу-дов, нагружаемых в эксплуатации внутренним давлением.  [c.68]

Для анализа малоцикловых и хрупких разрушений судовых конструкций бьша осуществлена обширная программа исследований на лабораторных образцах и на натурных отсеках. В частности, было показано, что накопление малоцикловых повреждений вызывает снижение сопротивления последующему хрупкому разрушению при пониженных температурах. Теоретические коэффициенты концентрации напряжений в корпусах судов достигают высоких значений (а = 2,5-4,5), особенно в местах приварки различных элементов к обшивке и в угловых точках отверстий под люки.  [c.72]

Существенное внимание вопросам циклического и хрупкого разрушения элементов конструкций и деталей машин, как указывалось выше, стало уделяться в связи с освоением районов Сибири и Крайнего Севера. К настоящему времени накоплен достаточно полный материал, в том числе и статистического характера, показывающий отчетливую связь между вероятностью хрупкого разрушения деталей строительных и дорожных машин, с одной стороны, и температурой и сроком эксплуатации - с другой. Увеличение степени накопленного циклического повреждения, связанное с образованием новых и развитием имевшихся после изготовления трещин, вызывает резкое снижение сопротивления хрупкому разрушению при температурах от -20 до -50°С. Трещины от циклического нагружения и хрупкие возникали преимущественно в зонах концентрации (а = 1,7-3,5) и сварных швов.  [c.73]

Отрицательное влияние наклепа на пластические свойства металла шва аустенитной стали может иметь своим следствием хрупкое разрушение сварных конструкций в процессе гибки, штамповки, прессования. Это обстоятельство затрудняет изготовление фасонных сварных деталей и узлов из аустенитных сталей.  [c.262]

Строительная сталь должна обладать высокими прочностью, свариваемостью, сопротивлением хрупкому разрушению, сопротивлением вязкому разрушению. Применение конструкций из нее должно характеризоваться высокой технико-экономической эффективностью. Для отдельных специальных областей применения сталь должна иметь также особые свойства.  [c.116]


Примеры хрупкого разрушения элементов конструкций  [c.66]

Хрупкие разрушения элементов конструкций машин типа автомобилей и тракторов менее впечатляющи, но экономический уш,ерб от таких разрушений во много раз превышает потери от разрушения единичных крупных сооружений. Поэтому разработкам методов оценки и повышения живучести конструкций с трещинами уделяется в машиностроении все большее внимание. В качестве примеров таких разрушений на рис. 8.1—8.4 приведены картины роста трещин в конструкциях тракторов и, некоторые наблюдаемые в эксперименте закономерности развития этих трещин со временем. На рис. 8.1 схематически показаны тележка трактора Т-4 и места наиболее частого возникновения в ней трещин. На рис. 8.2 представлена наиболее типичная трещина, а на рис. 8.3 — закономерность роста этой трещины по мере увеличения числа циклов нагружения при различных уровнях воздействий. На рис. 8.4 изображены трещины в передней панели кабины трактора и закономерности их развития со временем. Подобные примеры можно было бы продолжить. Однако ограничимся только приведенными и будем ссылаться на них во всех тех случаях, когда необходимо будет проиллюстрировать возможности расчетных методов анализа живучести сложных конструкций.  [c.68]

При расчетах инженерных конструкций обычно считают недопустимым либо появление значительных пластических деформаций, либо разрушение всей конструкции в целом или ее отдельных элементов. Характерное напряжение, при котором пластический материал приобретает заметную пластическую деформацию, называется пределом текучести и обозначается От. Хрупкие материалы ведут себя практически упруго вплоть до момента разрушения, которое происходит при достижении напряжением значения Ов, так шазываемого предела прочности или временного сопротивления. Понятие о пределе текучести От было введено  [c.54]

Для сталей высокой прочности, алюминиевых и титановых сплавов в широком интервале температуры критические значения коэффициентов интенсивности напряжений мало зависят от температуры. Поэтому оценку сопротивления хрупкому разрушению элементов конструкций из таких материалов следует проводить по минимальным значениям / i . Как показано в 3, при определении по уравнениям (3.13) критических значений температуры элементов конструкций имеет существенное значение учет роли размеров напряженных сечений, остаточной напряженности, деформационного старения и охрупчивания в условиях эксплуатации. Эти факторы принимаются во внимание путем введения соответствующих экспериментально устанавливаемых температурных сдвигов А нр, и АГкрг (см. рис. 3.8).  [c.64]

