Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Фактор Текучесть

Необходимое давление формования выбирается с учетом следующих факторов текучести материала, зависящей от типа и содержания связующего и наполнителя, степени предварительной поликонденсации связующего (содержания растворимой части смолы) и содержания влаги. В зависимости от значений текучести материала, определяемых в лабораторных условиях, выбирается давление прессования.  [c.39]

Температура и давление прессования зависят от вида перерабатываемого материала, формы и размеров изготовляемой детали. Время выдержки под прессом зависит от скорости отверждения и толщины прессуемой детали. Для большинства реактопластов время выдержки выбирают из расчета 0,5—2 мин на 1 мм толщины стенки. Технологическое время может быть сокращено вследствие предварительного подогрева материала в специальных шкафах. Давление зависит от текучести пресс-материала, скорости отверждения, толщины прессуемых деталей и других факторов.  [c.430]


Расчет на статическую прочность необходим при значительных кратковременных перегрузках. Его производят для пластичных материалов по пределам текучести От и Тт (см. табл. 5) с учетом масштабного фактора в (табл. 14) и завышенного запаса прочности [л 1 (табл. 15).  [c.369]

Чаще всего с уменьшением размера зерна предел выносливости возрастает, хотя в ряде работ показано, что измельчение структуры металла не всегда приводит к изменению долговечности. При анализе влияния структурного фактора на циклическую прочность необходимо иметь в виду, что закономерности разрушения металлических материалов при циклическом и ст атическом нагружении имеют много общего. Для циклического нагружения зависимость предела усталости стк от размера зерна можно выразить формулой, аналогичной зависимости предела текучести от размера зерна  [c.78]

Для замены сложного напряженного состояния одноосным обычно принимается какая-либо гипотеза о том, какой фактор играет решающую роль в возникновении предельного напряженного состояния, т. е. что является критерием возникновения текучести материала или критерием разрушения, как эта замена отражается в расчетах.  [c.92]

Влияние различных факторов на механические свойства материалов. Экспериментами установлено, что при повышении скорости нагружения и скорости деформирования повышаются предел текучести и предел прочности. При повышении температуры особенно ощутимой является ползучесть (см. 3.9). При высоких температурах более явственными становятся вязкие (пластические) свойства, тогда как при пониженных температурах наблюдается охрупчивание. Существенно влияние на механические свойства металлов химического состава. Например, малые легирующие добавки (хром, никель, молибден и др.) изменяют механические свойства сталей, дают возможность создавать материалы с высокой проч-  [c.142]

Размер зерна оказывает влияние на все элементы кривой а—е (см. рис. 138, 139,6 и 145), однако влияние этого фактора на предел упругости и предел текучести особенно заметно (рис. 146,а). Предел упругости А1 в зависимости от величины зерна изменяется от 1,5 до 3,5 МПа, в то время как для монокристалла эта величина составляет 0,9 МПа.  [c.238]


Трудности определения величины сопротивления деформации вполне очевидны. Поэтому в этом разделе в качестве характеристик сопротивления деформации будет использованы предел текучести, предел прочности и твердость НВ, характеризующая предел прочности металлов в силу установленной и вполне определенной связи между пределом прочности и твердостью. Это не будет оказывать качественного влияния на общность выводов о влиянии рассматриваемой группы факторов на напряжение течения.  [c.462]

К детали, изготовленной из пластичного материала, предъявляют требование, чтобы она обладала достаточной прочностью в смысле усталости и в ней не возникали остаточные деформации. Коэффициент запаса по текучести для детали определяют по формуле (22.21), как и для лабораторного образца, так как в этом случае концентрации напряжений, масштабный фактор и состояние поверхности детали не учитывают.  [c.595]

Существенную роль в образовании хрупкого разрушения играет исходное состояние металла, зависящее от металлургических процессов получения и технологии его дальнейшей обработки. Увеличение размера зерен и ослабление прочности их границ приводит к уменьшению 5к и, следовательно, к повышению критической температуры и снижению уровня критических напряжений при хрупком разрушении (см. рис. 1.5). Повышение сопротивления срезу и уменьшение сопротивления отрыву в результате повышения содержания углерода в стали, понижения температуры отпуска, а также легирования (повышающего отношение предела текучести 5т к сопротивлению разрыву Sk) увеличивают склонность к хрупкому разрушению. Этот эффект наблюдается также после деформационного старения при длительной службе металла в напряженном состоянии при повышенной температуре, наводороживания, радиационного воздействия, накопления циклического и коррозионного повреждений. Указанные эксплуатационные факторы понижают пластичность, прочность границ зерен и сопротивление разрыву.  [c.14]

