Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Единицы временно тепловые

В соответствии с законом Стефана — Больцмана количество передаваемой теплоты в единицу времени (тепловой поток) излучением между телами определяется уравнением  [c.195]

В левой части равенства оказалось количество тепла, нужное для проплавления основного металла в единицу времени,—тепловая мощность проплавления q p. Значит,  [c.146]

Широко используются и внесистемные единицы для времени — час (ч) и для тепла — килокалория ккал). Соотношения между единицами измерения количеств тепла в единицу времени (тепловой мощности, или теплового потока) ккал ч и дж/сск вт) таковы  [c.59]


Интенсивность переноса теплоты характеризуется о т н о с т ь ю теплового потока, т е. количеством теплоты, передаваемой в единицу времени через единичную площадь поверхности.  [c.70]

Количество теплоты, передаваемое в единицу времени через произвольную поверхность F. в теории теплообмена принято называть М о щ н о с т ь ю теплового потока ИЛИ просто тепловым потоком и обозначать буквой, ]Единицей ее измерения обычно служит Дж/с, т. е. Вт.  [c.70]

Количество теплоты, проходящей через единицу изотермической поверхности в единицу времени, называют плотностью, или вектором, теплового потока-.  [c.349]

Средние установившиеся температуры определяют по уравнению теплового баланса тепловыделение за единицу времени приравнивают теплоотдаче. При расчете теплоотдачи пользуются ее усредненными коэффициентами. Для решения более сложных тепловых задач (установления температурных полей в деталях машин, определения неустановившихся температур) используют методы, рассматриваемые в теории теплопередачи, в том числе методы подобия, комбинирования нз точных решений для элементов простых форм, методы конечных разностей и конечных элементов.  [c.18]

Тепловой поток — это количество теплоты, проходящее через рассматриваемое сечение (поверхность) в единицу времени  [c.144]

Приближенно тепловой поток с единицы поверхности за единицу времени при конвективном теплообмене определяется по правилу Ньютона  [c.145]

Коэффициент т], выражает отношение условного теплосодержания проплавленного за единицу времени основного металла к эффективной тепловой мощности источника теплоты. Величина теплосодержания в единице массы металла h включает в себя также скрытую теплоту плавления, затрачиваемую на  [c.232]

Опыт показывает, что тела различной температуры, могущие передавать друг другу тепло, по истечении некоторого времени принимают одинаковую температуру, т. е. приходят в тепловое равновесие. Это происходит и в том случае, когда наши тела заключены в непроницаемую для тепла оболочку, в которой создан вакуум, т. е. исключена возможность теплового обмена в силу теплопроводности и конвекции, и имеет место лишь излучение и поглощение. Излучая и поглощая тепло, тела ч в конце концов принимают одинаковую температуру Т. Тепловое равновесие имеет динамический характер, т. е. и при одинаковых температурах всех тел происходит, конечно, излучение и поглощение лучистой энергии, но так, что в единицу времени тело столько же излучает тепла, сколько оно его поглощает. Отсюда ясно, что если два тела Ах и А-х обладают различной способностью к поглощению, то и  [c.685]


Количество атомов, переходящих спонтанно за единицу времени с верхнего возбужденного уровня на нижний, пропорционально их числу N2 и равно A 2 N2. Количество атомов, переходящих с верхнего уровня на нижний под воздействием излучения, пропорционально числу возбужденных атомов N2 и спектральной плотности энергии падающего (теплового) излучения гд,, т- Число вынужденных переходов возбужденных атомов на ниж-  [c.143]

Это выражение получено нами из рассмотрения частного случая движения электрических зарядов в металлическом проводнике. Для того чтобы выяснить, насколько общим является это выражение и можно ли его распространять на другие случаи движения электрических зарядов в магнитном поле, необходимо представить себе физическую картину движения зарядов в металлическом проводнике и возникновения силы F. В металлическом проводнике носителями зарядов являются свободные электроны, слабо связанные с атомами металла. Независимо от того, течет по проводнику ток или нет, свободные электроны совершают хаотическое тепловое движение со скоростями порядка сотен километров в секунду (эта скорость растет с ростом температуры). Пока электрическое поле в проводнике отсутствует, вследствие полной хаотичности теплового движения за единицу времени через любое сечение проводника в обе стороны проходит одинаковое число электронов, т. е. одинаковое количество электричества, и ток  [c.80]

