Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Структура субзеренная

Однако против этого представления можно сделать возражение, заключающееся в том, что переползание дислокаций ведет к деструкции структуры субзерна, поскольку дислокации, образующие параллельные соседние границы (рис. 12.9), переползают в противоположных направлениях (на рисунке направления переползания обозначены стрелками). Поэтому трудно себе представить, чтобы "стационарная" (устойчивая) структура субзерен могла существовать без размножения и скольжения дислокаций. Следовательно, субзеренная субструктура, вероятно, может принимать участие в процессе только относительно короткое время после приложения напряжения и может быть причиной продолжительной стадии неустановившейся ползучести, в течение которой скорость ползучести со временем падает до достижения по-  [c.189]


Однако следует учитывать, что свойства сильно зависят от дисперсности и характера расположения фаз, их тонкого субзеренного строения, величины зерна и т. д. Так, в сплавах с гетерогенной структурой (а + Р) измельчение частиц присутствующих фаз приводит к существенному отклонению от прямолинейной зависимости (штриховая линия на рис, 60, в).  [c.100]

Заметное падение циклической прочности наблюдается лишь при очень крупном зерне (> 100 мкм), что обусловлено пониженным сопротивлением внутризеренным сдвигам вследствие огрубления структуры зерна (укрупнение субзерен и внутризеренных блоков).  [c.293]

Горячая деформация при 7 > (0,6Ч-0,7) Гпл сопровождается не только интенсивной перестройкой дислокационной структуры и сохранением устойчивых при высоких температурах дислокационных структур, но и миграцией границ зерен и субзерен, связанных с развитием разупрочняющих процессов (рекристаллизации).  [c.256]

Градиент наклепа может образоваться и в том случае, когда у границ зерен сформировалась ячеистая структура, но размеры ячеек и соответственно размеры субзерен оказываются резко различными по обе стороны границы. В этом случае граница будет мигрировать в то зерно, в котором размеры субзерен меньше.  [c.317]

Причина этого заключается в том, что наклеп таких материалов даже на высокие степени (поверхностная обдирка, размол и т. п.) сопровождается фактически диспергированием структуры. Плотность дислокаций в объеме зерен (субзерен) изменяется при этом незначительно. Поэтому основной движущей силой рекристаллизации после деформации таких материалов является только стремление к минимуму зернограничной энергии. Вклад объемной энергии в первичную рекристаллизацию фактически отсутствует.  [c.344]

ОБЪЕДИНЕННАЯ ТЕОРИЯ ОРИЕНТИРОВАННЫХ ЗАРОЖДЕНИЙ И РОСТА. Электронномикроскопические исследования дислокационной структуры и кристаллографической ориентировки очень малых объемов (дислокационных ячеек, субзерен, зародышей рекристаллизации, приграничных объемов и т.д.) показали, что действительно ориентировка зародышей рекристаллизации всегда связана определенным образом с ориентировкой тех локальных объемов деформированной матрицы, в которых они образовывались, точнее, практически повторяют эту ориентировку (см. гл. VII). Но скорость роста различных зародышей в текстурованной матрице различна.  [c.407]

Поэтому среди параметров, по которым оценивается структура, образующаяся в процессе деформации при ВТМО, очень важным является ее термическая устойчивость. Структура и соответственно свойства фазы, формирующейся при закалке (мартенсит), во многом наследует структуру исходной фазы (субзеренную структуру, дислокационные скопления и т.д.). Поэтому важно в процессе нагрева под закалку сохранить оптимальную структуру, сформировавшуюся при деформации.  [c.538]


Начало формирования субзеренной структуры за счет взаимодействия дислокаций с участием поперечного  [c.538]

Субзерна несколько вытянуты вдоль направления деформации границы субзерен утолщены и характеризуются повышенной плотностью дислокаций (т. е. субзерна носят еще следы ячеистой структуры).  [c.539]

Таким образом характер субзеренной структуры— размеры субзерен, структура субграниц и плотность дислокаций в них — играет очень большую роль.  [c.539]

Повышение температуры деформации на второй стадии приводит к увеличению размера субзерен, повышению совершенства структуры их субграниц и уменьшению плотности дислокаций в субграницах. Результатом этого является повышение термической стабильности структуры. Но зависимость структуры, формирующейся в результате ВТМО, и структурно-чувствительных механических свойств от температуры нагрева под деформацию имеет экстремальный характер. Связано это с тем, что температура нагрева под деформацию влияет на ряд важных характеристик.  [c.540]

