Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Твердые диэлектрики

П6.2. Твердые диэлектрики разделяются на природные (натуральный каучук, янтарь и т. п.) и синтетические (синтетический каучук, полиэтилен, полистирол, поливинилхлорид и т. п.).  [c.270]

Во многих диэлектриках имеются молекулы, которые обладают собственным электрическим моментом Ро, т. е. представляют собой диполи даже в отсутствие внешнего электрического поля. В ряде случаев при изменении направления ориентации диполей во внешнем электрическом поле возникают упругие возвращающие силы. Очевидно, что это наблюдается тогда, когда диполи более или менее жестко связаны, т. е. упругая дипольная поляризация имеет место в твердых диэлектриках — полярных кристаллах.  [c.281]


ТЕПЛОПРОВОДНОСТЬ ТВЕРДЫХ ДИЭЛЕКТРИКОВ 227  [c.227]

ТЕПЛОПРОВОДНОСТЬ ТВЕРДЫХ ДИЭЛЕКТРИКОВ )  [c.227]

ТЕПЛОПРОВОДНОСТЬ ТВЕРДЫХ ДИЭЛЕКТРИКОВ 231  [c.231]

ТЕПЛОПРОВОДНОСТЬ ТВЕРДЫХ ДИЭЛЕКТРИКОВ 23S  [c.233]

ТЕПЛОПРОВОДНОСТЬ ТВЕРДЫХ ДИЭЛЕКТРИКОВ 243  [c.243]

ТЕПЛОПРОВОДНОСТЬ ТВЕРДЫХ ДИЭЛЕКТРИКОВ 247  [c.247]

ТЕПЛОПРОВОДНОСТЬ ТВЕРДЫХ ДИЭЛЕКТРИКОВ 249  [c.249]

ТЕПЛОПРОВОДНОСТЬ ТВЕРДЫХ ДИЭЛЕКТРИКОВ 251  [c.251]

ТЕПЛОПРОВОДНОСТЬ ТВЕРДЫХ ДИЭЛЕКТРИКОВ 255  [c.255]

Помимо удельного объемного сопротивления, для краткости обычно называемого удельным сопротивлением, применительно к твердым диэлектрикам в качестве параметра введено удельное поверхностное сопротивление ps. Ом, имеющее важное значение при выборе материала для работы в увлажненных и загрязненных средах.  [c.543]

Механизм пробоя диэлектриков может иметь различный характер. Основными видами пробоя твердых диэлектриков являются электрический и тепловой. Электрический пробой представляет собой разрушение диэлектрика силами электрического поля и сопровождается образованием электронных лавин. Тепловой пробой обусловлен нагревом диэлектрика до критической температуры вследствие диэлектрических потерь при нарушении в диэлектрике теплового равновесия. Значение ир при электрическом пробое составляет примерно 100— 1000 МВ/м, а при тепловом — 1 — 10 МВ/м.  [c.543]

Эта формула пригодна для газообразных, но в ряде случаев с большим или меньшим приближением может быть применена также для жидких и твердых диэлектриков.) Таким образом, по физическому смыслу диэлектрическая проницаемость — количественная мера интенсивности процесса поляризации диэлектриков. Концентрация N поляризующихся частиц невелика в газах и намного выше в жидких и твердых диэлектриках. Поляризуемость частицы а зависит от механизма поляризации, определяемого природой диэлектрика.  [c.544]

Газы в обычных условиях характеризуются высоким удельным сопротивлением и очень малыми диэлектрическими потерями. К достоинствам газов относятся также восстановление электроизоляционных свойств после пробоя и отсутствие старения (ухудшение свойств со временем). Недостатком их является невысокая (по сравнению с жидкими и твердыми диэлектриками) электрическая прочность при нормальном давлении. Для увеличения электрической прочности используют как повышение давления газов, так и глубокое их разрежение. Повысить электрическую прочность газовой изоляции можно также, применяя электроотрицательные газы. Молекулы этих газов, содержащие обычно атомы фтора, хлора и других галогенов, способны захватывать свободные электроны и становиться малоподвижными отрицательными ионами. Удаление подвижных электронов затрудняет развитие электрического разряда, вследствие чего электрическая прочность газа возрастает.  [c.545]


