Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Погрешность переменная

Азр, А2 , — погрешности переменные, величина которых меняется по длине образования резьбы.  [c.180]

Кроме того, в процессе обработки наблюдаются тенденции к смещению центра группирования, около которого происходит распределение размеров. Причинами, вызывающими смещение центра группирования, являются износ режущего инструмента и температурные деформации в системе станок — инструмент—деталь, т. е. систематические погрешности переменного характера.  [c.15]


Теория показывает, что если все погрешности переменных  [c.21]

Однако под влиянием различного рода внешних и внутренних возмущений процесс в системе станок — инструмент — деталь неизбежно отклоняется от заданного течения. Причинами, вызывающими возмущения, являются в основном систематические погрешности переменного характера,—такие, как, например, размерный износ режущей кромки инструмента, температурные деформации в системе станок — инструмент — деталь, и другие. В результате этого обработанные детали различаются размерами. Колебания размеров деталей определяются сочетанием систематических и случайных погрешностей, характерных для данного технологического процесса.  [c.67]

Корригирование шага резьбы набором сменных зубчатых колес позволяет исправить только такие погрешности шага, которые имеют постоянную величину и знак (+ или —) на всей длине шлифуемой резьбы. Местные погрешности шага или погрешности переменного знака можно корригировать только при помощи коррекционной линейки с криволинейным профилем (см. фиг. 89).  [c.183]

Как было указано, неточность обработки поверхности детали является следствием влияния ряда факторов. Некоторые из этих факторов создают систематические погрешности, которые имеют постоянный или переменный характер.  [c.65]

Так как развертка в процессе работы изнашивается и вследствие этого диаметр ее уменьшается, то и диаметр отверстия у поочередно обрабатываемых деталей также будет уменьшаться. Эта погрешность тоже является систематической, но имеющей переменный характер.  [c.65]

Систематические погрешности, как постоянные, так и переменные, подчиняются определенной закономерности. Систематическими являются, например, погрешности, происходящие вследствие неточности станка, инструмента, приспособления, деформации детали, станка и инструмента во время обработки от действуют,их сил или нагрева и т. п.  [c.65]

Выбор оптимального варианта проводится начиная с первого этапа. Этот этап соответствует заключительному переходу обработки поверхности, и при назначении его необходимо знать параметры предшествующего перехода. Располагая зависимостью суммарной погрешности обработки от управляемых переменных, т. е. Л2г = = (1, 5, V), где ( — глубина резания з — подача о — скорость резания, для конкретного метода механической обработки резанием и зная параметры планируемого перехода, можно было бы рассчитать ожидаемую погрешность обработки. Однако не имея данных о предпоследнем переходе, делают различные предположения о том, какая погрешность обработки может иметь место после его выполнения. Следуя принципу оптимальности динамического программирования, для каждого из этих предположений необходимо выбрать такие переменные,  [c.112]


Большую ценность для пользователя представляют не оценки погрешности Вм, выполненные в одной-двух случайных точках пространства внешних переменных, а  [c.42]

В ряде случаев полного или почти полного устранения циклических нагрузок можно достичь повышением точности изготовления деталей и их опор. Примером может служить устранение статического и динамического дисбаланса быстровращающихся роторов, вызывающего переменные нагрузки в опорах и корпусах. Повышение точности изготовления зубьев колес (уменьшение погрешностей шага и толщины зуба, искажений профиля и т. п.) устраняет циклические нагрузки, порождаемые этими погрешностями.  [c.315]

Касательные же напряжения более чувствительны к наклону образующих поверхности стержня, поэтому формула Журавского в применении к стержням переменного сечения дает значительные погрешности.  [c.302]

Вынужденные колебания, вызываемые внешними периодическими силами (неуравновешенностью вращающихся деталей, погрешностями изготовления, переменными силами в поршневых машинах и т. д.), обычно во избежание резонанса, т. е. совпадения частот возмущающих сил с частотами собственных колебаний, последние определяют расчетным путем,  [c.18]

Даже такие, казалось бы, постоянные величины, как площадь сечения, момент сопротивления, момент инерции и просто линейные размеры детали, в действительности являются величинами статически переменными вследствие неизбежных погрешностей изготовления и измерения.  [c.338]

