Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние нестационарности на величину

Влияние нестационарности на величину <р  [c.198]

С другой стороны [3, 4], выражения для ук и с учетом влияния нестационарности течения на величину вязкого трения записываются в виде  [c.16]

На рис. 4 представлены результаты расчета размаха Ар = = / ((о) (кривая 1), полученные с учетом влияния нестационарно-сти на величину силы трения. Из сравнения расчетных данных с результатами эксперимента (кривая 2) видно их хорошее совпадение. Максимальная величина ошибки при этом не превышает 30%.  [c.21]


В итоге данного исследования по выявлению влияния действия нестационарности процесса на коэффициенты сопротивления и теплоотдачи, необходимо отметить, что указанные коэффициенты меняются в незначительных пределах — от О до 7% (при тепловом или гидравлическом возмущениях, в последнем случае при учете зависимости изменения плотности лишь от энтальпии). Изменение коэффициентов и а для изучаемых нестационарных режимов работы по сравнению с их исходными значениями происходит лишь на начальной стадии процесса. Указанные здесь обстоятельства позволяют далее не учитывать влияние нестационарности процесса на величину и а.  [c.39]

Изучение совместных колебаний роторов турбогенератора и турбины в переходных анормальных режимах в первом приближении проводят в предположении абсолютной жесткости лопаток турбины. Задача сводится к рассмотрению нестационарных крутильных колебаний вала ротора турбоагрегата с распределенными инерционными и упругими параметрами [2]. Допущение абсолютной жесткости лопаток не оказывает, по-видимому, существенного влияния на величину расчетных напряжений в валу ротора турбогенератора. Разработаны более точные методы расчета  [c.521]

В работе [М.. 124] уточнено влияние близких к лопасти поперечных вихрей на поле индуктивных скоростей. Скорости от этих вихрей вычислялись только в одной точке по хорде, расположенной на присоединенном вихре (см. разд. 10.3). При этом для правильного отображения нестационарных аэродинамических эффектов пелена ближних вихрей продлевается до точки, отстоящей от присоединенного вихря на четверть хорды. Таким образом, при определении индуктивных скоростей от продольных вихрей интегрирование по ф ведется непосредственно от положения присоединенного вихря, а при определении скоростей от поперечных вихрей интегрирование начинается от значения Ф, меньшего, чем у присоединенного вихря, на величину с/4г. Интегрирование по г выполняется аналитически.  [c.665]

Установленные основные закономерности усталостного износа позволяют оценить влияние нестационарности режимов нагружения на величину износа. Можно принять, что изменение нагрузок в процессе износа описывается некоторой функцией распределения, представляющей собой спектр нагрузок.  [c.42]

При решении вопроса о влиянии различных факторов на диапазон изменения шага усталостных бороздок необходимо показать, от какого параметра в большей степени они зависят максимального коэффициента интенсивности напряжений или размаха коэффициента интенсивности напряжений в переменном цикле. В случае нестационарного режима нагружения за счет изменения асимметрии цикла i >0 происходит существенное изменение диапазона возможных величин AKi)i, а следовательно, и величин б . Нестационарный режим нагружения основное влияние оказывает на предельную величину шага усталостных бороздок 6 характеризующей переход в развитии трещины от стабильного к нестабильному разрушению. Граница перехода от разрушения по механизму сдвига тип II) к отрыву характеризуется аналогичной зависимостью изменения величины Л/Г], что соответствует случаю стационарного режима на-гружения (рис. 118).  [c.275]


