Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Время пребывания

Теория распространения теплоты при сварке позволяет рассчитывать скорости охлаждения и время пребывания металла зоны термического влияния в определенном интервале темпера-  [c.234]

Время пребывания металла околошовной зоны выше температуры Т должно быть больше, чем время изотермического распада аустенита при этой температуре для стали данной марки.  [c.244]

Отрицательно. С увеличением скорости запыленных газов в электрофильтре уменьшится время пребывания частиц золы в нем. За это (укороченное против расчетного) время не все частицы по мере своего движения вдоль электрофильтра успеют пройти поперечный путь к осадительным электродам.  [c.217]


Однако полученные расчетные зависимости непригодны для решения часто встречающихся обратных (поверочных) задач, когда необходимо по известным начальным условиям и габаритам установки определить время пребывания частиц в канале и их конечную скорость. Это особенно важно для оценки и обработки эксплуатационных или опытных данных, получаемых не в проектируемых, а в существующих установках. Трудности решения подобной задачи заключаются в том, что приведенные выше решения, как и другие известные, не позволяют точно найти искомую взаимосвязь, а экспериментальное определение скорости и времени движения частиц весьма сложно.  [c.73]

Заметим, что интенсивность теплообмена и время пребывания частиц (или их истинная концентрация) зависят во многом от одних и тех же безразмерных переменных.  [c.176]

В [Л. 71] приведены результаты исследования лабораторной модели противоточного теплообменника типа газовзвесь с камерами нагрева и охлаждения. В работе были предложены методика расчета и конструктивные рекомендации для теплообменников подобного типа. В частности, была показана целесообразность использования противоточных камер, так как, помимо известных теплотехнических преимуществ, противоток в газовзвеси позволяет увеличить время пребывания частиц при неизменной высоте камер н снизить аэродинамические потери. Установлено, что во многих случаях механический транспорт дисперсной насадки эффективнее пневматического. Приведены рекомендации по выбору материала, размера насадки и сечения камер. Технико-экономическое сравнение воздухонагревателя типа газовзвесь с трубчатым воздухонагревателем, проведенное для котла паропроизводительностью 60 г/ч, показало возможность снижения температуры уходящих газов до 100° С. Последнее может привести к повышению к. п. д. котла примерно на 4%, что соответствует экономии в затратах на топливо 15000 руб. в год.  [c.368]

Прерывистая закалка, или закалка в двух средах (рис. 245, кривая 2). Деталь охлаждают сначала в быстро охлаждающей среде, а затем в медленно охлаждающей. Обычно первое охлаждение проводят в воде, а затем деталь переносят в масло, или охлаждают на воздухе. В мартенситном интервале сталь охлаждается медленно, что способствует уменьшению внутренних напряжений. Этот способ применяют при закалке инструмента из высокоуглеродистых сталей. Применяя этот способ, трудно установить и определить время пребывания деталей в первой жидкости, тем более что это время очень мало и исчисляется секундами. Этот способ требует от термиста достаточной квалификации.  [c.303]

Ступенчатая закалка (рис. 245, кривая 3). Как уже указывалось, при прерывистой закалке в тот момент, когда деталь переносят из воды в масло, более тонкие части ее сечения охладились больше, т. е. до более низких температур. Кроме того, трудно отрегулировать процесс и обеспечить постоянное, определенное н притом очень короткое время пребывания детали в воде.  [c.304]


При сварке стали 18-8 участки основного металла, расположенные по обе стороны от шва, подвергаются нагреву. В участках, длительное время находящихся под воздействием критических температур (450—850"), может развиться межкристаллитная коррозия, заключающаяся в том, что пограничные слои зерен под действием агрессивной среды теряют свои антикоррозийные свойства. Это явление есть результат обеднения пограничных слоев зерен аустенита хромом вследствие выпадения сложных карбидов железа и хрома по границам кристаллов аустенита. С целью уменьшения склонности стали к межкристаллит-ной коррозии уменьшают содержание в ней С или сокращают время пребывания металла в интервале критических температур.  [c.82]