Напряжение перекрытия в неоднородном поле существенно ниже, чем в однородном, причем гигроскопические свойства твердого диэлектрика влияют меньше (рис. 23.7), так как в неоднородном поле воздействие пленки влаги на форму электрического поля не столь заметно.  [c.547]

Рис. 23.7. Зависимость амплитудного разрядного напряжения в воздухе от расстояния между электродами по поверхности твердых диэлектриков в неоднородном поле при частоте 50 Гц Рис. 23.7. Зависимость амплитудного <a href="/info/301093">разрядного напряжения</a> в воздухе от <a href="/info/606926">расстояния между электродами</a> по поверхности твердых диэлектриков в <a href="/info/146142">неоднородном поле</a> при частоте 50 Гц
Удельное поверхностное сопротивление. Под удельным поверхностным сопротивлением понимают (ГОСТ 21515—76) поверхностное сопротивление плоского участка поверхности твердого диэлектрика в форме квадрата при протекании электрического тока между двумя противоположными сторонами этого квадрата. В простейшем случае, когда электроды представляют собой две токопроводящие параллельные полоски на образце (рис. 1-2), поверхностное сопротивление 7 пропорционально зазору р между электродами и обратно пропорционально их длине а  [c.19]

При испытании твердых диэлектриков обычно наносят электроды на образцы, что представляет собой трудоемкий процесс. Результаты измерений зависят зачастую от материала электрода и способа его нанесения, особенно для пленочных образцов. Нередко посторонние включения между электродом и диэлектриком или прослойки между ними (вазелин, масло) могут явиться источником значительных погрешностей.  [c.86]

Электроды для испытаний твердых диэлектриков должны удовлетворять общим требованиям (см. 1-2). При определении р могут применяться массивные металлические электроды, пленочные (осажденные путем распыления или вжигания) и графитовые. Во всех случаях необходимо обеспечить хороший контакт электрода с испытуемым образцом. Материалы некоторых применяемых электродов и способы создания контактов с образцом указаны в табл. 5-1 (по ГОСТ 6433.3—71).  [c.101]

Электропроводность твердых диэлектриков  [c.98]

Удельная электрическая проводимость твердых диэлектриков, как и полупроводников, растет с ростом температуры по экспоненциальному закону  [c.98]

Благодаря неизбежному увлажнению, окислению, загрязнению и т. п. поверхностных слоев электрической изоляции у твердых диэлектриков создается заметная поверхностная электропроводность, поэтому твердый диэлектрик характеризуется значением удельного поверхностного сопротивления р,.  [c.103]

Формальное определение р, вытекает из следующих соображений поверхностное сопротивление участка поверхности твердого диэлектрика  [c.103]

Если пробой произошел в газообразном или жидком диэлектрике, то в силу подвижности молекул пробитый участок после снятия напряжения восстанавливает свои первоначальные свойства и величину U , (но при условии, что мощность и длительность электрической дуги не были столь значительными, чтобы вызвать существенные изменения диэлектрика во всем его объеме). После пробоя твердого диэлектрика в нем остается след в виде пробитого (откуда и название пробой ), прожженного или проплавленного отверстия чаще всего неправильной формы. Если вновь подать напряжение, то пробой, как правило, происходит по пробитому ранее месту при значительно пониженном напряжении. В ряде случаев после пробоя остаются проводящие продукты разложения и диэлектрик теряет свои электроизоляционные свойства. Связанное с образованием проводящих следов ( треков ) повреждение поверхности твердого диэлектрика поверхностным пробоем называют трекингом.  [c.115]

Из изложенного следует, что пробой газов - явление электрическое. Поэтому все численные результаты экспериментов по пробою газов относятся к максимальным (амплитудным) значениям напряжения. Поскольку в разрушении жидких и особенно твердых диэлектриков существенную роль играют тепловые процессы, то при приложении к диэлектрикам переменного напряжения численные значения пробивного напряжения относятся к действующим.  [c.117]


Пробой твердых диэлектриков  [c.123]

Физическая картина пробоя твердых диэлектриков в разных случаях может быть весьма различна. Наряду с ионизационными процессами к пробою могут приводить вторичные процессы, обусловленные сильным электрическим полем нагрев, химические реакции, частичные разряды, механические напряжения а результате электрострикции, образование объемных зарядов на границах неоднородностей и т.п. Поэтому различают несколько механизмов пробоя твердых диэлектриков непосредственно под действием электрического поля.  [c.123]

