Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Инварианты деформации напряжений

Повреждение, обусловленное интенсивным порообразованием по границам зерен в материале, может приводить к значительному его разрыхлению. В этом случае проведение независимого (несвязного) анализа НДС и развития повреждений в материале дает значительные погрешности. Например, отсутствие учета разрыхления в определенных случаях приводит к существенному занижению скорости деформации ползучести и к снижению скорости накопления собственно кавитационных повреждений. В настоящее время связный анализ НДС и повреждаемости базируется в основном на феноменологических подходах, когда в реологические уравнения среды вводится параметр D, а в качестве разрушения принимается условие D = 1 [47, 50, 95, 194, 258, 259]. Дать физическую интерпретацию параметру D достаточно трудно, так как его чувствительность к факторам, определяющим развитие межзеренного повреждения, априорно предопределена той или иной феноменологической схемой. Так, во многих моделях предполагается, что D зависит только от второго инварианта тензора напряжений и деформаций и тем самым исключаются ситуации, когда повреждаемость и, как следствие, кинетика деформаций (при наличии связного анализа НДС и повреждения) являются функциями жесткости напряженного состояния.  [c.168]


Существует взаимно-однозначное соответствие между первыми инвариантами тензора напряжений о и деформаций 6  [c.264]

Предположим дополнительно, что гидростатическое давление (первый инвариант тензора напряжений) не влияет на зависимость между девиаторами напряжений и деформаций. Строго говоря, эта гипотеза неверна, но для многих металлов и сплавов она выполняется с достаточно большой точностью, введение же этой гипотезы позволяет намного упростить построение теории. Пусть, для простоты, отличны от нуля два компонента девиаторов. Тогда процесс нагружения в фиксированной точке тела будет изображаться кривой на плоскости а°, а°, процесс деформирования — кривой на плоскости е , Упомянутая выше зависимость связи напряжений с деформациями от истории нагружения означает, что деформированное состояние в данной точке тела зависит от всей кривой на плоскости а°, (т . Математически этот факт эквивалентен тому, что соотношения между напряжениями и деформациями в пластической области, вообще говоря, будут либо дифференциальными неинтегрируемыми, либо операторными зависимостями. Теории, использующие дифференциальные неинтегрируемые соотношения, известны как теории течения они, как правило, строятся с использованием введенного выше понятия поверхности текучести. Рассмотрим простейший класс операторных теорий, которые применяются только для специального вида процессов нагружения.  [c.267]

При равностороннем растяжении или сжатии пластические деформации не возникают. Значит, условие пластичности может быть представлено в виде функции второго и третьего инвариантов девиатора напряжений (так как первый равен нулю)  [c.101]

Рассмотрим тело произвольной формы, считая, что начальные напряжения и деформации в нем отсутствуют. На начальном этапе нагружения такого тела возникают только упругие деформации и, следовательно, появление пластических деформаций однозначно определяется действующими напряжениями. В связи с этим условие пластичности можно записать в виде некоторой функции компонент тензора напряжений. Очевидно, что для изотропного материала условие появления пластических деформаций не должно зависеть от выбора координатной системы. Тогда указанная функция должна быть функцией трех инвариантов тензора напряжений, в качестве которых можно взять, например, три главных напряжения  [c.293]

Используя в дальнейшем для линейного инварианта тензора напряжений Ji (Oij) обозначение 2, а для линейного инварианта тензора деформации (ви) обозначение 0 [см. (1.70)], т. е.  [c.62]


Напряженное состояние в каждой точке характеризуется тремя инвариантами тензора напряжений или тремя главными нормальными напряжениями, а деформированное состояние соответственно характеризуется гремя инвариантами тензора деформации или тремя главными удлинениями.  [c.161]

Показать, что среднее напряжение в точке, средняя деформация, первые инварианты тензора напряжений и тензора деформации и объемная деформация в окрестности той же точки пропорциональны друг другу.  [c.63]