При прохождении тока каждая единица объема, с одной стороны, теряет энергию из-за теплового потока I (эта потеря равна —( у/), а с другой стороны, получает в единицу времени, во-пер-аых, электрическую энергию (/, и, во-вторых, дополнительную  [c.23]

Здесь первый член правой части есть плотность потока энергии из-за макроскопической конвекции, второй определяет работу напряжения (давления) в единицу времени и третий — плотность теплового потока < /.  [c.139]

Количество теплоты, передаваемой в единицу времени через произвольную поверхность, оценивается тепловым потоком Q, единицей измерения которого служит ватт вт).  [c.245]

Эта теплота при установившемся процессе затрачивается на парообразование так как в единицу времени через поперечное сечение пленки протекает масса пара, равная на единицу ширины пластины р"ш"6, то согласно уравнению теплового баланса  [c.478]

Подсчитаем поток теплоты (З на катоде. Этот поток состоит из кинетической энергии, уносимой в единицу времени электронами эмиссии, энергии, излучаемой за то же время катодом в пространство, потерь теплоты из-за теплопроводности и теплоты Пельтье. Переход электронов из катода в анод сопряжен с затратой работы Сф р кроме того, вылетевшие из катода электроны обладают энергией теплового движения, равной в среднем 2кТ. Поэтому составляющая часть (3 , связанная с эмиссией электронов,  [c.609]

В общее соотношение для подведенной в единицу времени тепловой энергии (3.41) не включены недавно определенные тепловые потерн по Ли — Смиту [37]. Они могут быть существенными или несущественными, поскольку имеющихся данных недостаточно, чтобы сдела1ь какие-либо определенные выводы. Смит, однако, считает, что так называемые потери мощности, обусловленные изменением теплообмена в ходе цикла, являются вторыми по величине потерями в двигателе Стирлинга, и к его мнению нужно относиться с уважением, которого заслуживает высокий уровень исследований, проводимых в лабораториях фирмы МТИ. Считается, что эти потери обусловлены влиянием нестационарного теплообмена в системе, которое приводит к изменению давления. В работе [37] предложено соотношение для расчета этих потерь, но мы его не приводим, поскольку оно содержит эмпирические коэффициенты, найденные на основании результатов испытания конкретного двигателя, и поэтому не имеет достаточно общего характера. Тем не менее эту новую концепцию нужно изучать и не следует пренебрегать потерями по Ли — Смиту, хотя в них могут входить некоторые из потерь, определенных выше.  [c.334]

Для пересчета в единицы СИ приведены таблицы переводных множителей для единиц длины — табл. IX, для единиц времени, площади, объема — табл. X, для единиц массы, плотности, удельного веса, силы — табл. XI для единиц давления, работы, энергии, количества теплоты — табл. XII для единиц мощности, теплового потока, теплоемкости, энтропии, удельной теплоемкости и удельной энтропии — табл. XIII для единиц плотности теплового потока, коэффициентов теплообмена (теплоотдачи) и теплопередачи, коэффициентов теплопроводности, температуропроводности и температурного градиента — табл. XIV.  [c.12]


Если обрабатывается мягкий материал (дерево, пластмассы, ЦЕ етные металлы), или при обработке стали и чугуна применяются малые скорости резания и стружка имеет малое сечение, то в единицу времени на процесс резания затрачивается мало энергии. Если обработка происходит при больших скоростях резания, обрабатываются твердые металлы и стружка имеет большое сечение, то в этих случаях в единицу времени затрачивается много энергии. Механическая энергия в процессе резания превращается в тепловую, режущая кромка инструмента сильно нагревается (до красного каления) при тяжелых условиях резания. Для такого инструмента главное требование— сохранение твердости при длительном нагреве, т. е. сталь должна обладать красностойкостью.  [c.411]

Эффективная тепловая мощность дуги — это количет ство тепла, введенное в металл изделия в единицу времени, равное  [c.20]

Определить коэффициент теплоотдачи от ртути к стейке трубы, плотность теплового потока и количество теплоты, передаваемой в единицу времени, при условии, что средняя температура стенки /с = = 220° С.  [c.101]

Тепловая мощность дуги. Основной характеристикой хварочной дуги как источника энергии для сварки является эффективная тепловая мощность Эффективная тепловая мощность источника сварочного нагрева — это количество теплоты, введенное в металл за единицу времени и затраченное на его нагрев. Эффективная тепловая мощность является частью общей тепловой мощности дуги д, так как некоторое количество тепла дуги непроизводительно расходуется на теплоотвод в металле, излучение, нагрев капель при разбрызгивании.  [c.11]

Полную тепловую мощность сварочной дуги, т. е. количество теплоты, выделяемое дугой в единицу времени, приближенно считают равной тепловому эквиваленту ее электрической мощности д=Шд, где / — величина сварочного тока. А 11д — падение напряжения на дуге, В — тепловой эквивалент электрической мощности сварочной дугй, Дж/с.  [c.11]

Так как изменение количества теплоты в единицу времени есть тепловой поток, то dQ/dt = 0 = T(dTldt), где Ст. = ст — аналог электрической емкости с — удельная теплоемкость m — масса тела.  [c.71]

Тепловой поток в воздух в единицу времени с единицы длины стержня в случае одинаковой начальной температуры стержня Т и среды равен q = apST. Тепловой поток в стержне еще более стеснен по сравнению с пластиной и массивным телом, поэтому процесс изменения температуры во времени происходит еще медленнее, чем в пластине.  [c.162]

Остановимся подробнее на понятии теплового равновесия, очень важном для последующего изложения, в значительной мере связанного с изучением энергетики п юцессов излучения и поглощения света. Для этого полезно обратиться к термодинамическому рассмотрению явлений внутри замкнутой полости. Пусть стенки этой полости полностью отражают падающий на них свет. Поместим в полость какое-либо тело, излучающее световую энергию. Внутри полости возникнет электромагнитное поле и в конце концов ее заполнит излучение, находящееся в состоянии теплового равновесия с телом. Равновесие наступит и в том случае, когда каким-либо способом нацело устранится обмен теплом исследуемого тела с окружающей его средой (например, будем проводить этот мысленный опьгг в вакууме, когда отсутствуют явления теплопроводности и конвекции). Лишь за счет процессов испускания и поглощения света обязательно наступит равновесие излучающее тело будет иметь температуру, равную температуре электромагнитного излучения, изотропно заполняющего пространство внутри полости, а каждая выделенная часть поверхности тела будет излучать в единицу времени столько энергии, сколько она поглощает. При этом равновесие должно наступить независимо от свойств тела, помещенного внутрь замкнутой полости, влияющих, однако, на время установления равновесия. Плотность энергии электромагнитного поля в полости, как показано ниже, в состоянии равновесия определяется только температурой.  [c.400]

Пусть в замкнутой полости наряду с другими телами имеется черное тело, поглощательная способность К(5торого а, = 1. Температура всех тел в состоянии равновесия одинакова. Тела, находящиеся в полости, обмениваются излучением, но этот обмен не нарушает теплового равновесия. Поэтому излучение o.dS, посылаемое внутрь полости в единицу времени каким-то участком стенки черного тела, равно излучению, поглощаемому им за то же время. Так как черное тело поглощает все падающее на него излучение, то r dS характеризует все излучение, доходящее до выделенного участка стенки от всех остальных тел, находящихся в полости. Заменим 68 другой площадкой с той же температурой, но не являющейся частью черного тела и ха-рактеризуюишйся испускательной и поглощательной aj способностями. За единицу времени эта площадка 6S по-прежнему получает излучение odS, ибо это есть излучение, приходящее от всех остальных тел, оставшееся неизменным. Из этого излучения площадка поглощает только часть, равную ai,)r t3A . За это же время она излучает поток энергии ri (3S. Так как тепловое равновесие не может нарушаться этим обменом энергий, то ai r)dS = ri dS, откуда rxJa ) г, — отношение испускательной способности к поглощательной, одинаковое для всех тел (т.е. представляет собой универсальную функци)о температуры и длины волны) и равное испускательной способности абсолютно черного тела.  [c.404]

ИХ способность к испусканию не может быть одинаковой. Действительно, раз установилось тепловое равновесие, то для каждого тела должно соблюдаться равенство между количеством испускаемой и поглощаемой им в единицу времени энергии. Если два тела поглощают разные количества энергии, то и испускание должно быть различно (Прево, 1809 г.).  [c.686]


Для характеристики теплового излучения мы воспользуемся величиной потока энергии Ф, т. е. количества энергии, излучаемого в единицу времени (мощность излучения). Поток, испускаемый единицей поверхности излучающего тела по всем направлениям, будем называть испускательной способностью и обозначим через Е. Определенная таким образом испускатель-ная способность соответствует светимости (см. Введение, фотометрические понятия) и иногда называется энергетической светимостью. Наряду с ней можно рассматривать и энергетическую яркость В, определяемую аналогично яркости при фотометрических измерениях. Для черного тела яркость не зависит от направления, так что Е = кВ (см. 7).  [c.687]

Опыт показывает далее, что Е (равно как и Е ) в сильной степени зависит от температуры испускающего тела, так что испу-скательная способность v,г есть функция частоты и температуры. Тот факт, что v,г зависит от температуры излучающего тела и не зависит от температуры окружающих тел, есть физическое выражение идеи Прево о динамическом равновесии между телами, обменивающимися лучистой энергией. Нагретое до температуры Т тело излучает в единицу времени одинаковое количество энергии, независимо от того, окружено ли оно нагретыми или холодными телами, но тепловое равновесие установится на уровне, обусловленном балансом энергии между всеми этими излучателями.  [c.688]

Представим себе замкнутую оболочку, внутренняя часть которой эвакуирована, а стенки представляют собой черное тело, характеризующееся коэффициентами v,r= fv,r и v.r = I. Пусть температура стенок повсюду сделана одинаковой и равной Т. Отдельные участки стенок обмениваются излучением, но этот обмен не способен нарушить тепловое равновесие. Следовательно, излучение, которое посылает в течение единицы времени какой-то участок стенки da внутрь полости (т. е. eda), равняется излучению, поглощаемому им за то же время. Но так как коэффициент поглощения этого участка равен 1, то величина eda характеризует излучение, доходящее до нашего участка за единицу времени от всей остальной оболочки. Вообразим теперь, что наш участок стенки da заменен участком ) той же температуры, но отличным от черного и имеющим испускательную и поглощательную способности и Л. За единицу времени данный участок по-прежнему будет получать излучение, равное eda, ибо это — излучение, идущее от всей остальной части оболочки, оставшейся неизменной. Из этого излучения наш участок поглотит энергию Aeda. За то же время участок излучит Eda. Так как тепловое равновесие (постоянство температуры стенок всей оболочки) не должно нарушаться тепловым обменом, то, очевидно,  [c.690]

При этом хотя излучение каждого тела зависит только от его собственной температуры, а не от температуры окружающих тел, более теплые тела будут охлаждаться, так как они испускают большее количество энергии, чем получают от окружающих тел, а менее нагретые тела нагреваются, потому что они получают больше энергии, чем отдают. Кроме того, пространство внутри полости всегда заполнено лучистой энергией. Опыт показывает, что в конечном счете устанавливается стационарное состояние (тепловое равновесие), при котором все тела, приобретают одинаковую температуру. В таком состоянии тела поглощают в единицу времени столько энергии, сколько отдают ее, а плотность излучения в пространстве между ними достигает некоторой определенной величины, соответствующей данной температуре. Отсюда ясно, что если два тела обладают различной способностью к поглощению, то и их способность к испусканию не может быть одинаковой. Действительно, раз установилось тепловое равновесие, то для каждого тела имеет место равенство между количеством испускаемой и поглощаемой им в единицу времени энергии. На основе этих рассуждений Прево (1809) сформулировал следующее правило если два тела поглощают разное количество энергии, то и испускание их различно.  [c.131]