В твердых диэлектриках ионный ток переносится слабосвязанными ионами. Предположим, что концентрация таких ионов равна Ло- Перемещение иона из одного положения равновесия в другое может произойти только тогда, когда будут преодолены силы, связывающие его с соседними частицами. Другими словами, ион должен преодолеть энергетический барьер Ео. В(фоятность такого перехода при тепловом хаотическом движении пропорциональна фактору Больцмана ехр [—Ео/ к-в,Т).  [c.274]

В твердых диэлектриках, имеющих определенного рода дефекты, возможна электронная поляризация, обусловленная тепловым движением. Механизм такой поляризации рассмотрим на примере кристалла ТЮа (рутил), содержащего анионные вакансии. Двухмерная модель структуры Т1О2 с анионной вакансией изображена на рис. 8.7.  [c.288]

Другим примером искусственной анизотропии является анизотропия, возникающая в веществе под влиянием внещнего электрического поля. Этот вид анизотропии был открыт в 1875 г. Керром и носит название эффекта Керра. Вначале двойное лучепреломление в электрическом поле было обнаружено в твердых диэлектриках при помещении их между пластинками заряженного конденсатора. Однако было сомнение в том, что электрическое поле в данном случае играет косвенную роль и двойное лучепреломление появляется в результате механической деформации, вызванной полем (явление электрострикции >). Непосредственное влияние электрического поля было установлено после того, как явление двойного лучепреломления было обнаружено в жидкостях, в которых статическое сжатие не вызывает оптической анизотропии. Впоследствии (1930) двойное лучепреломление под действием электрического поля было найдено в парах и газах. Хотя эти измерения гораздо сложнее, чем измерения в жидкостях, поскольку эффект мал, однако теория эффекта Керра применима к ним с меньщнми допущениями.  [c.65]

Фотолюминесценция — люминесценция, возникающая при возбуждении светом видимого и ультрафиолетового диапазонов частот фотовоэбуждение). На практике фотовозбуждение используется для получения люминесценции жидких растворов, стекол, твердых диэлектриков и полупроводников. При этом роль центров люминесценции играют специально вводимые в основное вещество ионы или молекулы. Так, например, в твердые диэлектрики и стекла вводят в виде небольших примесей ионы неодима (Nd +) и других редкоземельных элементов. В жидкие растворители вводят, в частности, молекулы органических красителей.  [c.184]

Теплопроводность кристаллов (экспериментальные данные) ). Эйкеп [25] измерил теплопроводность нескольких твердых диэлектриков до температур жидкого кислорода, а в нескольких случаях до температур жидкого водорода. Он нашел, что теплопроводность х кристаллов в обш ем случае, в согласии с формулой (9.7), меняется как и что теплопроводность больше для тех кристаллов, у которых дебаевская температура в больше.  [c.249]

Тепловое сопротивление, обусловленное рассеянием на границах. Это явление впервые наблюдалось де-Хаазом и Бпрмасом [30] в случае крупных кристаллов кварца, алмаза и КС1 при гелиевых температурах. Потом оно было обнаружено у всех твердых диэлектриков, исследовавшихся при этих температурах.  [c.250]

Выше 0,6° к теплопроводность возрастает более резко и оказывается зависящей от градиента температуры. В общем явление здесь протекает так же, как это описывалось в предыдущем пункте. Это возрастание теплопроводности соответствует росту теплоемкости, наблюдаемому при той же температуре, и, очевидно, происходит вследствие поя1 ления возбуждений, отличных от фононного. Ниже 0,6° К теплопроводность не зависит от градиента температур и соответствует изменению теплоемкости с температурой. Различие теплопроводности для двух капилляров с разными диаметрами связано, по-видимому, е неодинаковой средней длиной пробега фонона, являющейся величиной порядка диаметра. Этот эффект вызван, таким образом, рассеянием фононов на границах образца он наблюдался также па твердых диэлектриках при низких температурах. Результаты опытов, по-видимому, согласуются с теорией Ландау и Халатникова в том, что средняя длина свободного пробега, сильно влияющая па вязкость и теплопроводность, при низких температурах становится очень большой. Это замечание оказывается существенным и при изучении поведения второго звука при самых низких температурах, которое будет рассмотрено в следующем разделе.  [c.848]