При деформировании образцов при повышенной температуре субструктура наблюдается сразу же после деформирования стали (фиг. 7, г), причем по своему характеру она мало чем отличается от структуры, получаемой при деформировании при комнатной температуре и последующем отжиге (фиг. 7, в). После 100-часовой выдержки деформированных образцов при температуре 600° границы субзерен выявляются наиболее четко и практически во всех зернах. Это свидетельствует о том, что субструктура образуется уже непосредственно в процессе высокотемпературного деформирования стали последующая же температурная выдержка приводит лишь к развитию полигональной сетки во всем обрабатываемом объеме и к стабилизации полученной субструктуры в результате блокирования дислокационных стенок атомами растворенных примесей [68].  [c.38]

Технологические режимы включают обычно холодную обработку, с возвратом, циклическую обработку, крип или горячую обработку с динамическим и статическим возвратом [262, 275]. С увеличением сте-. пени деформации в каждом из них, исключая возврат, наблюдаются. повышение плотности дислокаций и перестройка дислокационной структуры, приводящая, в конечном итоге, к образованию ячеистой структуры, изменение размеров которой имеет тенденцию к насыщению [9].. Напряжение течения обычно пропорционально р независимо от степени развития ячеистой структуры Более того, дислокационные ячейки (субзерна) увеличиваются, плотность дислокаций в них уменьшается,, границы ячеек (субзерен) становятся более узкими и упорядоченными,, когда изменяется любой из следующих факторов — температура и время деформации увеличиваются, а напряжение, скорость и амплитуда деформации уменьшаются [9, 275].  [c.127]

IV схема (рис. 2) описывает динамику дислокаций при наличии диффузионного слоя, образовавшегося в процессе дополнительного отжига. В этом случае поверхностные источники дислокаций оказываются блокированными, атомами легирующего элемента, в результате чего срабатывание их замедляется, они становятся малоэффективными и наступает упрочнение (-(-). В поверхностных слоях наблюдается субзеренная структура с равномерным распределением примесных атомов.  [c.107]

Всесторонний анализ структуры и свойств материалов с покрытиями поможет реализовать на практике комбинированное упрочнение, при котором покрытие обеспечивает," например, повышенную износостойкость, жаростойкость, а объемно упрочненный основной металл обладает достаточным запасом трещиностойкости. При этом успешно используются все главные дислокационные механизмы управления структурой создание субзерен, полигонов ячеек и зеренных микроструктурных барьеров — для упрочнения объема выделение дисперсных фаз, введение растворенных атомов замещения и внедрения и увеличение плотности дислокаций — для формирования специальных свойств поверхности. Полученное таким образом композиционное изделие будет удовлетворять требованию гармоничного сочетания надежности долговечности прочности,  [c.193]

Оба параметра ( й и ц ) характеризуют процесс формирования дислокационной структуры материала. Существенно подчеркнуть, что с возрастанием интенсивности пластической деформации комплекс (Да / 2ц) играет более заметную роль в размере субзерен, которые становятся более мелкими. Имея в виду, что при низком уровне пластической деформации влияние напряжений на размеры субзерен описывается единственным образом, можно считать, что для разного уровня напряжений размер субзерен должен сильно изменяться.  [c.250]


До сих пор мы принимали образование субструктуры как экспериментально установленный факт и не задавались вопросом, почему структура субзерен или субструктура вообще возникаете Можно также задать вопрос, почему в процессе пластической деформации при низких гомологических температурах возникает ячеистая структура. Иными словами, почему дислокации, образовавшиеся при пластической деформации, не распределены равномерно. Ответ на Этот Вопрос дал Холт [140]. Он показал/ что статистически равномерное распределение винтовых дислокаций является неустойчивым, так как связанная с ним упругая энергия высока. Поэтому такое распределение дислокаций переходит в неоднородное с модулированной дислокационной плотностью. Процесс образования модулированной дислокационной структуры ана-  [c.73]