Записать первый и второй инварианты девиатора напряжений и девиатора деформаций. Показать, что компоненты одного и другого девиаторов оказываются пропорциональными друг другу, т. е.  [c.64]

Полярный радиус-вектор точек этой поверхности направлен по лучу нагружения. Длина его определяется значением функции от инвариантов деформаций, полученных при ограниченных по величине напряжениях на этом луче. Условие ограничения задается постоянной величиной второго инварианта напряжений. Степень анизотропии деформируемости композиционного материала является интегральной характеристикой она определяется для всей поверхности деформируемости как среднее квадратичное отклонение относительного значения полярного радиуса-вектора от его усредненной величины.  [c.86]

Так как при упругом поведении деформации можно выразить непосредственно через напряжения, то, очевидно, критерий текучести можно сформулировать в терминах только напряжений. Более того, если материал предполагается изотропным, то-функциональное соотношение между компонентами тензоров напряжений, выражающее этот критерий, не должно зависеть от выбора системы координат, т. е такое функциональное соотношение должно содержать лишь инварианты тензора напряжений. Таким образом, критерий текучести зависит от закона упругого поведения материала.  [c.200]

Главные деформации. Инварианты деформации в точке тела Отыскание главных деформаций производится из уравнения, имеющего такую же структуру, как и уравнение для отыскания главных напряжений  [c.461]

Три инварианта тензора деформации находятся аналогично инвариантам тензора напряжений и выражаются формулами, которые получаются из (5.40 ) путем замены компонентов в соответствии с аналогией То и Те [(6.19) и (6.20)].  [c.461]

Имея (7.50) и (7.51), легко установить связь между вторыми инвариантами девиаторов напряжений и деформаций. Эта связь имеет вид  [c.510]

Особенностью формулы (8.74) является то, что в нее входят как инвариант деформаций, так и инвариант напряжений. При желании охватить возможно более широкий круг нагружений такая форма критерия, по-видимому, неизбежна. В самом деле, рассматривая разрушение, предваряемое большими пластическими деформациями, необходимо включить в критерий деформационные параметры (в частности е , которое для произвольных путей деформирования может быть явно выражено через напряжения). С другой стороны, возможны разрушения, происходящие почти упруго, поэтому в универсальный критерий должно войти и среднее нормальное напряжение, которое не связано с пластическими деформациями и, следовательно, не может быть через них выражено.  [c.602]

Здесь ij3 - некоторая скалярная функция компонентов напряжений и деформаций. Так как тело изотропно, то можно считать, что 1з —функция инвариантов тензоров напряжения и деформации ).  [c.739]

Линейным инвариантом тензора напряжений будет сумма трех нормальных напряжений, приложенных к трем взаимно перпендикулярным площадкам в данной точке потока, т. е. величина рц. Линейным инвариантом тензора скоростей деформации будет  [c.168]

Особенностью критерия (1.20) является то, что в него входят как инвариант напряжения, так и инвариант деформации, оказывающие существенное влияние соответственно при малых и больших упругопластических деформациях.  [c.10]


Имеются и другие [24] фундаментальные исследования ползучести при сложном напряженном состоянии. Можно отметить, что в большей части работ установлена пригодность теории Мизеса, выражаемой с помощью уравнения (4.41). Однако при точном анализе закономерностей ползучести следует учитывать, что помимо третьего инварианта девиатора напряжений на кинетику деформации могут оказывать влияние [25] анизотропия материала и гидростатическая компонента напряжения, т. е. первый инвариант девиатора напряжений  [c.106]

Поверхность и кривая текучести для изотропного материала. Поскольку свойства изотропного материала одинаковы во всех направлениях, уравнение поверхности текучести можно выразить через главные нормальные напряжения ( i. < 21 F3) = 0. Так как ai, 02, 03 выражаются по формулам (IV.37) через инварианты Т , то уравнение поверхности текучести можно представить в виде /т ( 0) h Та), /3 (Т ст)] == 0. Опыты показывают, что среднее напряжение о — (Г /З практически не влияет на возникновение пластических деформаций, поэтому можно принять, что оно определяется инвариантами девиатора напряжений. -Тогда /т [ 2 Фа). и Фа)1 = О- Это уравнение цилиндра, осью которого является прямая =  [c.193]