Анализ данных о влиянии нестационарного режима нагружения на предельные величины коэффициентов интенсивности напряжений применительно к алюминиевому сплаву Д1Т показывает, что при уровне соотношения = (1--/ )< 0,2 усталостные бороздки в случае нагружения по схеме растяжения не формируются (рис. 119). Процесс разрушения будет полностью определяться механизмом сдвига по типу И. Эти же данные показывают, что величина б,- в большей степени определяется размахом коэффициента интенсивности напряжений Д/Сь Минимальная величина (A/ i) min — (A/(f ) для сплава Д1Т, ниже которой усталостные бороздки в изломе не формируются, близка к 6,2 МН м (рис. 120). Указанная величина может быть принята как пороговая для циклического нагружения материала (А/С/д), ниже которой при распространении трещины не реализуется механизм нормального отрыва. Это значение близко к значению постоянной Л в уравнении (104) для сплавов алюминия.  [c.275]

На теплопередачу в РВВ оказывает влияние нестационарность процесса переноса тепла, которая влияет на величину суммарного температурного напора. Это вызвано тем, что при вращении ротора температура металла набивки по газовой и воздущной сторонам за полный оборот ротора изменяется и характер этого изменения различен (рис. 15-5). Средняя температура металла на газовой стороне выше, чем на воздушной. Поэтому действительный температурный напор, состоящий из температурных напоров на газовой сто-23ё  [c.238]

Оценка влияния нестационарности обтекания на коэффициент лобового сопротивления, произведенная по данным работы [2], показала, что оно не превышает 10%. Поэтому можно пользоваться обычными зависимостями Сх Яео) для стационарного обтекания, определяя число Рейнольдса по относительной скорости пульсационного движения у. Величина безразмерной относительной скорости в конце единичного перемещения моля Ук/ о определяется из (12) при у = 1 .  [c.500]

Этот коэффициент учитывает влияние нестационарности процесса переноса теплоты на величину суммарного температурного напора. Величина коэффициента зависит от частоты вращения ротора.  [c.101]

При моделировании работы пресса на каждом шаге интегрирования вычисляется момент двигателя привода. В модели DVA с учетом этого момента вычисляются частота вращения ротора скольжение активный, реактивный и полный фазные токи эквивалентный и номинальный токи. Эквивалентный ток определяется в процессе моделирования по итогам выполненной части и является переменной величиной. Следует принимать во внимание значение эквивалентного тока в конце любого установившегося цикла работы пресса. При равенстве эквивалентного тока в конце цикла номинальному току двигателя его режим работы будет соответствовать номинальному, при меньшем значении эквивалентного тока двигатель будет недогружен, а при большем -перегружен. Недогрузка и перегрузка двигателя ухудшают экономические показатели работы кривошипного пресса. Для исключения влияния нестационарного периода работы пресса, например периода разгона маховика, вычисление эквивалентного тока начинается в фиксированный момент модельного времени, который вводится как один из параметров модели DVA. Его значение можно принимать равным времени начала первого цикла работы пресса. Эквивалентный и номинальный токи вычисляются как расчетные переменные и выводятся с помощью универсальных индикаторов. График номинального тока представляет собой прямую линию, поскольку он является параметром двигателя и, следовательно, представляет собой константу. Вывод графика номинального тока создает удобство для сопоставления с ним эквивалентного тока.  [c.539]

Для оценки влияния нестационарности режима достаточно сравнить поток, входящий в пластину, с потоком, покидающим ее на противоположной грани. Требования к величине отношения этих потоков в соответствии с теоремой единственности можно формулировать как в оригиналах, так и в изображениях. Последнее значительно удобнее, хотя и содержит определенную незавершенность для окончательной численной оценки.  [c.73]