Полигонизация — процесс образования разделенных малоугловыми границами субзерен. Полигонизация представляет собой развитие возникшей при пластической деформации ячеистой структуры. Размытые, объемные сплетения дислокаций вокруг ячеек становятся более узкими и плоскими и превращаются в субграницы, а ячейки — в субзерна. Процесс развивается при температурах более высоких, чем температура отдыха. Субграницы образуются в результате поперечного скольжения и переползания дислокаций в направлении достройки или сокращения экстраплоскостей. Хао тически распределенные дислокации выстраиваются в вертикаль ные стенки. Тело субзерен практически очищается от дислокаций Решетки соседних субзерен получают небольшую разориентиров ку (до нескольких градусов). Скорость полигонизации контроли руется относительно медленной скоростью переползания дислока ций, которая определяется скоростью перемещения вакансий Примеси, образующие на дислокациях облака Коттрелла, тормо зят полигонизацию. Субзерна при продолжительной выдержке и повышении температуры склонны к коалесценции, т. е. укрупнению. Движущей силой в этом случае служит разность энергий субграниц до и после коалесценции. При дальнейшем повышении температуры получает развитие процесс первичной рекристаллизации.  [c.511]

Использование комплекса физических методов исследования показало, что при определенном химическом составе стали происходит образование ячеистой структуры в виде объемных ячеек из карбидов V . Мультифракталь-ный анализ позволил установить, что этот переход контролируется достижением предельного значения показателя скрытого упорядочения структуры, определяемого 5 =0,21. Так что при 8 <0,21 сопротивление пластической деформации контролируется размером зерен, а при 5s >0,21 - размером субзерен.  [c.127]

Полезную информацию дает изучение особенностей ячеистой дислокационной структуры деформированных металлов п сплавов и субзеренной структуры, полигонизованыых и рекристаллизованных металлов, в том числе для разных текстурных компонент. Можно наблюдать и фиксировать на кинопленку перераспределение дислокаций при нагревании и деформировании фольги непосредственно в электронном микроскопе.  [c.99]

Просвечивающая электронная микроскопия позволяет опреде -лять основные количественные характеристики дислокационной структуры вектор Бюргёрса отдельных дислокаций, плотность дислокаций (но числу точек выхода дислокаций на 1 см поверхности фольги или по суммарной длине линий дислокаций в единице объема фольги), ширину растянутых дислокаций, размеры субзерен, энергию дефектов упаковки и др.  [c.99]

Дислокации могут возникать во время кристаллизации из-за ра.эных случайностей роста кристаллов. Эти случайности приводят к образованию мозаичной структуры — кристалл состоит из взаимно разориентированных субзерен (блоков). Одна из возможных причин образования субзерен — изгиб очень нежных ветвей денд-ритов из-за конвекционных токов, градиента температур и действия других факторов. Когда слегка разориентированные ветви дендри-тов срастаются, на границе между ними возникают дислокации. Поверхность срастания представляет собой стенку из краевых дислокаций.  [c.104]

Установлено, что условием образования при первичной рекристаллизации зерен 110 <001 > является наличие компоненты 111 <112> в текстуре деформации. Кристаллиты 111 <112> содержат, по крайней мере, пять типов микрозон, отличающихся дислокационной структурой, характером локальных разориентировок и как следствие условиями протекания в них первичной рекристаллизации. Это полосы деформации, имеющие ориентировку 111 <112>, переходные полосы, двойники деформации, приграничные области и области вокруг включений. Местами предпочтительного образования центров ребровой ориентировки являются переходные полосы, когерентно соединяющие соседние полосы деформации. Переходные полосы имеют небольшую ширину и характерны наличием закономерных разориентировок образующих их субзерен, обеспечивающих кристаллоструктурную связь соседних полос деформации,  [c.416]

Наиболее благоприятным сочетанием механических свойств обладает структура, образовавшаяся при динамической полигонизации. Малые размеры субзерен обеспечивают еще достаточно высокую прочность. Вместе с тем пониженная плотность дислокаций в некоторых субграницах делает их полунепроницаемыми барьерами, которые обеспечивают релаксацию пиковых напряжений, созданных скопившимися дислокациями, и прорыв этих дислокаций в соседние субзерна. Таким образом уменьшается опасность хрупкого разрушения (повышается пластичность).  [c.539]