Например, при шлифовании титановых сплавов в поверхностном слое возникают растягивающие остаточные напряжения. Они могут достигнуть (а иногда и превысить) предела текучести материала. Исследования показали [1021, что в образовании остаточных напряжений в этом случае доминирующую роль играет тепловой фактор.  [c.74]

При переходе от моно- к поликристаллам различие в значениях т, обусловливает соответствующее поведение пределов текучести поли-кристаллических металлов. Однако следует учитывать, что в некоторой степени различие между тремя основными типами решеток в поликристаллах скрадывается тем, что ГПУ- и ГЦК-решетки имеют существенно более высокие значения фактора ориентировки Тейлора. На рис. 1.7 показано влияние температуры на предел текучести металлов с основными типами решеток (ГЦК, ОЦК, ГПУ)  [c.17]

Как видно из профилограмм (рис. 4.1, б), длина рабочей (деформируемой) части образца вначале увеличивается от 20 до 25 мм, затем, когда деформация локализуется в шейке, начинает постепенно уменьшаться и непосредственно перед разрушением может быть оценена как равная 5 мм (см. профилограмму 17). В данном случае рабочая длина измерялась от точки расхож-. дения профилограмм 16 и 17 таким образом, измерялся как бы участок, отвечающий деформации, дополнительный по отношению к предыдущей профилограмме. В соответствии с этими измерениями в точке 17 диаграммы нагружения скорость деформации должна быть в 4 раза больше, чем исходная. Скорость деформации, по литературным данным [368, 369], незначительно влияет на предел текучести и нужны изменения ее на порядки, чтобы это влияние стало заметным. Однако и при таких изменениях эффект зависит еще от температуры и природы конкретного материала (тип решетки, энергия дефекта упаковки и т. д.). Результаты проведенного авторами исследования на молибдене влияния скорости деформации в интервале от 10 до 10 с (рис. 4.6) на пределы упругости, текучести и напряжение течения при е = 0,1 согласуются с данными указанных работ. Таким образом, можно сделать вывод, что изменение в шейке скорости деформации в пределах одного порядка может не учитываться даже при 20 °С, а при 400 °С все три порядка изменения скорости не дают эффекта. Отсюда следует, что скоростной фактор вряд ли может быть ответственным за отклонение вверх кривых упрочнения 1 и 3 (см. рис. 4.5).  [c.167]


Поскольку повышение предела текучести, характеризующего сопротивление большой (макропластической) деформации, не всегда сопровождается ростом предела упругости, исследование закономерностей проявления микропластической деформации в зависимости от различных факторов, формирующих структуру материала представляет большой практический интерес.  [c.37]

Созданию высокой химической активности в вершине трещины содействует и механический фактор. Как известно, механические напряжения в вершине трещины очень высоки. Даже при низких значениях интенсивности напряжений материал в вершине трещины находится под действием напряжений, близких к пределу текучести. Это создает благоприятные условия для прохождения в вершине трещины локальных деформаций, в результате чего на кромках ступеней сдвига (в местах выхода дислокаций на поверхность) плотность анодного тока может резко увеличиваться. Оба фактора не только способствуют повышению плотности анодного тока, но и содействуют в этом друг другу. Например, если структура и состав сплава таковы, что в нем имеются выделения по границам зерен, отличающиеся по электрохимическим характеристикам от матрицы, то потенциальная чувствительность к межкристаллитной коррозии может быть реализована путем прохождения в вершине трещины пластических деформаций, разрушения пассивной пленки и активации анодных процессов по границам зерен. Это же положение относится в полной мере и к сегрегациям внутри твердого раствора, когда суще-  [c.57]