Пример напряженного и деформированного состояния в диске турбины показан на рис. 4.7 [4, 14]. Как упоминалось выше, температурные напряжения на ободе в период запуска и стационарной работы сжимающие суммарные окружные напряжения в этой зоне поэтому оказываются незначительными. Основную нагрузку на обод создают усилия от рабочих лопаток. Как показывает эпюра рис. 4.7, я, наиболее напряженные зоны в диске — у отверстия в ступице и в полотне, где сказывается влияние концентрации напряжений. На рис. 4.7, б показано распределение пластических деформаций по радиусу как видно, наибольшие деформации развиваются на контуре отверстия в ступице. Зоны перехода в полотне также имеют повышенную деформацию. Кинетика напряженного состояния в течение первых семи циклов, установленная авторами [4, 14], показана на рис. 4.7, в. Как видно из этого рисунка, размах деформаций и их величина в экстремальных точках цикла, а также коэффициент асимметрии цикла деформирования существенно изменяются уже в первых циклах деформирования. Очевидно, что для расчета циклической долговечности следует использовать размах деформаций в стабилизированном цикле, если стабилизация вообще происходит. В ином случае необходимо использовать представления о закономерностях суммирования повреждений от нестационарных нагрузок, например, так, как это будет показано ниже на примере расчета диска малоразмерного газотурбинного двигателя.  [c.86]

На изменение величины уровня в барабане при нестационарных режимах работы котла оказывает влияние не только возникающий материальный небаланс, но и изменение условий циркуляции. Известно, что неучет этого явления при набросе нагрузки дает заниженное расчетное значение уровня по сравнению с его истинным значением, и наоборот. Указанные обстоятельства, создавая видимость благополучия с положением уровня, неправильно ориентируют персонал, эксплуатирующий котлы, что может привести либо к забросу воды в перегреватель и турбину при набросе нагрузки, либо к оголению труб котла и пережогу их при сбросе нагрузки.  [c.368]

Дело в том, что при уменьшении относительного объемного расхода в последней ступени снижается перепад энтальпии. При этом ступень работает в условиях, когда характеристическое число и/Со велико по сравнению с его величиной, обеспечивающей на номинальном режиме безударный вход потока в РК или малые углы атаки. При высоких же /Со появляются большие отрицательные углы атаки, особенно опасные в корневом сечении в случае применения активного типа профиля РЛ. К этому еще добавляется очень неблагоприятное влияние сильного раскрытия меридионального профиля у периферии ступени. Все это приводит к отрыву потока в корневом сечении. Как показали опыты, отрыв потока в ряде случаев начинается уже при объемном расходе, отнесенном к его расчетной величине, Gv — 0,6. На холостом ходу срыв может охватывать область от корневого сечения до 3/4 по высоте проточной части (см. гл. ХП). Сильные отрывы потока в последних РК были обнаружены в ступенях очень большой веерности (d < <3). При срыве поток устремляется к периферии РК и здесь вызывает запирание НА. Это сопряжено с затратой энергии от компрессорного эффекта и вентиляционных потерь и с опасными для лопаток нестационарными явлениями.  [c.47]

В разд. 5.2, 5.3 и свидетельствующими об отсутствии влияния числа Ее на к = н/ кс влиянии величин- и (ЭЛ /Эт) , на характер изменения этого коэффициента во времени. О влиянии величин (Э7У/Эг) и То на коэффициент к в пучке с = 57 можно также судить из рассмотрения рис. 5.15, где представлены результаты исследования нестационарного перемешивания в пучке витых труб с = 57, ползщенные при фиксированном числе Ее = 5,1 10 , но в более широком диапазоне изменения величин То и (дМ/дт) Видно, что при медленном выходе на режим тепловой нагрузки (кривая ТУ = Л (т)) при (ЬN дт) = 0,115 кВт/с также наблюдается существенное влияние рассматриваемого типа нестационарности на величину коэффициента к, а следовательно, и на К , используемого для замыкания системы уравнений, описывающих течение в пучке витых труб. При этом выход мощности тепловой нагрузки и коэффициента к на свои квазистационарные значения и при большом и малом значениях производной (дМ/Ът) происходит во много раз быстрее (см. рис. 5.15), чем выход на квазистационарные значения температуры теплоносителя в фиксированных точках потока на выходе из пучка (рис. 5.16).  [c.165]