Разрушение хрупких покрытий часто происходит по краям изделий и обусловлено значительными температурными напряжениями (остаточными или эксплуатационными). Рациональный выбор конструкции, технологии изготовления и режимов эксплуатации изделий с покрытиями должен опираться на анализ указанных напряжений. При этом, на наш взгляд, целесообразно рассматривать напряженное состояние в двух опасных точках, расположенных на границе с подложкой, одна из которых лежит непосредственно на конце покрытия, а другая — на некотором удаленпи от конца.  [c.22]

Большое значение при анализе разрушения может иметь наличие пластической деформации материала вблизи поверхности излома. Первичное разрушение, как правило, характеризуется минимальной степенью пластической деформации. Например, при кратковременном статическом испытании произошло разрушение узла конструкции, состоящего из кронштейна с крышкой (сплав МЛ5) и опорной трубы (сплав Д16Т). В крышке кронштейна наблюдалось хрупкое разрушение без следов деформации вблизи излома. Излом трубы был пластичным под  [c.173]

В связи с перспективами строительства крупнотоннажных химических производств в районах с холодным климатом, а также исходя из особенностей технологического цикла изготовления РСВД, оценка вязкостных свойств и сопротивления хрупкому разрушению элементов конструкций приобретает все большее значение.  [c.364]

В случаях, когда есть основания считать возможное разрушение хрупким, то обычно, предполагая справедливость положений линейной механики разрушения, расчет ведут по критерию разрушения (3.3.2). Вычисление стоящего слева коэффициента интенсивности напряжений К при современном развитии вършслительных методов и техники и наличии справочников, как правило, не вызывает затруднений. Гораздо труднее экспериментальное определение правой части критерия (3.3.2), а именно критического коэффициента интенсивности напряжений К , называемого иногда вязкостью разрушения. Сопротивление материала росту трещины во многом определяется затратами энергии на пластическое деформирование объемов материала в ближайшей окрестности вершины трещины. А величина и распределение пластических деформаций, форма и размеры пластически проде-формированных областей как вдоль фронта трещины, так и в удалении от него существенно зависят от многих условий нагружения и размеров рассматриваемого объекта и образца, служащего для определения характеристики трещино-стойкости. Поэтому постановке эксперимента по определению значений (или, что в некотором смысле более просто, Къ) следует уделять много внимания, проводя эксперимент с ориентацией на данную конструкцию.  [c.169]

Крайчик М. М. Особенности хрупких разрушений сварных конструкций подвижного состава и мероприятия по их предотвращению.— Сварочно е производство , 1967, № 3, с. 22—26.  [c.259]

Сигма-фаза, как будет показано ниже, вызывает резкое снижение пластических свойств аустенитных сварных швов и может явиться причиной хрупкого разрушения сварных конструкций из жаропрочных и окалиностойких сталей. Известен случай преждевременного выхода из строя трубчатки пиролизной печи одного из отечественных заводов синтетического каучука, изготовленной из стали типа 25-20. В сварных швах этой трубчатки, подвергавшихся наклепу в процессе изготовления, в результате нагрева при 800—870° С образовалось огромное количество а-фазы. Вследствие появления 0-фазы пластичность швов, особенно ударная вязкость, резко снизилась (от 16,0 до 2,0 кГ-м1см ), и после 3000 ч работы швы хрупко разрушились. Из литературы известны случаи аналогичных аварий сварных конструкций за рубежом, вызванных сигматизацией металла шва.  [c.143]


Смотреть страницы где упоминается термин Разрушения хрупкие конструкций : [c.64]    [c.74]    [c.82]    [c.25]    [c.283]    [c.70]    [c.73]    [c.74]    [c.38]    [c.477]    [c.497]    [c.291]   
Машиностроение Энциклопедия Т IV-3 (1998) -- [ c.72 ]



ПОИСК



Анализ причин аварийного хрупкого разрушения конструкций

Влияние термической обработки иа склонность сварных конструкций к хрупким разрушениям при комнатной температуре

Возникновение хрупкого состояния материала и разрушение элементов конструкций

Конструкция Разрушение

Местные напряжения и хрупкие разрушения в листовых конструкциях

Оценка и определение склонности элементов конструкции к хрупкому разрушению

Примеры хрупкого разрушения элементов конструкций

Причины хрупких разрушений сварных конструкций

Разрушение хрупкое

Термодинамические представления о хрупких разрушениях сварных конструкций (Н. Н. Прохоров, В. С. Игнатьева, Б. Ф. Якушин, Макаров, Ю. В. Субботин, Н. Н. Прохоров, Б. И. Носовский)

Формы хрупких разрушений сварных конструкций и методы борьбы с ними

Хрупкое разрушение деталей и сварных конструкций машин

Экспериментальное определение характеристик сопротивления материалов и элементов конструкций хрупкому разрушению



© 2025 Mash-xxl.info Реклама на сайте