Модификация структуры основывается на влиянии изменений параметров микроструктуры (размер зерна, кристаллографическая текстура, плотность дислокаций) на механические свойства и износостойкость материалов. Примерами структурной модификации приповерхностного слоя являются дробеструйная обработка, накатывание роликом, вибрационное накатывание, ультразвуковая упрочняющая обработка, алмазное выглаживание, электромеханическое упрочнение 13]. Известно, ч го поверхностная закалка после нагрева приводит к уменьшению размера зерен вблизи поверхности и увеличению локального напряжения течения. Поэтому поверхностный нагрев с применением направленных источников энергии, таких, как лазер и электронный луч, может использоваться для оплавления и последующего быстрого затвердевания (кристаллизации) поверхностного слоя. Названные мегоды обработки вызывают yny4nJ HHe размеров зерна, формирование мелкой, субзеренной структуры, увеличивают концентрацию выделений и упрочнение, приводят к появлению новых полезных фаз. растворению или удалению инородных включений [19]. Перечисленные эффекты структурной модификации делают ее весьма перспективной, а развитие метода входит в число актуальных задач гриботехнологии.  [c.39]


Границы субзерен при активном нагружении также могут являться барьерами для движения дислокаций. Но отдельные дислокации могут выбиваться из стенки, образующей субпрани-цу, другой дислокацией, движущейся в той же плоскости скольжения. Необходимо отметить, что в условиях длительных нагрузок (например, при ползучести) эффективность границ субзерен, как барьеров для распространения скольжения, резко возрастает вследствие относительно высокого сопротивления стенок дислокаций действию термических флуктуаций. Поэтому у металлов и сплавов с развитой полигональной структурой сопротивляемость ползучести повышена.  [c.13]

Основные уравнения указанных теорий дисперсного упрочнения приведены в табл. 6. Экспериментальная проверка этих теорий затруднительна, так как необходимо четко выделить вклад дисперсного упрочнения, исключив при этом влияние таких параметров, как границы зерен, субструктура, твердорастворное упрочнение элементами замещения и элементами внедрения и т. д. Поэтому большая часть экспериментальных работ по проверке теорий дисперсного упрочнения выполнена на монокристаллах сплавов [141,146, 169]. Достаточно корректные результаты, как показано в работе [170], можно получить при исследовании некоторых поликриеталлических сплавов, например ниобиевых, механические свойства которых несущественно зависят от размера зерна и субзеренной структуры [171]. Влияние остальных факторов на предел текучести может быть сведено до минимума соот-  [c.75]

В работах [9, 275, 277,298] при изучении субструктурного упрочнения материалов развиваются представления о качественном различии между структурными состояниями, формирующимися в металле в зависимости от степени, скорости и температуры деформации. При этом рассматриваются структуры, образованные как при холодной деформации (ниже 0,4Тпл), теплой деформации (0,4—0,6Тпл) и горячей обработке (выше 0,6Тпл). так и при крипе, горячей обработке с высокими скоростями и т. д. Так, известно, что при низкотемпературной деформации образуется среднего размера ячеистая структура, при быстрой горячей обработке — мелкая субзеренная структура. Средние  [c.126]

Следовательно, можно говорить о целом спектре субструктур, среди которых выделяются две наиболее характерные группы дислока-, ционные ячеистые структуры, образующиеся при температурах деформации ниже 0,4—0,57 пл, и субзеренные — при более высоких температурах (рис. 3.15). Реальная же деформация связана с появлением в. структуре деформируемого металла смеси ячеек и субзерен.  [c.127]

Повышению вязкости разрушения стали со структурой бейнита способствует реализация оптимальных режимов регулируемого термопластического упрочнения. Суть этой обработки заключается в создании горячей деформацией с последующей выдержкой мелкозернистой структуры аустенита и образовании субзеренных построений в мелком зерне аустенита за счет окончательной деформации. Анализ диаграммы конструктивной прочности стали со структурой бейнита свидетельствует о том, что с понижением температуры изотермического превращения эффект РТПУ, заключающийся в повышении показателей конструктивной прочности, проявляется более заметно. В диапазоне предела текучести от 1300 до 1900 МПа величина вязкости разрушения стали, обработанной по режиму РТПУ [245], существенно превышает вязкость разрушения образцов, подвергнутых высокотемпературной термомехани ской изотермической обработке (ВТМИЗО) и обычной изотермической обработке (ИЗО).  [c.150]

В случае изотермического распада переохлажденного аустенита в области температур перлитного превращения эффект РТПУ проявляется слабее, чем при бейнитном превращении. Однако при реализации непрерывного охлаждения стали У8 с получением структур перлитного типа было показано, что получение структуры аустенита с мелким зерном и субзеренными построениями приводит к заметному росту показателей конструктивной прочности по сравнению с недеформированными образцами.  [c.151]