Гл. II посвящена изучению методов расчета аэродинамических сил и моментов, создаваемых несущими поверхностями (крыльями) и стабилизирующими устройствами (оперением), воздействие которых обеспечивает устойчивость и управляемость летательного аппарата. При этом рассматриваются различные конфигурации летательных аппаратов (типа корпус — оперение , корпус — оперение — крылья ) с плоским или полюсобразным расположением несущих (стабилизирующих) поверхностей. Влияние интерференции несущих поверхностей с корпусом на величину нормальной (боковой) силы и соответствующих моментов, оказывающих воздействие на управляемость и статическую устойчивость (продольную или боковую), определяется в рамках линеаризованной теории как для тонких, так и для нетонких комбинаций с учетом сжимаемости, пограничного слоя, торможения потока, а также характера обтекания (стационарного или нестационарного). Эффективность оперения исследуется с учетом интерференции с корпусом и крыльями, а также в зависимости от углов атаки комбинации и возникающих скачков уплотнения.  [c.6]

Этот инвариант, характеризуюш,ий временное подобие сопоставляемых явлений одной и той же группы, называется критерием Фурье и обозначается символом Ро. Его также называют критерием гомохронности (однородности во времени). Каждое нестационарное тепловое явление характеризуется этим критерием. При распространении тепла в твердом теле, когда скорость протекания подобных процессов зависит исключительно от двух величин, определяющих геометрические и физические (а) свойства тела, критерий Фурье выражает влияние этих двух величин на темп развития явления. Анализ критерия Фурье показывает, что подобные температурные поля подобных явлений устанавливаются через различные (считая от начального момента) интервалы времени, т. е. что развитие процессов двух подобных явлений в общем случае происходит не синхронно. Поэтому критерий Фурье определяет выбор моментов времени, к которым должно быть приурочено сопоставление температурных полей группы подобных явлений. Эти моменты времени называются сходственными. Признак сходственности при нестационарном режиме заключается в том, что в сходственные моменты времени в подобных явлениях возникают подобные температурные поля, для которых отношения любых сходственных пространственных или временных перепадов температур равны между собой. Применительно к распространению тепла в материале шкива критерий Фурье имеет вид  [c.613]


Изложены результаты исследований высокочастотных колебаний давления в разветвленной неоднородной гидросистеме с аксиально-поршневым насосом. Подтверждена правильность математической модели насоса как источника поли-грамоническпх колебаний расхода. Делается вывод о необходимости учета влияния нестационарности течения на величину сипы трения при оценке величины входного импеданса системы.  [c.161]

Влияние величины относительного изменения расхода теплоносителя (Gi/Gi) при его увеличении и уменьшении на характер зависимостей коэффициента от времени процесса иллюстрируется на рис. 5.28. При малом значении отношения GilGi как при увеличении, так и уменьшении тепловой нагрузки выполняется зависимость (5.73). С увеличением отношения Gi GI в случае увеличения расхода теплоносителя при N = onst влияние этого типа нестационарности на коэффициент и поля температур увеличивается. Так, при G IGi =  [c.180]

Влияние нестационарного движения частицы на ее коэффициент лобового сопротивления. Из [Л. 51] следует, что при малых Re нестационарное движение приводит к некоторому уменьшению ее ускорения, весьма незначительному по абсолютной величине. Экспериментальные исследования, проведенные при больших Re, в основном свидетельствуют об увеличении tp, кроме работы [Л. 55], где показано значительное уменьшение гр при замедленном движении частицы по сравнению с равномерным (Re=400—500). Однако из [Л. 56] следует, что при ускоренном движении частицы величина гр выше, чем при равномерном (Re=IOOO—35ООО). В [Л. 57] показано, что как ускорение, так и замедление частиц увеличивают тр по сравнению с равномерным движением.  [c.54]