Заменим элемент поверхности с18 площадкой с поглощательной способностью Л -,г и испускательной способностью Е ,т- За единицу времени на нее по-прежнему будет падать излучение гv,тdS. него площадка поглотит часть энергии, равную А ,тгу.тс15. За это же время площадка излучит количество энергии Ev,тdS. Так как тепловое равновесие не должно нарушаться, то v,тev,тб 5 = v,т S или б, 7 = у  [c.134]

Закон Кирхгофа. В 1859 г. Г. Кирхгоф сформулировал закон для равновесного теплового излучения. Прежде чем рассматривать этот закон, необходимо ввести понятия ис-пускательной и поглощательной способностей тела. Обозначим через ЙФ энергию излучения, испускаемого в единицу времени единицей поверхности тела в интервале частот от й) до (o-fd(o . Иными словами, йФ есть плотность потока энергии излучения в указанном интервале частот. Представим йФ в виде  [c.37]

Распределение этих двух противоположно направленных потоков оказывается самоорганизованным (рис. 2), в результате чего возникает система правильных шестиугольных ячеек (рис. 3). По краям каждой такой ячейки жидкость опускается вниз, а в центре — поднимается вверх. Зависимость полного теплового потока / в единицу времени от нижней поверхности к верхней от разности температур АТ изображена на рис. 4. При АТ>АТ/1 состояние неподвижной теплопроводящей жидкости становится неустойчивым (пунктирная линия на рис. 4), и вместо  [c.33]

При прохождении тока каждая единица объема, с одной стороны, теряет энергию из-за теплового потока I (эта потеря равна — divi), а с другой стороны, получает в единицу времени, во-первых, электрическую энергию (j, Е) и, во-вторых, дополнительную потенциальную энергию (-рЛ л- )ф= — 9divj вследствие возрастания заряда единицы объема. Таким образом, по закону сохранения энергии.  [c.273]

Если горизонтальный слой жидкости сильно подогреть снизу, то между нижней и верхней поверхностями возникает разность температур A7 =7 i —7 2>0. При малой разности температур ДГ<АГ р ниже некоторого критическою значения АГ р, подводимое снизу количество теплоты распространяется вверх путем теплопроводности и жидкость остается неподвижной. Однако при разности температур выше критической АТ>А7 р в жидкости начинается конвекция холодная жидкость опускается вниз, а нагретая поднимается вверх. Распределение этих двух противоположно направленных потоков оказывается самоорганизованным (рис. 48), в результате чего возникает система правильных шестиугольных ячеек (рис. 49). По краям каждой такой ячейки жидкость опускается вниз, а в центре поднимается вверх. Зависимость полного теплового потока I в единицу времени от нижней поверхности к верхней от разности температур АТ изображена на рис. 50. При АТ>АТ р состояние неподвижной теплопроводящей жидкости становится неустойчивым (пунктирная линия на рис. 50) и вместо него наступает устойчивый режим в виде конвекционных ячеек Бенара. Обусловливается это тем, что при большой разности температур покоящаяся жидкость уже не обеспечивает перенос возросшего количества теплоты, и поэтому устанавливается новый конвекционный режим.  [c.284]

Теплообмен между твердой стенкой и текущей жидкостью обусловлен наличием теплового потока по нормали к стенке, вызванного градиентом температуры дТ1дг численно д равняется количеству теплоты, отдаваемой единицей поверхности твердой стенки текущей жидкости за единицу времени.  [c.368]


Смотреть страницы где упоминается термин Единицы временно тепловые : [c.156]    [c.435]    [c.287]    [c.164]    [c.285]    [c.145]    [c.152]    [c.28]    [c.219]    [c.463]    [c.206]   
Теплотехнический справочник том 1 издание 2 (1975) -- [ c.9 ]



ПОИСК



Ось временная

Тепловые единицы



© 2025 Mash-xxl.info Реклама на сайте