Структура материала является определяющим фактором в проявлении влияния изменяемой частоты приложения нагрузки на скорость роста трещины. Поэтому разные материалы в разных областях усталостного разрущения имеют различия в своей реакции на изменение частоты нагружения. В первую очередь это выражается через изменение циклического предела текучести, который влияет на размер зоны пластической деформации у кончика трещины при прочих равных условиях. Влияние на размер зоны скорости деформации 8, температуры Т, а также одновременное влияние этих параметров на процессы разрушения материала внутри зоны в совокупности определяют скорость роста трещины. Поэтому с позиций синергетики следует рассматривать влияние на скорость роста трещины частоты нагружения в виде  [c.340]

Отметик, что графики рис. 7.21—7.24 носят приближенный характер. Желательно их дальнейшее уточнение. В теории необходимо получить более аккуратные решения с полным учетом граничных условий, учетом неправильностей произвол Ьной формы, учетом пластичности материала и неоднородности и исходного состояния. В эксперименте необходимы широкие исследования при относительно постоянных условиях с привлечением статистической теории, чтобы учесть влияние большинства параметров. При этом, вероятно, следует дифференцировать эксперименты по целевой направленности. Для проверки теории необходимо исключать большинство влияющих факторов текучесть краев оболочек, общую пластическую деформа-  [c.136]

Понижение температуры практически не изменяет сопротивления отрт.шу 5от (разрушающего напряжения), но повышает сопротивление пластической деформации о.,. (предел текучести). Поэтому металлы, вязкие при сравнительно высоких температурах, могут при низких температурах разруи1аться хрупко. В указанных условиях сопротивление отрыву достигается при напряжениях меньших, чем предел текучести. Точка / пересечения кривых и а,., соответству-юп ан температуре перехода металла от вязкого разрушения к хрупкому, получила название критической температуры хрупкости или порога хладноломкости (/п. х)- Чем выше скорость деформации, тем больше склонность металла к хрупкому разрушению. Все концентраторы напряжений способствуют хрупкому разрушению. С увеличением остроты и глубины надреза склонность к хрупкому разрушению возрастает. Чем больше размеры изделия, тем больше вероятность хрупкого разрушения (масштабный фактор).  [c.53]

Средства повышения долговечности. Основные факторы, лимитирующие долговечность и надежность машин, следующие поломки деталей износ трущихся поверхностей повреждения поверхностей в результате действия контактных напряжений, наклепа и коррозии пластические деформации деталей, вызываемые местным или общим переходом напряжений за предел текучести или (при повышенных темпсратура.х) ползучестью.  [c.28]

К числу упрочняющих факторов относятся процессы тренировки материала действием кратковременных Напряжении, превосходящих предел текучести деформационное упрочнение, вызываемое структурными изменениями в напряженных микрообъемах материала самопроизвольно протекающие процессы старения, сопровождающиеся кристаллической перестройкой материала и рассеиванием внутренних напряжений. Положительно влияет приспособляемость конструкции — общие плИ местные Пластические дефор.мапии, возникающие под действием Перегрузок п вызывающие перераспределение нагрузок. Определенный упрочняющий эффект дает износ первых стадий (сглаживание микронеровностей), способствующий увеличению фактической площади контактирующих поверхностей, снижению пиков давлений и выравниванию нагрузки на поверхности.  [c.150]

Напряжения второго рода возникают вследствие неоднородности кристаллического строения и различия физико-механических свойств фаз и структур сплавов. Фазы, например в черных металлах, феррит, аустенит, цементит, графит обладают различной кристаллической решеткой их плотность, прочность и упругость, теплопроводность, теплоемкость, характеристики теплового расширения различные. Структуры, представляющие собой смесь фаз, например перлит в сталях, а также закалочные структуры, в свою очередь, обладают отличными от смежных структур свойствами. Различие кристаллической ориентации зерен металла обусловливает анизотропию физико-механических свойств микрообъемов металла. В результате совместного действия этих факторов возникают внутри-зеренные и межзеренные напряжения еще в нронессе первичной кристаллизации и при последующих прев эащениях во время охлаждения. При высоких температурах напряжения уравновешиваются благодаря пластичности материала. Однако они проявляются в низкотемпературной области, возникая при фазовой перекристаллизации и выпадении вторичных и третичных фаз (фазовый наклеп), при каждом общем или местном повышении температуры (из-за различия теплопроводности и коэффициентов линейного расширения структурных составляющих), приложении внешних нагрузок (из-за различия и анизотропии механических свойств), а также нрп наклепе, наступающем в результате общего или местного перехода напряжений за предел текучести материала.  [c.152]


Предел текучести не пропорционален Величиш.1 Для различных материлов составляют (0.5 -ь 0,95) Стц. Поэтому правильнее харажернзовать удельную прочность не фактором стд/у, а факторо.м удельный предел текучести).  [c.198]

В-третьих, следует отметить технологические факторы. Поверхностный слой всегда в большей или меньщей степени поврежден предшествующе обработкой. Механическая обработка представляет собой по существу процесс пластической деформации и разрушения металла, она сопровождается срезом зерен, выкрашиванием и вырывом отдельных зерен, появлением микротрещин и возникновением в поверхностном и приповерхностном слоях высоких остаточных напряжений разрыва, близких к пределу текучести материала. Тепловыделение при механической обработке вызывает частичную рекристаллизацию поверхностного слоя, а иногда сопровождается фазовыми и структурными превращениями.  [c.292]

В зависимости от сочетания различного рода неблагоприятных факторов при эксплуатации сварных конструкций имеют место вязкие, квазивязкие, хрупкие и квазихрупкие разрушения. Вязкие разрушения происходят в условиях общей текучести ослабленного дефектом сечения шва. Квазивязкие — когда большая часть ослабленного сечения сварного шва охвачена пластической деформацией, а остальная часть работает упруго. Хрупкие разрушения протекают при низком уровне приложенных напряжений на стадии упругой работы конструкций, а квазихрупкие — когда незначительная часть ослабленного сечения вблизи дефекта охвачена пластической деформацией. Термин квази в данном случае означает приближение к хрупкому либо вязкому разрушению,  [c.40]

В работе /31 / приведены математические выражения для компонент, входящих в формулу (5.6), что дало основание не показывать их в настоящем разделе в силу громоздкости. Однако графическая реализация результатов вычислений в виде зависимости параметра от нагруженности сварного соединения а р, его геометрии и местоположения поры приведена на рис. 5.2. Последние два фактора характеризуются поправочной функцией F, которая находится путем сопоставления упругого решения для тел бесконечных и конечных размеров и для решений в упругой стадии работы при различных положениях поры в швах. В дальнейшем будут приведены расчетые формулы для определения F для единичных дефектов и цепочки пор. При локальном пластическом деформировании металла в окрестности поры параметр уменьшается с увеличением поправочной функции F. В условиях общей текучести (рис. 5.2, б) влияние поправочной функции F на критические напряжения а р незначительно.  [c.130]

В общем случае при гф—1(р оо) для определения коэффициента запаса прочности должен быть известен предел выносливости детали (а д) при цикле напряжений, подобном рабочему циклу в опасной точке, проверяемой на прочность детали. Величина а,.д определяется из диаграммы предельных напряжений (рис. 12-8), которая получается из диаграммы пределов выносливости, если провести на ней-линию ВК (линию пределов текучести). Точки диаграммы, лежащие в области ОАСК, соответствуют безопасным циклам, для которых Оп,ах меньше как предела выносливости а д, так и предела текучести. Одним ИЗ возможных способов схематизации диаграммы предельных напряжений является замена кривой АС отрезком прямой АМ, отсекающей на оси абсцисс некоторый отрезок з, величина которого определяется путем обработки имеющихся экспериментальных данных о пределах выносливости при различных циклах . Для всех марок стали независимо от значений факторов, снижающих предел выносливости (ра == К рма Рпо или Рмтрпт) КЗК ДЛЯ ЦИКЛОВ НОрМЗЛЬ-  [c.305]

Таким образом, механическое состояние материала в точке зависит в первую очередь от напряженного состояния в этой точке, хотя и не определяется им полностью. Так, например, при наличии температурного воздействия на механическом состоянии материала заметно сказывается фактор времени. При малом времени нагружения состояние материала можно рассматривать как упругое, а при большом — как пластическое. Но, пожалуй, более важным является то, что само понятие механического состояния в точке не свободно от противоречий с принятым ранее предположением о непрерывности среды. Это обнаруживается в первую очередь при изучении вопросов разрушения, поскольку процесс образования трещин в металлах тесно связан с их молекулярной и кристаллической структурой, а само разрушение определяется не только напряженным состоянием, но в ряде случаев характеризуется также и историей нагружения, т. е. зависит от того, в какой последовательности прикладываются силы. В качестве примера достаточно указать на разрушение при периодически изме-няюш,ихся нагрузках. Многократное нагружение и разгрузка могут привести к разрушению, хотя возникающие напряжения остаются существенно меньшими предела текучести.  [c.293]

Для расчета прочности элементов конструкций в квазихрупком и хрупком состояниях с учетом основных конструктивных, технологических и эксплуатационных факторов Н. А. Махутовым на основе анализа опытных данных предложены температурные зависимости характеристик прочности (пределов текучести, прочности, сопротивления разрыву, критических напряжений и коэффициентов интенсивности напряжений).  [c.41]

В то же время тепловой эффект от резания металла вызывает появление остаточных растягиваю[цих напряжений. Так как оба фактора действуют совместно и одновременно, то знак результирующего остаточного напряжения в поверхностном слое металла зависит от того, какой из факторов превалирует. Заметим, что величина остаточных напряжений может превосходить и предел текучести для одноосного напряженного состояния. Благоприятными остаточными напряжениями на поверхности с точки зрения прочности и износостойкости являются сжимающие, а растягивающие нагфяжения способствуют росту гю-верхностных трещин, дефектов и поверхностному разру1лению (изнашиванию) материала [32].  [c.50]

Даже при осевом нагружении стержня таких факторов можно указать несколько. Можно полагать, что опасное состояние возникает при достижении нормальными напряжениями предела текучести или предела прочности. С другой стороны, можно полагать, что опасное состояние возникает, когда наибольшее относительное удлинение достигает определенного значения. Возможно и третье предположение — появление опасного состояния связано с тем, что касательные напряжения достигают определенного значения, Возникновенне опасного состояния можно связать также с достижением определенного значения величины энергии, накапливаемой в материале при деформации.  [c.118]

ПИИ нагрузки рост наибольших местных напряжений при достижении предела текучести приостанавливается вследствие местной текучести материала, а в остальной части поперечного сечения напряжения будут возрастать. Следовательно, пластичность материала способствует выравниванию напряжений. Когда напряжения достигнут по всему сечению, их распределение можно считать равномерным. Для хрупких мaтepиaJюв при статическом нагружении концентрация напряжений приводит к снижению прочности, так как отсутствует фактор, смягчающий влияние концентрации напряжений, а именно текучесть материала.  [c.21]


В таком структурном состоянии материал способен сравнительно равномерно поглощать подводимую энергию всем на-гружаемы.м объемом. Иными словами, эффект упрочнения после МТО вызывается главным образом увеличением параметра Vs [уравнение (10), гл. I]. При этом другой структурный фактор, ответственный за упрочнение,— параметр п, отражающий долю предельной энергоемкости, поглощенную в среднем каждым единичным объемом внутри Ка,— существенно не увеличивается. В связи с этим не должно происходить и существенного увеличения предела прочности и предела текучести этих материалов, что подтверждается экспериментом. Но в то же время относительно низкое значение п (по сравнению с его предельным значением) обеспечивает стабильность получаемого эффекта упрочнения и его сохранение при весьма длительных сроках службы материала. Как уже отмечалось (гл. I), при высоких значениях п, характерных для материалов с высокой плотностью дислокаций, эффект упрочнения сказывается главным образом на критериях, характеризующих кратковременную прочность (предел прочности, предел текучести и т. д.). При действии длительных нагрузок эффект упрочнения не является устойчивым вследствие сильного предварительного искажения кристаллической рещетки и образования метастабильных фаз.  [c.40]

В вопросе о физической природе предела текучести в настоящее время отдается предпочтение динамической теории, суть которой кратко сводится к тому, что все особенности начального этапа пластической деформации определяются взаимодействием двух факторов исходной плотностью подвижных дислокаций и зависимостью скорости дислокаций от напряжения. Однако для интересующего нас случая ОЦК-ме-таллов, да и для некоторых ГПУ-металлов, нельзя забывать о механизме Коттрелла [4, 52, 53], который исторически был предложен рань-ще динамической теории.  [c.37]

Задача выбора предпочтительного варианта объяснения температурной зависимости предела текучести усложняется тем, что модель редиссоциации использует математический аппарат, развитый ранее для напряжений Пайерлса. Другими словами, эти две модели становятся неразличимыми при обработке экспериментальных данных, т. е. эксперимент не может быть достоверно трактован в пользу только одной из них. И поэтому надо полагать, что, скорее всего, оба фактора здесь действуют одновременно и возможно даже усиливают друг друга. Поэтому понятны попытки многих авторов объединить несколько механизмов. Например, в работе Франка и Шестока [96] представления о редиссоциаиии расщепленной винтовой дислокации объединяются с механизмом примесного упрочнения. Согласно [96], атомы внедрения стабилизируют сидячую дислокационную конфигурацию и понижают вероятность образования перетяжек, необходимых для движения дислокации.  [c.49]

Основные уравнения указанных теорий дисперсного упрочнения приведены в табл. 6. Экспериментальная проверка этих теорий затруднительна, так как необходимо четко выделить вклад дисперсного упрочнения, исключив при этом влияние таких параметров, как границы зерен, субструктура, твердорастворное упрочнение элементами замещения и элементами внедрения и т. д. Поэтому большая часть экспериментальных работ по проверке теорий дисперсного упрочнения выполнена на монокристаллах сплавов [141,146, 169]. Достаточно корректные результаты, как показано в работе [170], можно получить при исследовании некоторых поликриеталлических сплавов, например ниобиевых, механические свойства которых несущественно зависят от размера зерна и субзеренной структуры [171]. Влияние остальных факторов на предел текучести может быть сведено до минимума соот-  [c.75]

Рассмотрев многочисленные факторы, влияющие на предел текучести и сопутствующие ему, необходимо еще раз подчеркнуть условность этого понятия, о чем наглядно свидетельствуют результаты экспериментов по микродеформации. Широко применяемые в настоящее время механические испытания имеют обычно порог чувствительности по деформации порядка 10 , что соответствует примерно толщине линии на записываемых диаграммах нагружения, но определяется не толщиной линии, а точностью изготовления нагружающего устройства. Интервал деформации от 10 (или 0,1 %) и выше, который называется областью макродеформации, наиболее изучен для большинства известных материалов. Различают еще области микродеформации (10 —10 ) и миллимикродеформации (ниже 10 , но не менее 10 ).  [c.94]

Границы между отдельными областями механизмов разрушения определялись, в основном, по результатам фрактографиче-ских наблюдений, например границы между сколом и пластичным разрушением. Положение других границ уточнялось с помощью дополнительной информации, например, о скольжении. Верхняя граница скола, обусловленного скольжением (скола 2), соответствует началу общей текучести при испытании на микротвердость, растяжение или сжатие при гидростатическом давлении. В других случаях использованы результаты изучения монокристаллов, например напряжения течения по трудным системам скольжения. Граница между сколом 1 (скол от дефектов) и сколом 2 определяется либо по напряжению течения по легкой системе скольжения (исправленному на соответствующий фактор Тейлора при испытаниях поликристаллов), либо по напряжению, необходимому для распространения трещины длиной, равной размеру зерна. Граница между сколом 1 и межзеренным разрушением при ползучести является линией, при которой скорость ползучести превышает с  [c.212]

Схемы и описания установок даны в [183, 184]. Для всех методов испытаний был выбран единый цилиндрический образец. В работах Г. М. Сорокина показано, что механизм разрушения при ударно-абразивном изнашивании определяется большим количеством факторов энергией удара, физико-механическими характеристиками абразива, составом и свойствами испытуемого материала, степенью закрепленности абразивных частиц и т. д. [183—185]. Общепринятые характеристики прочности и пластичности (предел текучести, предел прочности, твердость, относительное удлинение, относительное сужение, ударная вязкость) неоднозначно влияют на износостойкость при ударно-абразивном изнашивании. Повышение прочности или пластичности сказывается благоприятно только до определенного порогового уровня. Дальнейшее увеличение этих характеристик приводцт к возрастанию износа, но причины понижения износостойкости различны. Если рост прочности сопровождается повышен115м вязкохрупкого перехода, то износ увеличивается за счет интенсификации хрупкого выкрашивания. Значительное повышение пластич-. ности приводит к падению износостойкости из-за активного пластического течения и сопутствующего наклепа. По-видимому, максимальной износостойкостью обладают сплавы, находящиеся На границе хрупкого и вязкого разрушения.  [c.109]

В. Н. Кащеев ш М. М. Тененбаум считают, что процесс изнашивания при трении в абразивной массе определяется многими взаимо-влняющими факторами [187, 191—194]. Для процесса характерна малая площадь контакта абразивной частицы с рабочей поверхностью, что вызывает значительные напряжения, величины которых зависят от формы и механических свойств частицы, а также от прижимающей силы. При этом возможны два случая если возникающие напряжения превышают предел упругости, но ниже предела текучести, то происходит усталостное разрушение если уровень напряжений выше предела текучести, то изнашивание сопровождается пластической деформацией микрообъемов и происходит последефор-мационное разрушение [187, 193]. Иногда отмечается нроцесс шаржирования [191, 192, 194], при котором за счет уменьшения шероховатости поверхности износ резко снижается. Его величина может даже принимать отрицательное значение, т. е. размеры и масса образца будут увеличиваться. Причинами шаржирования, по-видимо-му, являются неизбеншое ударное действие острых абразивных частиц, их дробление и некоторые процессы адгезионного характера. Эффект шаржирования зависит от скорости перемещения абразивной массы и соотношения твердостей абразива и образца. Вероятно, он может наблюдаться только у мягких, пластичных покрытий.  [c.112]

Указанные данные были получены при одних и тех же относительных амплитудах напряжений 0,7а. . Однако изменение состава сплава за счет легирующих элементов, а также за счет примесей неизбежно влечет повышение (как правило, в пределах одного фазового состава) его предела текучести. При равной относительной амплитуде напряжений в долях от предела текучести абсолютный уровень максимальных напряжений в цикле изменялся пропорционально фактическому пределу текучести. Таким образом, на изменение долговечности сплавов влияли два фактора изменение химического состава и изменение уровня напряжений. Так как при проведении циклических испытаний (/7 = 0) надрезанных образцов с а = 4,8 в вершине надреза реализовывался симметричный жесткий режим нагружения, а уровень деформаций там был пропорционален амплитуде напряжений а (при постоянном отношении о/а = 0,7), уравнения Коффина можно записать для данного частного случая в виде аМ " = С. На рис. 78 показана зависимость малоцикловой долговечности сплавов надрезанных образцов в отожженном состоянии (ПТ-ЗВ с 2,5 % А1, ПТ-ЗВ, ПТ-71 /1, ВТ5-1, ВТ6С) при амплитуде напряжений 0,7а (/7=0) и надрезе с а = 4,8 от предела текучести Стц.г-  [c.121]


Этот феномен подробно исследован на процессе замедленного хрупкого разрушения сталей [ИЗ]. Только после определенного уровня снижения когезивной прочности наблюдается чувствительность границ зерен к растяжению с низкой скоростью, и трещина распространяется по границам зерен квазихрупко. Низкая скорость деформации при растяжении является методом выявления существующей чувствительности границ к условиям нагружения, а не фактором или условием, вызывающим эту чувствительность. При этом такие механические характеристики, как пределы прочности и текучести, удлинение и сужение у сталей, проявляющих и не проявляющих чувствительности к низкой скорости деформации, не имеют принципиального различия.  [c.373]


Смотреть страницы где упоминается термин Фактор Текучесть : [c.336]    [c.349]    [c.47]    [c.209]    [c.112]    [c.433]    [c.250]    [c.42]    [c.120]    [c.343]   
Машиностроение Энциклопедический справочник Раздел 3 Том 7 (1949) -- [ c.678 ]



ПОИСК



Текучесть



© 2025 Mash-xxl.info Реклама на сайте