В общее соотношение для подведенной в единицу времени тепловой энергии (3.41) не включены недавно определенные тепловые потерн по Ли — Смиту [37]. Они могут быть существенными или несущественными, поскольку имеющихся данных недостаточно, чтобы сдела1ь какие-либо определенные выводы. Смит, однако, считает, что так называемые потери мощности, обусловленные изменением теплообмена в ходе цикла, являются вторыми по величине потерями в двигателе Стирлинга, и к его мнению нужно относиться с уважением, которого заслуживает высокий уровень исследований, проводимых в лабораториях фирмы МТИ. Считается, что эти потери обусловлены влиянием нестационарного теплообмена в системе, которое приводит к изменению давления. В работе [37] предложено соотношение для расчета этих потерь, но мы его не приводим, поскольку оно содержит эмпирические коэффициенты, найденные на основании результатов испытания конкретного двигателя, и поэтому не имеет достаточно общего характера. Тем не менее эту новую концепцию нужно изучать и не следует пренебрегать потерями по Ли — Смиту, хотя в них могут входить некоторые из потерь, определенных выше.  [c.334]

Уравнение (10.140) отличается от уравнения (10.39) тем, что в нем Емегто величины 5/Втр стоит передаточная функция (10.141), которая учитывает влияние нестационарности распределения температуры На сжимаемость газа. После перехода к модифицированным бесселе-  [c.245]

Заметим, что влияние предыстории процесса сказываетбя не только на силе межфазного взаимодействия /, но и на других макроскопических величинах q, h, d, Oj,. . . ). Как и для /, это влияние связано с недостаточностью мгновенных значений таких параметров, как Vi, (Oj,. . ., для онпсания дисперсных смесей в нестационарных процессах. Помимо (3.7.16), одним из возможных путей преодоления указанной проблемы является введение дополнительных (помимо уже рассмотренных) параметров и уравнений (в том числе и дифференциальных), характеризующих состояние фаз в некоторых характерных зонах около дисперсных частиц (в частности, на межфазной поверхности и в областях, прилегающих к ней). Ниже, в гл. 4, это будет показано на примере нестационарного мен<фазного теплообмена.  [c.180]

Наряду с установившимся обтеканием приводятся сведения об их нестационарных аэродинамических характеристиках. Гл. 11 содержит задачи и вопросы, относящиеся к аэродинамике летательных аппаратов, представляющих собой комбинации различных элементов, таких, как корпус, крыло, оперение, рулевые устройства. В ней изучаются в основном интерференционные явления, определяющие характер аэродинамического взаимодействия между отдельными элементами и величину суммарного силового влияния обтекающей среды на летательный аппарат в целом. На основе данных о неустановившемся обтекании изолированных крыльев и тел вращения рассматриваются суммарные ь естационарные характеристики в виде аэродинамических производных.  [c.5]

Влияние теплофизических свойств и размеров теплоотдающей поверхности связывают с пульсациями ее температуры в процессе кипения. В период роста пузыря температура элемента поверхности, находящегося под пузырем, понижается вследствие интенсивного отвода теплоты испаряющейся жидкой пленкой. Под действпем разности термических потенциалов к центру парообразования ат прилегающей к нему массы материала подводится теплопроводностью дополнтс-тельпый тепловой поток, который препятствует понижению температуры стенки под растущим пузырем и тем самым способствует поддержанию условий, необходимых для интенсивного испарения микропленки. Плотность локального теплового потока, отводимого пленкой в форме теплоты испарения, значительно превышает среднюю по поверхности плотность теплового потока, и тем более она выше плотности теплового потока, отводимого конвекцией от части поверхности, не занятой паровыми пузырями. Назовем эту часть поверхности конвективной. Вследствие оттока теплоты к центрам парообразования температура конвективной части поверхности также понижается, и если бы от последней тепловой поток передавался жидкости в условиях естественной конвекции, то с понижением температуры стенки коэффициент теплоотдачи здесь уменьшался бы. В условиях сильной турбулизации пристенной области паровыми пузырями понижение температуры конвективной части поверхности приводит лишь к уменьшению передаваемого от нее жидкости теплового потока. Если материал теплоотдающей поверхности обладает высокой теплопроводностью, то это облегчает приток теплоты к центрам парообразования, в результате чего поддерживается высокая интенсивность теплообмена. В противном случае при прочих равных условиях коэффициент теплоотдачи меньше. Основываясь на теории нестационарной теплопроводности, Якоб [224] пришел к выводу, что интенсивность теплообмена при кипении пропорциональна величине для теплоот дающей поверхности,  [c.201]

Величина сопротивления вычислялась как среднее арифметическое из шести замеров, каждый из которых состоял в свою очередь из двух измерений, выполненных при взаимно противоположных направлениях тока. Такая методика необходима для исключения возможного влияния термотоков, возникающих в схеме в местах контактов разнородных металлов. Так как во время измерений при прохождении тока возможен нагрев образца, вызывающий дополнительное изменение электросопротивления за счет температурной составляющей, то были проведены измерения температуры образца во время длительного пребывания его под током. Оказалось, что температура повышалась в продолжение 10—15 мин на 0,1°, оставаясь затем постоянной во все время пребывания образца под током. Следовательно, устанавливался стационарный режим теплообмена между внутренними частями образца и поверхностью. Критерием стационарности процесса может служить устойчивость баланса мостовой схемы, которая отсутствует при нестационарном режиме (показания гальванометра измерительной схемы сползают с нулевой отметки). Замеры производились только после стабилизации схемы при устойчивых нулевых показаниях гальванометра. Во время измерений тщательно контролировалась температура (до 0,1°), затем в результаты измерений вносилась соответствующая поправка, чтобы привести все замеры к 20 °С.  [c.44]


Использование характеристик сопротивления усталости, полученных при стационарных испытаниях, не может обеспечить высокой точности расчета на прочность деталей, работающих в условиях случайного нагружения — наиболее типичного для современных ответственных конструкций. Методы расчета деталей при нестационарной напряженности, разрабатываемые академиком АН УССР С. В. Серенсеном и его учениками, предполагают использование характеристик усталости, учитывающих влияние изменчивости величины действующих напряжений. Такие характеристики определяют с помощью программных испытательных машин, на которых исследуются закономерности накопления усталостного повреждения в зависимости от эксплуатационных, конструктивных и технологических факторов, определяются параметры вторичных кривых усталости, а также выясняются активные части спектра эксплуатационных напряжений.  [c.3]

Появление такого Смещения золотника приводит к значительному увеличению проводимости кромки I в момент сложения величин а в и а з и к такому же уменьшению проводимости кромки IV. Кромка III полностью перекрыта. Это соответствует началу нестационарного процесса. В результате сначала убывает давление в сервоцилиндре 1 при почти постоянном давлении в сервоцилиндре 2. Начавшееся движение люльки тут же прекращается, так как втулка золотника теперь совершает обратное движение,, перекрывая сливную кромку I. Кинетическая энергия движения люльки гасится в закрытом гидроцилиндре 1, вызывая импульс давления под поршнем. В то же время возникает подобный импульс давления в сервоцилиндре 2, обусловленный гидравлическим ударом, так как при этом поток рабочей жидкости внезапно тормозится. Эти пики усилий на штоках цилиндров смещены по времени на 0,003—0,005 сек, считая по низшей гармонике усилий, что обусловлено высокой жесткостью системы сервоцилиндры— люлька (рис. 4, 5). В течение всего времени нестационарного режима работы машины эти явления повторяются с частотой колебаний золотниковой втулки, но прекращаются, как только исчезает смещение волотника относительно среднего положенйя. Следует отметить, что частота осцилляции золотниковой втулки во время нестационарного режима работы уменьшается с 25 до 23 гц из-за влияния инерционной нагрузки на перепад давлений в гидроприводе и через него — на электродвигатель, е валом которого вибратор имеет кинематическую связь.  [c.152]

Вопрос о паросодержапии является ключевым вопросом гидравлики и теплообмена в рассматриваемой области. Помимо того что знание паросодержа-ния необходимо для расчета циркуляционных характеристик и кинетики активных зон кипящих реакторов, без него вряд ли возможно получить исчерпывающие рекомендации но коэффициентам теплоотдачи и гидравлического сопротивления, а также условиям возникновения кризиса теплообмена. До последнего времени вышеупомянутые величины изучались, как правило, без учета истинных па-росодержаний в потоке, что происходило, по-видимому, из-за отсутствия надежных расчетных зависимостей. Можно надеяться, что совместная постановка этих задач позволит по-новому взглянуть на систему определяющих критериев, получить единые но форме расчетные зависимости при наличии и отсутствии термодинамического равновесия фаз в потоке, разобраться с влиянием предыстории потока и помочь обобщению экспериментальных данных при неравномерном обогреве по длине канала и в нестационарных условиях.  [c.80]

Известно, что в круглых трубах при нагревании газа ускорение потока увеличивает величину К( = Nu /NUj , а замедление потока — уменьшает. Можно предположить, что аналогичные закономфности должны проявляться и для процесса нестационарного перемешивания в пучке витых труб, т.е. ускорение потока при нагревании газа должно увеличивать коэффициент к = н/ кс> а замедление — уменьшать. В то же время уменьшение температуры стенки при росте G и N = = onst должно приводить к уменьшению коэффициента к. Действительно, при постоянном тепловьщелении при остывании стенки происходит дополнительное вьщеление тепла в поток, что приводит к изменению теплового потока на стенке i/g. При увеличении температуры стенки в случае уменьшения G и N - onst часть выделяемого тепла поглощается стенкой, что должно приводить к увеличению коэффициента к. Таким образом, полученная зависимость для к (5.73) может быть результатом влияния различных параметров, определяющих процесс нестационарного перемешивания теплоносителя в пучках витых труб в соответствии с зависимостью (5.48).  [c.178]

При одинаковых определяемых по формуле (1.13), R jj величины АК для жидкости и газа (при TJT близких к 1) практически совпадают (рис. 7.7), хотя отношение коэффициентов объемного расширения может доходить до 40. Это подтверждает правильность изложенной в разд. 1.3 модели влияния изменения температуры стенки на турбулентную структуру потока и нестационарный теплообмен, которое тем больше, чем больше bTJbr и (З ,.  [c.216]

Дифференциальная количественная оценка парциальной погрешности степени влияния весьма затруднительна по ряду причин. Во-первых, большинство влияющих факторов являются сложными неоднородными и нестационарными физическими полями. Во-вторых, действие влияющих величин на средство измерений выражается сложными тензорами влияния с неопределенными коэффициентами и граничными условиями. В-третьих, в реальных условиях на средство измерения воздействует некоторый комплекс частично взаимнокоррелированных влияющих величин. В-четвертых, функции влияния могут быть многомерными и неоднозначными.  [c.9]

Вместе с тем рекомендуется снижать коэффициенты скорости в расчетах ступеней [2, 8] по сравнению с их значениями, заимствованными из опытов с плоскими и кольцевыми решетками, или пользоваться величинами ф и полученными пересчетом из экспериментальных характеристик ступеней. Это связано с нестационарным характером обтекания лопаточных венцов, вызванным периодической шаговой неравномерностью набегающего потока, а также со степенью его турбулентности, меняющейся вдоль проточной части. Проблема влияния пестационарности и степени турбулентности набегающего потока на потери в турбинных решетках рассматривается ниже (см. гл. XIV).  [c.204]


Смотреть страницы где упоминается термин Влияние нестационарности на величину : [c.102]    [c.347]    [c.112]    [c.664]    [c.371]    [c.138]    [c.245]    [c.528]    [c.190]    [c.11]    [c.167]    [c.201]    [c.53]   
Смотреть главы в:

Теплопередача при конденсации и кипении Изд.2  -> Влияние нестационарности на величину



ПОИСК



Нестационарность



© 2025 Mash-xxl.info Реклама на сайте