Тогда 1 Т) оказывается зависящим только от первого инварианта логарифмической меры деформации (отношения объемов тела в деформированном и начальном состояниях). Второй инвариант девиатора напряжений (значит, и модуль fx) оказывается зависящим не только от Г, но и от упомянутого отношения объемов.  [c.656]

В этом капитальном труде ставится цель построить единую, основанную на минимуме исходных предпосылок (принципы инвариантности, детерминизма, локального действия), теорию поведения сплошной среды. Выделен класс простых материалов , для них тензор напряжений зависит от истории изменения градиента вектора перемещения (но не от градиентов более высокого порядка). К числу таких материалов относятся упругое и гиперупругое тела. Дан исчерпывающий обзор решений частных задач, большое место уделено установлению приемлемых форм задания законов состояния и критериям выбора зависимости удельной потенциальной энергии деформации гиперупругого тела от инвариантов деформации. Книга снабжена исчерпывающей библиографией по нелинейной теории упругости доведенной до 1965 г.  [c.926]

Рассматривая тензорно линейные определяющие соотношения, приходим к выводу, что в случае изотермических процессов и склерономной изотропной среды функции ка д зависят только от двух инвариантов тензора деформаций, а г и г — от двух инвариантов тензора напряжений. При этом если тензоры <г и е являются потенциальными, т.е. существуют скалярные функции W viw такие, что  [c.107]

На рис. 9.3d приведена характерная зависимость между первыми инвариантами тензоров напряжений и деформаций для горных пород и бетона, полученная в результате проведения испытаний на одноосное растяжение и сжатие [74, 249]. Особая точка 2-го рода на диаграмме в процессе сжатия достигается прежде прочих [239]. При сжатии объем уменьшается лишь при начальных деформациях, а затем он начинает возрастать, что связано с накоплением повреждений в материале. Аналогичный эффект смены знака объемной деформации  [c.190]

Независимо от системы координат каждый инвариант тензора напряжений является функцией от инвариантов тензора деформаций  [c.239]

Упругие константы компонентов были выбраны следующими G = = 2,1 ГПа, I/ = 0,25 для матрицы и G = 10,5 ГПа, I/ = 0,25 для волокна. С помощью входящих, согласно (6.4), в уравнения (9.20) функций поврежденности неупругие свойства материала матрицы описывались нелинейной зависимостью второго инварианта тензора напряжений от соответствующего инварианта тензора деформаций. Значения инвариантов определялись по (6.6) и (6.7). Графическое выражение зтой зависимости приведено на рис. 11.6. Подобные диаграммы деформирования были получены, в частности, при проведении экспериментов на образцах полиэтилена [68] и сплава ВТ5-1 [233].  [c.261]

Примем теперь в качестве основных инварианты тензора деформаций (3.10) и соответствующие инварианты тензора напряжений  [c.237]

Многочисленными исследованиями установлено, что влияние вида напряженного состояния на развитие актов пластической деформации в меньшей степени зависит от индивидуальных особенностей материала, чем такое же влияние на сопротиатение разрушению того же материала, и во многих случаях описывается одним инвариантом — интенсивностью напряжений. В связи с этим в формуле (4.5) сокращение числа неизвестных коэффициентов можно получить за счет пренебрежения влиянием среднего напряжения во втором члене, отражающем вклад разрыхления от пластической деформации полагая получаем  [c.137]