К замедленным видам относится ионно-релаксацион-пая поляризация, происходящая в неорганических стеклах и кристаллах с неплотной упаковкой ионов, и миграционная, свойственная твердым диэлектрикам при наличии макроскопических неоднородностей.  [c.544]

Разряд в воздухе вдоль поверхности твердого диэлектрика называют поверхностным разрядом или поверхностным перекрытием. Внесение твердого диэлектрика в воздушный промежуток существенно снижает его разрядное напряжение, даже если цилиндрический образец поместить между параллельными пластинами, создающими в промежутке однородное поле. Хотя в этом случае образующие цилиндра совпадают с направлением силовых линий электрического поля и поэтому поле, казалось бы, должно оставаться однородным, разряд всегда развивается в воздухе вдоль поверхности твердого диэлектрика при более низком напряжении, чем в чисто воздушном промежутке без цилиндра из твердого диэлектрика. На рис. 23.6 приведены зависимости напряжения поверхностного разряда в воздухе вдоль изоляционных цилиндров из различных твердых диэлектриков при частоте 50 Гц от высоты цилиндра (длины разрядного промежутка). Снижение разрядного напряжения обусловлено нарушением однородности электрического поля, так как пленка влаги на поверхности диэлектрического цилиндра имеет неодинаковую толщину в различных участах вдоль длины образца, в результате чего напряжение вдоль цилиндра распределяется неравномерно. Поэтому гидрофобный (несмачивающийся) парафин в меньшей степени снижает разрядное напряжение по сравнению с чисто воздушным промежутком, чем гидрофильный (смачивающийся) фарфор или стекло. При  [c.547]


Оэпротивление изоляции Яиз определяют на плоских, трубчатых, цилиндрических и стержневых образцах толщиной 1—50 мм с двумя сквозными отверстиями для электродов диаметром 5 мм (рис. 1-5), Отверстия после сверления обрабатывают разверткой с конусностью 1 50. Расстояние А между центрами отверстий должно быть (15 1) или (25 1) мм. Образцы не должны быть покороблены, не должны иметь трещин, сколов, вмятин, заусенцев и загрязнений. Поверхности образцов после механической обработки должны быть гладкими, без выбоин и царапин. Электроды для испытания твердых диэлектриков должны удовлетворять следующим основным требованиям  [c.20]

В тех случаях, когда ячейка двухзажимная или требуется получить значение е с повышенной точностью, необходимо из результатов обоих измерений исключить паразитную емкость С , обусловленную наличием твердого диэлектрика, пустот и емкости зажимов. Для определения паразитной емкости ячейку заполняют калибровочной жидкостью, значение е, которой должно быть известно с достаточной точностью, а значение tg б весьма мало. В качестве калибровочной жидкости стандартом рекомендуется применять нормальный эталонный гептан Н, обработанный перед испытанием силикагелем в целях удаления влаги и продуктов окисления. Обработанный [opмaлы ый гептан имеет в диапазоне температур 20—30 °С = 1,92. Измеряют значения емкости Сц пустой ячейки  [c.60]

Краевую емкость находят путем гра4юаналитических расчетов, исходя из геометрических размеров образца и электродов. Формулы для расчета приведены в 4-7. При испытаниях образцов твердых диэлектриков в форме трубок или при испытаниях жидких диэлектриков в цилиндрической измерительной ячейке можно исключить краевую емкость следующим образом. Емкость измеряют дважды при электродах различной длины. Вначале находят емкость С х при длине электрода 1, а затем емкость С х2 при длине электрода /а-Очевидно, что краевая емкость при первом и втором измерениях будет неизменной, а собственные емкости образцов С , и различные. Можно записать следующие равенства  [c.62]

Образцы твердых диэлектриков, применяемые при измерениях е и tg б в диапазоне частот 100—5-10 Гц имеют форму круглых или квадратных пластин или трубок. Диаметр или ширина пластины должны быть 25—150 мм, а длина трубчатого образца 100—300 мм. Отношение диаметра образца к его толщине должно быть не менееЮ. При большой диэлектрической проницаемости материала (е>30) допускается применять образцы меньшего диаметра, но не менее 10 мм.  [c.63]