Если аТ > (т —1)/Т) как это следует из (2. 10. 16), то время пребывания пузырька в вихре будет больше времени, в течение которого движение вихря происходит преимущественно в одном направлении Т Т. В этом случае пузырьки будут совершать хаотическое движение внутри вихрей и за временной масштаб их движения можно принять лагранжев временной масштаб движения жидкости 7. Тогда отношение коэффициентов диффузии равно отношению квадратов интенсивностей хаотического движения фаз (2. 10. И) ,  [c.86]

Из (6. 9. 16) следует, что скорость массообмена в условиях поверхностной конвекции возрастает с увеличением абсолютной величины градиента поверхностного натяжения вдоль отдельной ячейки и с уменьшением ее длины. Такой характер зависимости объясняется тем, что с уменьшением размеров циркуляционных ячеек уменьшается время пребывания элементов жидкости на поверхности и внутренние элементы ячеек не успевают за это время перейти в насыщенное состояние, что, в свою очередь, способствует более полному обновлению поверхности.  [c.291]

В соотношении (9. 2. 4) Ср — среднее время пребывания пузырьков пара в слое  [c.340]

Предположим, что длина очереди не ограничена. Зададимся дисциплиной обслуживания заявок, стоящих в очереди пусть обслуживание ведется по принципу раньше пришел, раньше обслужен . Если ti — момент поступления i-ii заявки на вход О, то время выхода заявки из ОА, 0 = /,+U i + 9., где W i — время пребывания заявки в очереди, <71 — время обслуживания i-ii заявки в ОА (ti и <7 определяются по соответствующим законам генерации и обслуживания заявок). Необходимо определить Будем считать, что в момент времени / = 0 в СМО нет ни одной заявки значит, U i = 0, т. е. время пребывания в очереди самого первого требования равно нулю, тогда  [c.153]

Высокая температуропроводность меди резко сокращает время пребывания сварочной ванны в жидком состоянии и равновесие реакций раскисления не достигается.  [c.330]

В табл. 16.6 указаны суточные дозы внутри космического корабля, вызванные космической радиацией в отсутствие солнечных вспышек во время полета по эллиптическим орбитам с перигеем 300 км. Если принять в качестве допустимой дозы 15 рад, то при полетах на орбитах с апогеем 1000 км время пребывания космонавта не должно превышать 20 суток. При дальнейшем увеличении высоты апогея орбиты мощность дозы возрастает и при 1500 км достигает 2 рад в сутки. Допустимая продолжительность полета для такой орбиты — до одной недели. На высоте от 300 до 1000 км длительность полета с учетом радиационной опасности может быть определена из табл. 16.6. Следует отметить, что при полетах длительностью более двух недель существенную роль начинает играть возможность попадания космического корабля в потоки корпускулярного излучения, образуемого во время вспышек на Солнце. Хотя при полетах на околоземной орбите из-за экранирующего действия геомагнитного поля эта опасность значительно меньше, чем при полетах в межпланетном пространстве, ее следует учитывать при планировании и осуществлении пилотируемых космических полетов.  [c.282]

Если измерять потоки электромагнитной энергии (в случае световых волн измеряется поток световой энергии или освещенность какой-либо поверхности), то надо учесть инерционность измерительной аппаратуры, которая обычно довольно велика. Во всяком случае, весьма трудно осуществить безынерционное измерение процессов, имеющих длительность того же порядка, что и время пребывания атома в возбужденном состоянии, хотя в современной физике для этих целей используют приборы, в миллион раз менее инерционные, чем человеческий глаз (инерционность зрительного восприятия человека обычно оценивается по порядку величины в 0,1 с).  [c.176]


К тому же исходу может привести и последовательное поглощение нескольких фотонов одной и той же молекулой. В самом деле, представим себе, что в результате поглощения одного фотона молекула переходит в некоторое возбужденное состояние, но его энергия еще меньше энергии активации, и значит, реакция произойти не может. Если поток фотонов достаточно велик, то за время пребывания в возбужденном состоянии молекула успевает поглотить еще один фотон и перейти в следующее, энергетически более высокое состояние, из последнего — в еще более высокое и т. д. Для многих молекул (например, СО2, 5Ев, ВСК, и др.) было прослежено последовательное поглощение нескольких десятков фотонов инфракрасного излучения (к = 10 мкм) и даже их диссоциация.  [c.669]