На основании общих физических представлений о поведении материала под нагрузкой его сопротивление деформированию определяется мгновенными условиями нагружения (температурой, скоростью деформации и другими ее производными в момент регистрации), а также структурой материала, сформированной в процессе предшествующего деформирования, который в п-мерном пространстве характеризуется траекторией точки, проекции радиуса-вектора которой — составляющие тензора напряжений (или деформаций) и время (начальная температура является параметром, характеризующим исходное состояние материала, и изменяется в соответствии с адиабатическим характером процесса деформирования). Специфической особенностью процессов импульсного нагружения является сложный характер нагружения (составляющие тензора напряжений меняются непропорционально единому параметру) и влияние времени. Невозможность экспериментального исследования материала при различных процессах нагружения (траекториях точки указанного выше л-мерного пространства) вынуждает исследователей использовать упрощенные модели механического поведения материала. Это обусловило развитие исследований по разработке теорий пластичности, учитывающих температурновременные эффекты [49, 213, 218] наряду с изучением физических процессов скоростной пластической деформации [5, 82, 175, 309]. Так, для первоначально изотропного материала исходя из гипотезы изотропного упрочнения связь тензоров напряжений и деформаций полностью определяется связью их инвариантов соответственно Ei, Ег, Ез и Ii, h, h- С учетом упругого характера связи средних напряжений и объемной деформации для металлических материалов (а следовательно, независимость от истории нагружения первых инвариантов тензоров напряжений и деформаций Ei, А) процесс нагружения определяется связью четырех оставшихся инвариантов и величины среднего давления. В классической теории пластичности  [c.11]


Для построения моделей упругопластического тела в настоящее время применяют теории течения и малых упругопластических деформаций (последняя является следствием теории течения, применимой при простом нагружении). Простым нагружением называют процесс, при котором в каждой точке тела компоненты девиатора оД теюора напряжений Д = а- а Е изменяются пропорционально. Здесь То = = (l/3)/i(a) = (1/3) --а - среднее напряжение Л(5) - первый инвариант тензора напряжений а.  [c.69]

Согласно В. Ольшаку понятие механические свойства среды включает два элемента — закон, определяющий связь между тензорами напряжений и деформаций и их скоростями, а также некоторые величины, называемые модулями или параметрами, входящие в этот закон. -Модули, или параметры, могут быть действительными физическими постоянными, зависящими от температуры и энтропии (упругая, линейно-релаксирующая или вязкая среда), или они являются функциями инвариантов тензоров напряжений, деформаций и скоростей деформаций (пластические и вязко-пластические среды) [107].  [c.10]

ПЛАСТИЧНОСТИ УСЛОВИЕ (текучести условие) — соотношение матем. пластичности теории, определяющее границу, отделяющую область пластического (точнее, уцругопластического) состояния материала от области его упругого состояния. При выполнении П. у. в материале начинают возникать остаточные деформации. П. у. записывается в виде f(Oij) = О, где — компоненты тензора напряжений. Для изотропного тела П. у.— ф-ция инвариантов тензора напряжений.  [c.630]

Переход к сложному напряжённому состоянию осуществляется обычно принятием одной из двух гипотез для деформаций ползучести в первом случае принимается, что тензор деформаций ползучести p j пропорционален девиатору тензора напряжений pij = XSij, во втором принимается гипотеза о пропорциональности тензора скоростей деформаций ползучести ру тому же девиатору 8 у Первая — деформац, вариант, вторая — теория течения для сложного напряжённого состояния. Параметр X определяется как отношение соответствующих инвариантов тензоров деформаций ползучести и напряжений, для определения к-рых принимаются системы (1) и (2), куда в качестве параметров могут войти произвольные инварианты тензоров напряжений и деформаций.  [c.10]

Зга гипотеза с высокой точностью выполняется, например, для непористых металлических материалов. Соотношение (2.7.1) означает, что тензор деформахщй ползучести и тензор скоростей являются девиаторами. Поэтому в соотношениях между деформациями ползучести и напряжениями для таких материалов не учитывают первый инвариант тензора напряжений.  [c.119]

Здесь т — масса материала в объеме о, а п и /з даются формулами (1.22) и (8.2). Таким образом, компоненты напряжения в изотропном абсолютно упругом твердом теле определяются уравнением (8.1), где коэффициенты А, В, С — функции инвариантов деформаций /ь /2, /з, температуры и плотности mjva в ненапряжен-ногл состоянии ta.  [c.209]