Измерение / р производят с помощью испытательных установок (рис. 5-7), содержащих устройство 1 для плавного регулирования напряжения, испытательный трансформатор 2 для. повышения напряжения, камеру 5, в которую помещается испытуемый образец 3 с электродами, и другие элементы. Регулирование найря-жения должно быть плавным, так чтобы изменения (скачки) его не превышали 0,005 номинального напряжения трансформатора. Рекомендуется повышать- напряжение автоматически. Мощность испытательной установки должна быть достаточной для того, чтобы установившийся ток короткого замыкания (действующий на стороне высокого напряжения был не менее 40 мА при испытаниях твердых диэлектриков и не менее 20 мА, при испытаниях жидких диэлектриков. Первичная цепь трансформатора снабжается выключателем 6, автоматически срабатывающим при пробое образца, и сигнальной лампочкой 4.  [c.104]

Развитие таких процессов возможно как при низких напряжениях и больших плотностях токов, так и при высоких напряжениях и малых плотностях токов утечки по поверхности. В первом случае основную роль играют тепловые процессы, во втором — эрозионные и химические. И в том, и в другом случае происходят необратимые ухудшения свойств изоляционного материала в слое, прилегающем к поверхности, появляются токопроводящие низкоомные каналы—треки, развиваются недопустимо большие токи утечки вдоль треков. Процесс образования под воздействием электрического поля электропроводящих каналов (треков) на поверхности твердого диэлектрика называют трекингом, а способность диэлектрика выдерживать воздействие поверхностных пробоев без трекинга — трекингостойкостью.  [c.124]

Механизмы пробоя газообразных, жидких и твердых диэлектриков имеют сзтцественные различия.  [c.116]


Смотреть страницы где упоминается термин Твердые диэлектрики : [c.235]    [c.253]    [c.549]    [c.107]    [c.114]   
Смотреть главы в:

Физические величины. Справочник  -> Твердые диэлектрики



ПОИСК



Г лава IV . Клеменс Теплопроводность твердых тел при низких температурах Теплопроводность твердых диэлектриков

Диэлектрик

Диэлектрики активные управляемые твердые

Диэлектрическая проницаемость твердых диэлектрико

Диэлектрическая проницаемость твердых диэлектриков

Диэлектрические потери в твердых диэлектриках

Диэлектрические твердых диэлектриках

Изменение удельного сопротивления твердых диэлектриков под воздействием условий тропического климата

Ионизационный пробой твердых диэлектриков

Ионная и мол,ионная электропроводность диэлектри1-10. Определение природы носителей заряда в твердых диэлектриках (метод Тубандта)

Конденсаторы с твердым неорганическим диэлектриком

Конденсаторы с твердым органическим диэлектриком

Лабораторная работа 1. Определение удельных электрических сопротивлений твердых диэлектриков

Лабораторная работа 11. Определение нагревостойкости твердых диэлектриков по консольному способу (способ Мартенса)

Лабораторная работа 2. Измерение диэлектрической проницаемости и тангенса угла диэлектрических потерь твердых диэлектриков

Лабораторная работа 3. Определение электрической прочности твердых диэлектриков

Особенности газообразного, жидкого и твердого состояФизика диэлектриков

Перекрытие твердых диэлектрико

Перекрытие твердых диэлектриков

Поверхностная электропроводность твердых диэлектриков

Повышение плесенеустойчивости твердых диэлектриков

Потери твердых диэлектрика

Пробой и перекрытие твердых диэлектриков

Пробой твердых диэлектриков

Разряд в газе вдоль поверхности, твердого диэлектрика

Разряд по поверхности твердого диэлектрика в трансформаторном масле

Разряды в воздухе вдоль поверхности твердых диэлектриков

Твердые диэлектрики, применяемые в радиоэлектронной аппаратуре

Твердые поликонденсационные диэлектрики

Твердые полимеризационные диэлектрики

Тепловой н электрохимический пробой твердых диэлектриков

Тепловой пробой твердых диэлектриков

Усиков, 3. Д. Иванова, С. Л. Добычин. Зависимость электрической емкости на границе раздела твердый диэлектрик — жидкость от частоты электромагнитных колебаний

Химические и физические изменения в твердых, жидких и газообразных диэлектриках при облучеЭлектропроводность облученных электроизоляционных материалов

Электрические свойства твердых диэлектриков

Электрический пробой твердых диэлектриков

Электропроводность твердых диэлектриков

Электротепловой пробой твердых диэлектриков



© 2025 Mash-xxl.info Реклама на сайте