Поэтому такие стали, как правило, сваривают без предварительного подогрева, по с использованием специальных технологических приемов, обеспечивающих увеличение времени пребывания металла шва и околошовной зоны в субкритическом интервале температур и автотермообработку закаленных зон участков, прилегающих к шву. Время пребывания околошовной зоны в интервале субкритических температур movkho увеличить путем выполнения сварки каскадом, блоками, короткими или средней длины участками, а также путем использования специальных устройств, подогревающих выполненный шов и тем самым увеличивающих время пребывания его в определенном температурном интервале.  [c.241]

На рис. 121, б показано изменение температуры в точке 2, находяш,ейся у поверхности листов. При выполнении каждого последующего слоя температура в точке 2 нарастает, при выполнении последнего слоя достигает максимума и после этого начинает снижаться. По прошествии (время пребывания металла в интервале температур Тас, — м) температура точки 2 снижается до температуры мартепситного превращения и, ес.ли за это время не успеет произойти распад аустенита, то образуется мартенситная структура.  [c.242]

Для увеличения времени пребывания металла околошовной зоны при температуре выше точки мартенситного превращения накладывают так называемый отжигающий валик, границы которого не выходят за пределы металла шва и тем самым не нагревают подверженный закалке металл околошовной зоны до температуры выше Лсд. Наплавка отжигающего валика увеличивает время пребывания металла околошовной зоны в субкритичсском интервале температур с до  [c.242]

Однако, если сваривается среднелегированная сталь с повышенным содержанием углерода, то даже при многослойной сварке короткими участками практически не удается избежать закалки металла околонювпой зоны на мартенсит, так как длительность распада аустенита значительно больше, чем время пребывания металла при температурах выше температур мартенситного превращения в процессе сварки.  [c.244]

Химический недожог является прежде всего следствием недостатка воздуха в зоне горения или плохого его перемешивания с топливом. Eiro увеличению способствует также уменьшение температуры в топке при снижении нагрузки (оно уменьшает скорость реакции) и малое время пребывания топлива в топочной камере. Последнее наблюдается при форсировании топки, когда повышается скорость топливовоздушной смеси и реакции горения не успевают завершаться в пределах топки.  [c.132]

Конструкция реактора ВГР с шаровыми твэлами по принципу одноразового прохождения активной зоны без профилирования тепловыделения обогаш,ением топлива должна обеспечить одинаковую глубину выгорания во всех выгружаемых твэлах. Это возможно только в том случае, когда относительная скорость прохождения твэлом активной зоны будет обратно пропорциональна относительному радиальному распределению-тепловых нейтронов или (приближенно) тепловыделению. При-этом интегральный поток в каждом твэле и выгорание топлива будут также одинаковы. В случае идеального профилирования радиального распределения тепловыделения (/Сг=1,0) скорость продвижения или время нахождения твэлов должны быть одинаковыми. Однако первые реакторы с шаровыми твэлами и бес-канальной зоной (эксплуатируемый реактор AVR и строящийся THTR-300) не обладают конструкцией, удовлетворяющей принципу одноразового прохождения. Различное время пребывания твэлов в активной зоне с одним центральным каналом выгрузки и отсутствие профилирования тепловыделения по радиусу разным обогащением топлива в свежих твэлах приводят к тому, что глубина выгорания топлива в твэлах сильно различается [19].  [c.24]

Углесодержащий унос улавливается и возвращается не прямо в га зогенератор (что привело бы к недопустимой перегрузке циклонов), а в камеру, где он сжигается, подогревая газы, поступающие в слой. Основная часть золы после выгорания углерода агломерирует в зонах повышенной температуры и удаляется из нижней части аппарата. Большой свободный объем аппарата и значительное (10— 15 с) время пребывания в нем газов позволяют избежать выноса смол й облегчают последующую очистку газов. Исследования были проведены на модели диаметром 1,8 м, работавшей на паро1воздушной смеси под давлением 0,2 МПа. При 70%-ном содержании углерода в слое образовались частицы золы размерами 3— 5 мм, содержащие до 14% углерода [2J.  [c.32]

В модели Гликсмана и Деккера [109] использован подход, аналогичный [105], т. е. при контактированип с поверхностью крупных частиц, обладающих большой по сравнению с газом теплоемкостью, когда скорости фильтрации газа велики, время пребывания частиц у поверхности незначительно, процесс может рассматриваться как квазистационарный. В этом случае появляется возможность оперировать долей поверхности, омываемой пузырем S, вместо трудно определимой доли времени /о контактирования трубы с эмульсионной фазой.  [c.82]

Средний за время пребывания частицы в первом от теплообменной пвверхности ряду тепловой поток  [c.99]

При использовании частиц из различных окислов (АЬОз, 2гОг, песок) лучистый поток при температуре 1400 °С может составлять до 60% общего потока энергии [144, 146]. Очень сильно, как оказалось, теплообмен излучением зависит от температуры погруженной в слой поверхности [147—149]. Проведенные измерения зависимости степени черноты псевдоожиженного слоя от температуры поверхности свидетельствуют о значительном охлаждении частиц во время пребывания их около стенки теплообменного устройства и неаддитивности процессов конвективно-кондуктивного и радиационного обмена [149].  [c.137]


ТОЧНО далеких от поверхности теплообмена частиц. Необходи.мо также учесть, что обмен излучением между стенкой п частицей гораздо продолжительнее. Он происходит не только во время пребывания частицы у поверхности, но и во время продвижения ее из ядра слоя. Таким образом, по-видимому, при оценке существенности переноса излучения следует сравнивать коэффициенты межфазового и лучистого теплообмена.  [c.184]

Отличительной особенностью противотока по сравнению с восходящим и нисходящим прямотоком является более быстрое наступление квазиравномерного движения частиц. Другая принципиальная гидромеханическая особенность противотока видна при сравнении формул (2-60) и (2-61) для противотока в отличие от прямотока время пребывания частиц может быть значительно увеличено без изменения длины канала за счет приближения скорости газа к взвешивающей скорости, т. е. за счет приближения коэффициента аэродинамического торможения к единице kv—> , Тт—>оо. Для восходящего прямотока (пневмотранспорт) изменение скорости газа ограничено условиями беззавальной работы. Поэтому увеличение времени пребывания частиц—времени теплообмена и массопере-носа — в этом случае возможно лишь путем соответствующего наращивания высоты установки.  [c.75]

Общая структура гравитационного слоя, наиболее соответствующая стесненному движению, представляется в следующем виде. Ядро потока сравнительно равномерное распределение скорости, максимальная скорость Потока и соответственно минимальное время пребывания частиц в канале. Промежуточный, переходный слой — нарушение безградиентности при со-  [c.294]

Появление цветов побежалости при отпуске в интервале 200—300°С объясняется тем, что при этих температурах на чистой (полированрюй, шлифованной) металлической поверхности возникают тонкие слои окислов. Цвет слоя окисла зависит от его толщины уже за короткое время пребывания стали при 220°С она покрывается слоем толщиной 0,04 мкм. Этот слой придает поверхности стали светло-желтый цвет. Данные об изменении цвета поверхности в зависимости от толщины слоя и температуры следующие  [c.304]

В выражении (7.28) т — время пребывания топлива в зоне испарения Пр — среднемедианный диаметр капель спектра распыла топлива по Проберту — температура газа в зоне горения Гр — равновесная температура испаряющейся капли топлива. Значения z н d колеблются в пределах т 0,01-0,05 с (по Проберту) 8-18 мк [170]. Принимая среднемассовую температуру в зоне горения равной 1500 К, а равновесную температуру 7р испаряющейся капли керосина равной 503 К [11], из (7.28)  [c.342]

Очевидно, что минимальное время пребывания пузырьков пара в жидкости определяется как отношение высоты слоя к максимальной скорости подъе.ча пузырька. Если профиль скорости жидкости по сечению колонны считать параболическим, то максимальная скорость жидкости равна 2т, скорость пузырька относительно жидкости равна и и, следовательно, максимальная скорость парового пузырька есть  [c.340]

Подавая на вход системы достаточно большое количество заявок (102—10 ), можно собрать статистические сведения для определения следующих характеристик загрузка ОА р = Тз1Т, где Тз — время работы ОА, Т — время моделирования коэффициент простоя k= 1 — р количество заявок, обслуженных 0А-, средняя и максимальная длина очереди среднее и максимальное время ожидания в очереди- среднее и максимальное время пребывания в системе.  [c.152]

Таким образом, наиболее склонен к порообразованию алюминий и его сплавы. В сварочной технологии на возникновение пор влияет время пребывания сварочной ванны в жидком состоянии, что зависит от скорости сварки. При малой скорости сварки алюминия водород успевает покинуть ванну и наплавленный металл будет плотным, при больших скоростях сварки (Исв>50м/ч) водород не успевает выделиться из кристаллизующегося металла и образовать поры, а при скорости сварки 20 м/ч обычно возникают поры. При сварке алюминия и его сплавов типа АМгб требуются особые меры для очистки кромок свариваемых изделий и тщательная подготовка электродной проволоки, а также использование аргона, имеющего минимальную влажность (Г. Д. Никифоров).  [c.346]

Степень завершения гомогенизации при сварке зависит от 7 тах, диффузионной ПОДВИЖНОСТИ элементов, времени пребывания при температурах гомогенизации и исходной макро- и микрохимической неоднородности. Максимальная степень гомогенизации соответствует участкам ОШЗ, нагреваемым до Тс, учитывая, что коэффициенты диффузии элементов увеличиваются с повышением температуры в экспоненциальной зависимости. С наибольшей скоростью гомогенизация происходит по С, с меньшей — по S, Р, Сг, Мо, Мп, Ni, W в приведенной последовательности (коэффициенты диффузии в железе при 1373 К составляют для С 10 " и для остальных элементов 10 ...10 м / ). Время пребывания при температурах гомогенизации зависит от теплового режима сварки, а также от класса применяемых сварочных материалов. Последнее связано с дополнительным нагревом ОШЗ выделяющейся теплотой затвердевания шва (аналогично их влиянию на степень оплавления ОШЗ). Степень влияния металла шва определяется Гс.мш.Чем она выше, тем при более высоких гомологических температурах происходит дополнительный нагрев ОШЗ. При переходе от сравнительно тугоплавких ферритно-перлитных сварочных материалов к более легкоплавким аусте-нитным время пребывания ОШЗ свыше 1370 К уменьшается примерно в 1,5 раза. Весьма существенно влияет исходное состояние стали. Наличие труднорастворимых крупных скоагули-рованных частиц легированного цементита и специальных карбидов, например после отжига стали на зернистый перлит, заметно снижает степень гомогенизации.  [c.515]

Выбор оптимального теплового режима сварки q/v, температур предварительного, сопутствующего и последующего подогрева) — весьма эффективный технологический способ регулирования структуры металла сварных соединений. Его воздействие на структуру проявляется через параметры СТЦ <>ю (время пребывания сыще 1273 К), w /s или в/5. Влияние каждого из этих параметров зависит от состава сталей, которые в соответствии с характером их диаграмм АРА разделяют на несколько групп. Группы объединяют стали по степени устойчивости аустенита при температурах различных типов превращения  [c.528]


Смотреть страницы где упоминается термин Время пребывания : [c.71]    [c.32]    [c.80]    [c.270]    [c.295]    [c.79]    [c.32]    [c.340]    [c.201]    [c.201]    [c.192]    [c.488]    [c.276]    [c.408]   
Динамика процессов химической технологии (1984) -- [ c.0 ]

Быстрые реакторы и теплообменные аппараты АЭС с диссоциирующим теплоносителем (1978) -- [ c.191 , c.193 ]

Ракетные двигатели (1962) -- [ c.61 , c.396 , c.398 , c.411 , c.462 , c.462 , c.463 , c.463 , c.601 , c.601 , c.609 , c.609 , c.617 ]



ПОИСК



Время пребывания безразмерное

Время пребывания воды в отстойнике

Время пребывания молекулы на поверхности

Время пребывания молекулы на поверхности формула Френкел

Время пребывания распределение

Время пребывания связь с функцией отклика

Время пребывания среднее

Жидкие время пребывания

Момент распределения времени пребывани

Определение объема камеры сгорания по времени пребывания топлива в камере

Плотность распределения времени пребывания частиц в аппарате

Расчет времени пребывания выше заданной

Сварка, время пребывания материала

Сварка, время пребывания материала в критической области температур

Среднее время пребывания геодезической в области

Среднее время пребывания траектории в множестве

Функция времени пребывания частиц



© 2025 Mash-xxl.info Реклама на сайте