Ривлин и Саундерс растягивали лист каучука одновременно в двух взаимно перпендикулярных направлениях в плоскости листа. При этом измерялись главные коэффициенты удлинения и соответствующие величины главных напряжений в центре листа, где деформацию можно полагать достаточно однородной. Были все основания считать материал изотропным и несжимаемым. Указанных измерений было достаточно для вычисления требуемых двух производных и инвариантов деформации. Результаты, приведенные в таблице 10.3, пересчитаны из данных РиБлина и Саундерса, представивших свои результаты в виде функции энергии деформации и инвариантов деформаций J, /2, которые связаны с нашими величинами зависимостью  [c.319]

Проблема заключается в следующем. Поиск действительных значений инвариантов деформаций по полученным в очередном приближении значениям инвариантов напряжений в соответствии с методом дополнительных деформаций на стадии разупрочнения приводит к расхождению итерационной процедуры. Согласно же методу переменных параметров упругости, как и методу дополнительных напряжений, в каждом упругом решении положительному приращению инвариантов тензора деформаций соответствует положительное приращение инвариантов тензора напряжений, т.е. и на закритической стадии деформирования материал воспринимгьется как упрочняющийся, что не способствует сходимости.  [c.241]

В [54] отмечается, что соотношения деформационной теории лучше всего подходят именно к решению задач устойчивости, так как при этом задача формулируется относительно скоростей, а соотношения деформационной теории, записанные относительно скоростей, можно отождествить с соотношениями некоторой теории течения с угловой точкой на поверхности текучести [24, 25, 84]. В [61] соотношения этой теории течения представлены в явном виде. Исходя из этих соображений предполагается [24, 84], что парадокс можно разрешить с помощью использования теории течения с угловой точкой на поверхности текучести. К этому объяснению парадокса пластического выпучивания близко примыкает идея работы [109]. Здесь на основе экспериментальных данных установлено, что уже при наличии малых пластических деформаций на поверхности текучести образуются участки с большой кривизной, а сама поверхность текучести сильно трансформируется. Сделано предположение, что теория течения, построенная с использованием только второго инварианта девиаторов напряжений, недостаточна для описания процесса выпучивания и надо использовать более сложную теорию, которая учитывала бы эти экспериментсшьные факты.  [c.10]

Вследствие смещения поверхности нагружения, которое описывается тензором смещения (добавочных напряжений), уравнение поверхности нагружения зависит от инвариантов тензора активных напряжений, составляющие которого отсчитываются от центра поверхности задаваемого тензором смещения. Зависимость поверхности нагружения от первого инварианта тензора напряжений позволяет описать неупругое изменение объема, т. е. деформацию разрыхления. Неупругое изменение объема пренебрежимо мало по сравнению с остальными деформациями практически для всех конструкционных материалов, поэтому прини-  [c.250]

Квазистатическая задача А теории малых упруго-пластичест ких деформаций трансверсально изотропной однородной среды заключается в решении уравнений равновесия (3.49) при выпол-, нении граничных условий (3.50). При этом следует воспользоваться соотношениями Коши (3.51) и иметь в виду, что в (3.49) инварианты напряжений связаны с инвариантами деформаций функциями (3.31), которые в упругой области имеют вид (3.43). В случае разгрузки эти функции приобретают вид  [c.242]


Смотреть страницы где упоминается термин Инварианты деформации напряжений : [c.147]    [c.86]    [c.300]    [c.137]    [c.119]    [c.162]    [c.21]    [c.85]    [c.41]    [c.634]    [c.238]   
Термопрочность деталей машин (1975) -- [ c.128 ]



ПОИСК



597 — Деформации и напряжения

Инвариант

Инварианты деформаций

Инварианты напряжений



© 2025 Mash-xxl.info Реклама на сайте