По Н. Н. Давиденкову, различают остаточные напряжения трех родов. В основе классификации лежит объем, в котором напряжения уравновешиваются. Напряжения I рода, возникающие в процессе изготовления детали, уравновешиваются в объеме всего тела или в объеме макрочастей. Напряжения II рода формируются вследствие фазовой деформации отдельных кристаллитов, зерен и уравновешиваются в объеме последних. При наличии развитой субзерен-ной структуры напря5кения будут локализоваться в объеме субзе-рен, которые могут иметь различное упругонапряженное состояние. Напряжения III рода уравновешиваются в микрообъемах кристаллической решетки. Причина их появления — упругие смещения атомов кристаллической решетки. Напряжения I рода часто называют тепловыми, напряжения II и III рода — фазовыми или структурными. В покрытиях обычно возникают напряжения всех родов, причем их величина колеблется в зависимости от метода напыления, толщины покрытия, природы напыляемого материала, предварительной подготовки поверхности напыления, технологического режима напыления, условий охлаждения и т. д. При нанесении покрытий возникают остаточные напряжения, которые могут иметь противоположные знаки, достигать весьма значительных величин, неравномерно распределяться в напыленном слое и основном металле. Наличие остаточных напряжений характерно для покрытий, нанесенных любыми способами.  [c.185]

Гц, показали [73], что СРТ едва заметно меняется в случае изменения размера зерна от 12 мкм к 30 мкм, но существенно уменьшается при изменении размеров зерна от 30 к 60 мкм. Измерения размеров субзерен в двухфазовом сплаве Ti-6A1-4V с пластинчатой структурой показали, что на образцах толщиной 25,4 мм возрастание именно размера субзерен наиболее полно определяет изменения в СРТ [74]. Возрастание субзерна приводило к уменьшению СРТ.  [c.241]

Применительно к двухфазовым Ti-сплавам с пластинчатой структурой выявлено аналогичное неоднозначное влияние на скорость роста трещины размера субзерен при разной толщине образцов [39]. В зависимости от соотношения 4/1цгмежду толщиной образца ti, и размером колонии L r происходит как возрастание, так и убывание СРТ с возрастанием размера субзерен. В случае, когда  [c.241]

В заключение необходимо заметить, что закономерность эволюции формирующейся субструктуры материала наиболее заметна в области малоцикловой усталости. Поэтому параметры субзерен (размеры ячеек дислокационной структуры) наиболее полно характеризуют кинетику процессов накопления повреждений. Испытания на растяжение-сжатие образцов из жаропрочного сплава In oloy-800 с размером зерна 130 мкм на воздухе при скорости деформации 4 10 и 4 10 " с показали следующее [43]. В зависимости от уровня пластической деформации размер субзерен 1сз определялся соотношениями  [c.250]

Анализ параметра структуры материала показал, что у всех трех дисков двухфазовый Ti-сплав ВТ8 имеет развитую пластинчатую структуру с размерами пластин обеих фаз в пределах 1,1-1,5 мкм. Дисперсия субзерен от диска к диску имеет колебания, но размер субзерен у всех дисков находится в интервале 16-48 мкм. Различия в равномерности распределения субзерен разного размера у дисков не были выявлены. Несколько больший размер Р/(.-оторочки по границам зерен был выявлен в диске № I, однако в диске № II этот параметр был таким же, как и в диске № III, что не позволяет связывать чувствительность образцов из исследованных дисков с разной толщиной межзеренных прослоек.  [c.370]

Субструктура может появиться даже в очень чистых сортах железа, например в карбонильном и армко-железе. Особенно часто ее наблюдают в малоуглеродистых сталях с грубым зерном. Границы субзеренной структуры выявляются в форме довольно длинных прожилок или ряда точек, которые подразделяют зерно в виде неравномерной прерывистой сетки. Аммерманн и Корн-фельдт [16] установили, что в зернах, которые возникают при рекристаллизации после холодной деформации, вследствие интенсивного роста кристалла прожилки не образуются. Они появляются только в зернах, которые образуются при у а-превращении при охлаждении.  [c.29]



Смотреть страницы где упоминается термин Структура субзеренная : [c.23]    [c.1056]    [c.48]    [c.185]    [c.98]    [c.257]    [c.189]    [c.26]    [c.93]    [c.133]    [c.206]    [c.243]    [c.365]   
Теория термической обработки металлов (1974) -- [ c.40 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте