Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциальные принципы механики

ДИФФЕРЕНЦИАЛЬНЫЕ ПРИНЦИПЫ МЕХАНИКИ  [c.279]

Дифференциальные принципы механики.  [c.19]

Мы начнем с рассмотрения обобщений дифференциальных принципов механики на случай неголономных систем.  [c.87]

В теоретической механике содержание работы было бы отнесено к разделам Дифференциальные принципы механики и Интегральные принципы механики . Здесь мы рассматриваем метод виртуального варьирования и метод переменного действия как дополняющие друг друга и составляющие общий аналитический подход, который является концептуальным для естествознания. На примере механических систем изучается изменение действия в результате применения виртуального варьирования, при котором из рассмотрения исключаются реакции идеальных связей. Таким образом, создаётся своего рода инструмент , освоение которого необходимо для учёта ограничений при исследовании несвободных динамических систем.  [c.9]


Если отбор истинного движения из некоторой серии множества возможных происходит в малой области пространства, когда мы рассматриваем мгновенное состояние системы и небольшие дозволяемые наложенными связями изменения этого состояния, то мы приходим к дифференциальным принципам механики. Важнейшим и наиболее общим дифференциальным принципом в классической механике является принцип возможных перемещений, изложенный в главе VI первой части нашего курса.  [c.122]

Дифференциальные принципы механики 122 Дробно-линейная функция 344  [c.393]

В заключение остановимся на классификации вариационных принципов. Обычно различают дифференциальные и интегральные принципы. Дифференциальные принципы отражают свойства механических движений, соответствующие некоторому моменту или весьма малому промежутку времени. Интегральные принципы отражают свойства механических движений, соответствующие конечному интервалу изменения времени. Сначала остановимся на рассмотрении дифференциальных вариационных принципов механики.  [c.184]

Возникает вопрос о непосредственном применении вариационных принципов механики для определения закона движения системы материальных точек без интегрирования соответствующей системы дифференциальных уравнений движения. Ответ на этот вопрос можно найти в прямых методах вариационного исчисления. Не рассматривая этот вопрос подробно, так как такое рассмотрение выходит за пределы содержания этой книги, остановимся на некоторых частных случаях непосредственного применения принципа Гамильтона — Остроградского к решению задач динамики.  [c.210]

В этой главе рассматриваются дифференциальные вариационные принципы механики.  [c.85]

В 1788 г. появилось сочинение Ж- Лагранжа Аналитическая механика , в котором вся механика была изложена строго аналитически на основе принципа Даламбера и принципа возможных перемещений. При этом Лагранжем были получены дифференциальные уравнения движения механической системы в обобщенных координатах. Дальнейшее развитие аналитических методов, предложенных Лагранжем для исследования движения и равновесия несвободных механических систем, привело к установлению ряда дифференциальных и вариационных принципов механики.  [c.16]

Характерным для системы изложения аналитической механики является то, что в ее основу кладутся общие принципы (дифференциальные или интегральные) и уже из этих принципов аналитическим путем получаются основные дифференциальные уравнения движения. Изложение общих принципов механики, вывод из них основных дифференциальных уравнений движения, исследование самих уравнений и методов их интегрирования — все это составляет основное содержание аналитической механики.  [c.8]


Эта статья содержит достаточно полное изложение различных интегральных и дифференциальных принципов, могущих быть положенными в основу классической механики.  [c.262]

Несмотря на радикальное отличие новых идей от концепций старой физики, основной чертой дифференциальных уравнений волновой механики является их самосопряженность. Это означает, что они получаются из вариационного принципа. Поэтому, несмотря на все различия в интерпретациях, вариационные принципы механики продолжают играть важную роль в описании всех явлений природы.  [c.395]

Дифференциальные вариационные принципы механики  [c.102]

Вариационные принципы механики представляют собой выраженные языком математики условия, которые отличают истинное (действительное) движение системы от других кинематически возможных, т. е. допускаемых связями, движений. Вариационные принципы делятся на дифференциальные и интегральные. Первые дают критерий истинного движения для данного фиксированного момента времени, а вторые — на конечном интервале времени.  [c.102]

Дифференциальные вариационные принципы механики в теории импульсивных движений  [c.435]

По поводу различных задач, относящихся к движению системы материальных точек и рассмотренных до сего времени, можно сделать одно важное и интересное замечание Во всех случаях, когда силы являются функциями только координат движущихся точек и когда задачу удалось свести к интегрированию дифференциального уравнения первого порядка с двумя переменными, оказывается также возможным свести эту задачу к квадратурам. Мне удалось превратить это замечание в общее положение, которое, как мне кажется, дает новый принцип механики. Этот принцип, так же как и другие общие принципы механики, дает возможность получить интеграл, но с той разницей, что другие принципы дают только первые интегралы дифференциальных уравнений динамики, тогда как новый принцип приводит к последнему интегралу. Этот принцип обладает общностью, более высокой, нежели другие принципы, потому что он применим к случаям, когда аналитические выражения сил, а также уравнения, выражающие структуру системы, содержат координаты движущихся точек в любой форме. С другой стороны, принципы сохранения живых сил, сохранения площадей и сохранения центра тяжести во многих отнощениях имеют преимущество перед новым принципом. Прежде всего, эти принципы дают конечное уравнение между координатами движущихся точек и составляющими их скоростей, тогда как интеграл, получаемый на основании нового принципа, требует еще квадратур. Во-вторых, применение нового принципа предполагает, что уже найдены все интегралы, кроме одного, предположение, которое осуществляется лишь в очень небольшом количестве задач. Но это обстоятельство не может уменьшить- ценности нового принципа, в чем, я надеюсь, убедит применение его к нескольким примерам.  [c.294]

Рассмотрим, например, орбиту, которую описывает планета вокруг Солнца. Дифференциальные уравнения второго порядка, которые приходится интегрировать, можно свести к форме уравнений первого порядка, вводя в качестве новых переменных первые производные. Таким образом, определение орбиты планеты будет зависеть от интегрирования трех дифференциальных уравнений первого порядка между четырьмя переменными два интеграла этих уравнений получаются на основе принципа живых сил и принципа площадей, что сводит вопрос к интегрированию одного уравнения первого порядка с двумя переменными. Так вот, на основании моей общей теоремы это интегрирование может быть приведено к квадратурам. Итак, если угодно применять ее вместе с другими общими принципами механики, то можно сказать, что этих принципов оказывается достаточно, чтобы привести определение орбиты планеты к квадратурам.  [c.294]

Рассмотрим еще знаменитую задачу о вращении твердого тела вокруг неподвижной точки при отсутствии каких-либо сил. В этой задаче приходится интегрировать пять дифференциальных уравнений первого порядка между шестью переменными. Принцип живых сил дает здесь один интеграл, три других получаются из принципа площадей, пятый интеграл непосредственно выводится из моего принципа. Таким образом, все интегралы в этой трудной задаче получаются только лишь из общих принципов механики, без того чтобы понадобилось писать хотя бы одну формулу или производить замену переменных.  [c.295]


К первому классу относятся принцип возможных перемещений Бернулли, принцип сил инерции Д Аламбера, принцип наименьшего принуждения Гаусса и принцип прямейшего пути Герца. Все эти вариационные принципы можно охарактеризовать как дифференциальные принципы, поскольку они вводят в качестве характерного признака действительного движения свойство движения, которое имеет значение для одного-единственного момента или элемента времени. Для систем механики все эти принципы эквивалентны и законам- движения Ньютона, и между собою. Но все они страдают тем недостатком, что имеют смысл только для механических процессов и что их формулировка делает необходимым пользоваться специальными координатами точек рассматриваемой материальной системы. Их формулировка, в зависимости от выбора координат точки, совершенно различна, и даже, чаще всего, относительно сложна и мало наглядна.  [c.582]

Вопрос об определении места вариационных принципов механики в системе физических знаний заключается, конечно, в первую очередь в форме выражения этого принципа. Однако указанный вопрос не исчерпывается этой формой. Обычное толкование принципа наименьшего действия состоит в том, что его широкое применение в физике основано на удобной форме. Ряд авторов стоит на той точке зрения, что содержание принципа Гамильтона тождественно с содержанием основных уравнений динамики. Так, например, Кирхгоф говорит Принцип Гамильтона, д алам-беровы и лагранжевы дифференциальные уравнения поэтому совершенно равнозначны ). Такая точка зрения господствует в научной литературе XIX в. Тем не менее, отождествление содержания принципа Гамильтона и уравнений динамики представляет собой положение недостаточно обоснованное., Методологической основой этой концепции является непонимание соотношения между формой и содержанием вообще. Тот факт, что как в механике, так и вне ее принцип Гамильтона применяется в одной и той же форме, еще недостаточен для того, чтобы сделать вывод о том, что содержание этого принципа в том и другом случае одно и то же. Принцип Гамильтона выражает некоторое свойство неорганической природы, общее ряду форм движения, и постольку он применим к механическому движению как частному случаю.  [c.864]

Вариационные принципы механики, с одной стороны, имеют большое теоретическое значение, поскольку они выявляют энергетическую основу теории и устанавливают связь между различными подходами в описании проблемы теории. С другой стороны, важным является практическое значение принципов, поскольку они позволяют, во-первых, имея общие выражения для функционалов, находить дифференциальные уравнения и естественные граничные условия в любых конкретных случаях, что непосредственно в ряде случаев сделать затруднительно, а во-вторых, находить решения, минуя составление дифференциальных уравнений, при помощи так называемых прямых методов.  [c.457]

Вариационный принцип Гамильтона (общий случай). Общее уравнение динамики Даламбера—Эйлера является вариационным принципом механики, выраженным в дифференциальной форме. Важнейшим интегральным вариационным принципом аналитической механики является принцип Гамильтона, который может быть выведен из общего уравнения динамики. Пусть все связи, наложенные на систему, — идеальные. Уравнение (17) принимает вид  [c.36]

Выдающиеся результаты в области общих принципов механики получили М. В. Остроградский, В. Гамильтон, К. Гаусс и Г. Герц. Теория интегрирования уравнений динамики была разработана В. Гамильтоном, М. В. Остроградским и К. Якоби, добившихся независимо друг от друга фундаментальных результатов в этой части механики. В общей теории движения систем материальных точек глубокие исследования провел С. А. Чаплыгин. С. А. Чаплыгину принадлежит особая система дифференциальных уравнений движения систем с неголономными связями. Теория движения систем с неголопомнымн связями является одним из сравнительно новых разделов теоретической механики. Эта теория непосредственно связана с современными исследованиями свойств так называемых неголопомиых пространств, обобщающих в известном смысле пространства Лобачевского и Ри.мапа.  [c.38]

Прицип Даламбера — Лагранжа, рассмотренный в 46, принадлежит к дифференциальным вариационным принципам механики. Возможные перемещения бг точек материальной системы следует рассматривать в случае нестационарных связей  [c.184]

Вторую группу методов составляют так называемые прямые методы.. Их характерной особенностью является то, что минуя дифференциальные уравнения на основе вариационных принципов механики упругого тела строятся процедуры для отыскания числовых полей неизвестных функций в теле — перемещений, усилий, напряжений. В гл. 3 при рассмотрении двух основных принципов — Лагранжа (вариации перемещений) и Кастильяно (вариации напряжений) — уже были изложены два таких прямых метода, а именно метод Ритца (см. 3.5) и метод, основанный на принципе Кастильяно (см. 3.7). В дополнение к ним в данной главе излагаются общие основы наиболее эффективного в настоящее время прямого метода — метода конечных элементов (МКЭ). Перечисленные методы либо полностью основаны на вариационных принципах (методы второй группы), либо допускают соответствующую трактовку с использованием этих принципов (методы первой группы). Поэтому часто эти приближенные методы называют вариационными.  [c.228]


В конце XVIII в. главное внимание и усилия учёных-теоретиков были направлены на псследование и преодоление указанных математических трудностей (задачи небесной механики, развитие общей теории дифференциальных уравнений, вариационные принципы и т. д.). Исходные уравнения движения рассматривались в общем виде в связи с этим была распространена точка зрения о сводимости физических явлений к механическим движениям и о законченности механики как науки. Основная трудность усматривалась в интегрировании дифференциальных уравнений механики. Известное положение Лапласа гласило дайте начальные условия, и этого достаточно, чтобы предсказать всё будущее и восстановить всё прошедшее. Однако нужно заметить, что даже в рамках классической механики теоретическую проблему о составлении дифференциальных уравнений движения нельзя считать простой и уже принципиально разрешённой. Как раз задача о составлении уравнений движения, задача о действующих силах, т. е. о правых частях дифференциальных уравнений движения, является основной задачей физических исследований, причём даже в условиях возможных применений классической механики эта задача не разрешена в очень многих случаях. В тех же случаях, когда для простейших приложений существует необходимое приближённое решение, оно нуждается в постоянных уточнениях.  [c.27]

Очевидно, что это доказательство можно без изменения распространить также и на случай неголономных связей. Итак, мы действительно имеем дело с новым общим началом механики , как гласит заглавие статьи Гаусса. Это начало механики равноценно принципу Да-ламбера и, подобно последнему, представляет собой дифференциальный принцип, потому что оно трактует о поведении системы только в настоящий (но не в будущий или прошедший) момент времени. В соответствии с этим, здесь нет необходимости применять правила вариационного исчисления, а можно обойтись правилами обычного дифференциального исчисления для определения максимумов и минимумов.  [c.281]

В отличие от него Эйлер, начав с высказываний в том же духе, приходит к другим выводам. Исследуя фактическое применение принципа к частным задачам механики, Эйлер увидел, что найти выражение, которое должно быть максимумом или минимумом, для каждой данной чйстной задачи можно только тогда, когда уже известно решение этой задачи, проведенное исходя из обычных общих принципов механики, формулирующих не конечные цели, а причинно-следственные связи явлений. Таким образом, эвристическое значение принципа оказалось ничтожным. Он не дает возможности предвидеть или установить законы даже тех механических явлений, которые всесторонне исследуются обычными дифференциальными уравнениями движения Ньютона. Как также было отмечено Эйлером, универсальность принципа наименьшего действия даже в пределах механики не является установленной и он, Эйлер, не может сколько-нибудь уверенно оценить границы его применимости. Надо отметить, что Эйлер совершенно не рассматривал вопроса об определении характера варьируемых движений.  [c.792]

Когда мы выражаем принципы механики в интегральной форме, то, если интеграл берется по времени, поведение системы как бы рассматривается в будущий и прошедший моменты времени в отличие от принципов, выраженных в дифференциальной форме. Однако это кажущееся предвидение будущего и определение из будущего настоящего является действительно кажущимся, так как вариационные принципы легко могут быть преобразованы к такому виду, при котором время исключено (выражение принципа наименьшего действия, данное Якоби) или не входит совершенно (принцип Г ерца).  [c.869]

Прежде всего необходимо указать, что дифференциальные принципы обладают одним общим недостатком. Формулировка этих принципов всегда требует введения особых координат для исследуемой системы. Необходимость введения таких координат придает решению каждой проблемы специфически механический вид. Но дело не только в этом. Физика должна формулировать законы природы так, чтобы они не зависели от произвольного выбора исследователем системы координат. Физический закон, сформулированный нами, должен быть инвариантным относительно той или иной группы преобразований координат. Эти преобразования должны быть выражением каких-то фундаментальных свойств материального мира. Инвариантность является необходимым, хотя и недостаточным условием истинности формулированных нами физических законов. То, что те или иные законы инвариантны лишь по отношению к тем или иным преобразованиям, введенным как логическое обобщение опытных данных (преобразование Галилея — равномерного движения и сложения скоростей, преобразование Лоренца — опыта Майкельсона и т. п.), указывает на определенные границы, на сферу применения этих законов. Так, уравнение Шредингера, которое не инвариантно по отношению к лоренцовым преобразованиям, являясь аналогом уравнений классической механики, ограничено соответствующим образом в объеме охватываемых им явлений. Интегральный же принцип Гамильтона имеет то огромное преимущество, что он может быть сформулирован так, что окажется инвариантным по отношению к любым преобразованиям координатных систем.  [c.870]

Первые 6 лекций Якоби посвящает изложению основных принципов механики принципу сохранения движения центра тяжести системы, принципу живой силы, принципу площадей и принципу наименьшего действия. С 10-ой лекции Якоби развивает теорию множителя" систем обыкновенных дифференциальных уравнений, являющуюся обобщением теории эйлеров-ского интегрирующего множителя. Якоби показывает каким образом можно в целом ряде случаев построить с помощью последнего множителя" всю систему п независимых интегралов. Изложив подробно теорию этого множителя, Якоби затем применяет ее к решению ряда механических задач. С 19-ой лекции Якоби, исходя из вариационного принципа Гамильтона, излагает тот метод интегрирования уравнения с частными производными первого порядка, который известен под названием метода Якоби-Гамильтона". В следующих лекциях этот метод примендется к ряду задач, взятых главным образом из области небесной механики. В 26 лекции Якоби излагает теорию эллиптических координат и показывает их приложение к разысканию геодезических линий эллипсоида, к задаче построения карт, к выводу основной теоремы Абеля и проч. Наконец, последние лекции Якоби посвящены изложению его классических методов интегрирования нелинейных уравнений в частных производных первого порядка.  [c.4]

Я присоединил новый принцип механики, который согласуется с принципами сохранения живой силы и сохранения площадей в том отношении, что тоже дает интеграл, но в остальном он совершенно другой природы. Во-первых, он является более общим, чем они, так как он имеет место всякий раз, когда дифференциальные уравнения содерясат одни координаты во-вторых, в то время, как те принципы дают первые интегралы в форме функция от координат и их производных равна некоторой постоянной, т. е.  [c.5]

Разделение мехапич. систем на голономные и неголо-номные весьма существенно, так как к Г. с. применимы многие сравнительно простые ур-ния механики и общие принципы, к-рые не справедливы для неголопом-ных систем. Движение Г. с. может изучаться с помощью Лагранжа уравнений механики, Гамильтона уравнений, Гамильтона — Якоби уравнения, а также с помощью наименьшего действия принципа В форме Гамильтона — Остроградского или Мопертюи — Лагранжа. К Г, с. приложимы также все те общие теоремы механики и дифференциальные вариационные принципы механики, К-рые справедливы и для неголономных систем.  [c.515]


В 1743 г. был опубликован основной труд Даламбера по механике — его знаменитый Трактат о динамике . Первая часть Трактата посвящена построению аналитической статики. Здесь Даламбер фор.мулирует основные принципы механики , которыми он считает принцип инерции , принцип сложения движений и принцип равновесия . Принцип инерции сформулирован отдельно для случая иокоя и для случая равномерного прямолинейного движения. Принцип сложения движений представляет собой закон сложения скоростей по правилу параллелограмм,а. Принцип равновесия сформулирован в виде следующей теоремы Если два тела, обладающие скоростями, обратно пронорциональными их массам, имеют противоположные направления, так что одно тело не может двигаться, не сдвигая с места другое тело, то между этими телами будет иметь мест равновесие . Во второй части трактата, называемой Общий иринциидля нахождения движения многих тел, произвольным образом действующих друг на друга, а также некоторые применения этого принципа , Даламбер предложил общий метод составления дифференциальных уравнешгй движения любых материальных систем, основанный на сведении задачи динамики К статике. Здесь для любой системы материальных точек формулируется правило, названное впоследствии принципом Даламбера , согласно которому приложенные к точкам системы силы мон<но разложить на действующие , т. е. вызывающие ускорение системы, и потерянные , необходимые для равновесия системы.  [c.195]


Смотреть страницы где упоминается термин Дифференциальные принципы механики : [c.13]    [c.85]    [c.327]    [c.467]    [c.565]    [c.925]   
Смотреть главы в:

Механика  -> Дифференциальные принципы механики


Курс теоретической механики Часть2 Изд3 (1966) -- [ c.122 ]



ПОИСК



Дифференциальные вариационные принципы механики

Дифференциальные вариационные принципы механики Принцип Даламбера-Лагранжа

Дифференциальные вариационные принципы механики в теории импульсивных движений

Обобщённые импульсы. Союзное выражение кинетической энерТеоремы Донкина. Уравнения Гамильтона. Канонические уравнеОтдел III ОБЩИЕ ПРИНЦИПЫ МЕХАНИКИ XXXIV. Дифференциальные принципы

Принципы дифференциальные

Принципы механики



© 2025 Mash-xxl.info Реклама на сайте