Когда ведется исследование напряженного состояния сложной конструкции, имеется большое количество датчиков, с которых необходимо снять показания. Гальванометр и сопротивления и остаются при этом общими, а пары сопротивлений Ri, Ri для каждой исследуемой точки включаются в схему поочередно для снятия показаний. Чтобы избежать погрешностей из-за изменения напряжения питания e непосредственно перед каждым отсчетом производится балансировка моста при помощи переменного сопротивления г (рис. 579).  [c.516]

Постоянные систематические погрешности суммируют алгебраически, т. е. с учетом знака переменные — по наибольшим абсолютным значениям, т. е. с тем знаком, при котором суммарная погрешность ira абсолютному значению будет наибольшей.  [c.96]

Для определения погрешностей положения из-за упругих деформаций звеньев механизма обычно используют дифференциальный метод, который рассматривает функции положения механизма 8 =/(171, <72. . 7п) в зависимости от переменных ее определяющих. Приращения переменных в первом приближении  [c.300]

На рис. В.7 приведена простейшая электронно-магнитная схема камертонного регулятора с распределенной массой на одной электронной лампе. Представленная схема относится к автоколебательным системам. При колебании ветви / камертона вследствие изменения зазора А изменятся магнитный поток и в обмотках электромагнита 2 возникает переменная э. д. с., которая, поступая на сетку электронной лампы (триода) 5, вызывает колебания анодного тока лампы, частота которого равна частоте изменения э. д. с. и, следовательно, частоте колебаний ветви камертона. Анодный ток, протекая по обмоткам электромагнита 4, создает переменное магнитное поле, приводящее к переменной силе притяжения, которая раскачивает ветвь 5 камертона на резонансной частоте. Колебания ветви 5, в свою очередь, усиливают колебания ветви 1, что приводит к возрастанию э. д. с. в цепи сетки лампы. При установившемся режиме в системе возникнут совместные механические п электрические колебания с частотой, близкой к частоте свободных колебаний ветви камертона. Если прибор с камертоном находится на ускоренно движущемся объекте, то действующая на ветви камертона инерционная нагрузка q (рис. В.7) изменяет зазоры, что приводит к отклонению режима работы системы от расчетного, поэтому требуется оценить возможные погрешности в показаниях прибора, возникающие нз-за сил инерции (в том числе и случайных).  [c.6]

В отличие от явных неявные разностные схемы являются безусловно устойчивыми, т. е. устойчивыми при произвольном соотношении шагов по времени и пространственным переменным. В этой связи при использовании неявных схем есть возможность проводить расчеты при больших значениях шага Ат. В этом преимущество неявных схем. Следует в то же время иметь в виду, что чрезмерное увеличение шага Ат приводит к существенному возрастанию погрешностей аппроксимации, поэтому фактором, ограничивающим размеры шага Ат при использовании неявных схем, является требуемая точность вычислений.  [c.65]


Коэффициент Ьо называют свободным членом уравнения регрессии коэффициенты Ь — линейными эффектами коэффициенты Ьц — квадратичными эффектами б ,- — эффектами парного взаимодействия. Коэффициенты уравнения (5.24) определяются методом наименьших квадратов с учетом среднеквадратичных погрешностей зависимой и независимой переменных. Для случая, когда независимые переменные определены точно, этот метод рассмотрен в 5.2. С более сложными случаями можно ознакомиться в специальной литературе, например [3, 6].  [c.108]

Проведение измерений в многофазовых потоках затрудняется тем, что такие течения в общем случае характеризуются структурной неоднородностью, термической и динамической неравновесностью, т. е. компоненты, составляющие среду, могут иметь различные температуру и скорость при переменном поле концентрации фаз и различных структурных формах течения в ядре потока и на периферии. Поэтому к методам и средствам диагностики неоднородных сред наряду с малой погрешностью измерений, простотой и доступностью применения предъявляют и специальные требования. Это прежде всего нежелательность воздействий, вносящих возмущение в структуру потока и инициирующих фазовые превращения.  [c.239]

Для учета погрешностей, вносимых в измерения контактной ЭДС, из последней выделяют переменную составляющую и на основе испытания токосъемника строят зависимости этой составляющей ЭДС от скорости скольжения и температурных условий в зоне контакта. Эти графики используют при оценке погрешности измерения, обусловленной контактной ЭДС.  [c.321]

Возвращаясь к первоначальным переменным х, получим для уравнения (6.23) кусочно-постоянное решение с разрывом, который распространяется с постоянной скоростью а. Решение уравнения (6.25), содержащего аппроксимационную вязкость v<9 ы/<9л , имеет размытую переходную область, также перемещающуюся со скоростью а. Эффективная ширина этой области пропорциональна V и, следовательно, растет со временем. Решение сеточной задачи Коши должно обладать сходными свойствами. Численные эксперименты и асимптотическое исследование погрешности сеточного решения подтверждают это предположение.  [c.161]

Не составляет труда рассчитать ход кривой релаксации на основе теории течения или теории старения. По существу эти теории совершенно не приспособлены для описания ползучести при переменных нагрузках, а именно так и следует рассматривать процесс релаксации. Тем более может показаться удивительным, что предсказания этих малоудовлетворительных теорий дают не слишком большую погрешность. Нужно заметить, что названные теории для своего применения не требуют каких-либо аналитических аппроксимаций, тогда как уравнения типа (18.6.2) удовлетворительно описывают лишь первые участки кривых ползучести структурно устойчивых сплавов.  [c.628]

Неявная схема переменных направлений является абсолютно устойчивой. Однако прогонка по границе при задании условий 3-го рода и при Вр >1 может стать источником осцилляций и существенных погрешностей на, первых шагах по времени. В программе (см. п. 5.3.1) эта трудность обходится путем представления оператора, описывающего теплообмен на границе, всегда в неявной форме, хотя это и снижает порядок аппроксимации вследствие появляющейся несимметричности схемы.  [c.36]

Однако в общем случае расчет по (2.28) и (2.29) дает завышенные результаты. Для более обоснованной оценки погрешности результата измерения у формально используют тот же подход, что и при многократных измерениях, при этом средние квадратические погрешности результатов измерения независимых переменных заменяют абсолютными погрешностями (например, приборными). Предельную допустимую погрешность Ау находят по формуле  [c.80]

Следует иметь в виду, что при рабочих измерениях ТКЛР, как правило, известны весьма приближенно, даже у разных сталей значение ТКЛР может находиться в пределах (8. ... .. 16)10 К , а у сложных измерительных систем приведенные температурные коэффициенты могут быть как положительными, так и отрицательными. При динамическом воздействии температуры наблюдаются температурные погрешности переменного значения и знака.  [c.197]

Получить шпоночные и шлицевые соединения с идеальным центрированием п без. зазоров по боковым сторонам шпонок rt зубьев практически невозможно и не всегда требуется по условиям работы. Во-первых неизбежны отклонения размеров диаметров валов и втулок (D и d), ширины Ь шпонок, шпоночных пазов, зубьев и впадин. Во-вторых, собираемость и требуемый характер соединения зависят от точности формы и взаимного расположения сопрягаемых поверхностей, т. е. от возможных перекосов и смещений шлицев и их впадин млн шпоночных пазов (А, рис. 7.6) относительно плоскостей симметрии соединений погрешностей шага и углового расположения шлицев Ау не-концентричностн шлицевых поверхностей Dud (от эксцентриситета е). Наконец, в зависимости от условий сборки, вида нагрузок (постоянные, переменные), характера соединения (подвижное, неподвижное) и пр., по боковым сторонам шпонок и шлицев, а также по центрирующим поверхностям могут предусматриваться зазоры или натяги.  [c.181]

Учет латентности фрагментов. Локальные погрешности интегрирования зависят от значения шага интегрирования А и от характера переходных процессов. Если фазовые переменные претерпевают быстрые изменения, то погрешность не выше заданной обеспечивается при малых h. Если же фазовые переменные меняются медленно, то значения Л при тех же погрешностях могут быть существенно больше. В сложных схемах ЭВА, как правило, большинство фрагментов в любой момент времени относится к неактивным (латентным), т. е. к таким, в которых не происходит изменений фазовых переменных, причем отрезки латентности Т лат могут быть ДОВОЛЬНО продолжительными. в латентных фрагментах допустимо увеличивать шаг интегрирования вплоть до значения Глат, что эквивалентно исключению уравнений фрагментов из процесса интегрирования на период их латентности. Такое исключение выполняется в алгоритмах учета латентности, относящихся к алгоритмам событийного моделирования. Основу этих алгоритмов составляет проверка условий латентности. Примером таких условий может служить  [c.248]


Специфический для германиевых термометров сопротивления эффект возникает вследствие довольно высокого значения коэффициента Пельтье для легированного германия. Он проявляется в том, что сопротивление элемента по постоянному и по переменному току различно [53, 54]. Прохождение постоянного тока через германиевый термометр сопротивления приводит к возникновению градиента температуры вдоль элемента вследствие выделения и поглощения тепла Пельтье на спаях элемента с выводами. Наличие градиента температуры вызывает появление небольшой термо-э. д. с. на потенциальных выводах, что приводит к некоторой погрешности в измерении сопротивления. Если же используется не постоянный, а переменный ток частоты f, то от каждого конца элемента распространяются затухающие тепловые волны. Затухание носит экспоненциальный характер, причем показатель экспоненты пропорционален Уf, так что по мере возрастания частоты тепловые волны все больше сосредоточиваются у концов элемента. Для четырехпроводных элементов в форме моста этот эффект исчезает, когда частота измерительного тока поднимается до такого значения, что тепловые волны перестают достигать потенциальных выводов. В этом случае на потенциальных выводах измеряется истинное сопротивление. Частота, на которой это происходит, зависит от температуропроводности и  [c.237]

Адекватность ММ — способность отображать заданные свойства объекта с погрешностью не выше заданной. Поскольку выходные параметры являются функциями векторов параметров внешних О и внутренних X, погрешность е зависит от значений О и X. Обычно значения внутренних параметров ММ определяют из условия минимизации погрешности ем в некоторой точке Оном пространства внешних переменных, а используют модель е рассчитанным вектором X при различных значениях О. При этом, как правило, адекватность модели имеет место лишь в ограниченной области изменения внешних переменных — области адекватносги (ОА) математической модели  [c.34]

В последнее время получено общее решение задачи с помощью многозначной функции кинематической погрешности в многопарном зацеплении. Рассматривается суммарная нагрузка — статическая и динамическая, что является логичным, так как обе зависят от фазы зацепления. Определяются силы и контактные напряжения в каждой точке зацепления, в том числе с учетом переменности радиусов кривизны зубьев. Технические расчеты возможны только с помощью ЭВМ для этого разработаны соответствующие программы.  [c.178]

Подшипники качения вызывают некоторые вибрации валов и шум в связи с биением, погрешностями формы, волнистостью дорожек качения, с разноразмер-ностью тел качения и с переменной жесткостью под[пинников но углу [юворота.  [c.361]

Уравнения (4.3) являются обычными дифференциальными уравнениями с вещественными постоянными коэффициентами, а в случае (o= onst они становятся линейными. Решение подобных уравнений излагается в математических справочниках и не вызывает затруднений. Однако постоянство индуктивных сопротивлений в (4.3), достигнутое при пренебрежении насыщением, приводит к большим погрешностям в решении уравнений. Учет насыщения в осях d, q осуществляется проще, чем для исходной модели ЭМП (рис. 4.1, а). Обычно насыщение учитывается раздельно по каждой из осей d. q. Для этого вводятся новые переменные в виде собственных и взаимных потокосцеплений катушек, которые связываются с токами с помощью заданных функций насыщения.  [c.86]

Наиболее общий метод определения ошибок механизма — это дифференциальный метод, в котором ошибка положения механизма определяется как полный дифференциал функции положения, а приращения переменных этой функции рассматриваются как погрешности. Функция положения при этом может задаваться как в явном, так и в неявном виде (системой уравнений, тригонометрическими соотношениями и т. п.). Неявный способ задания функции при оценке ошибок более удобен в случаях, когда функция положения представляет гро-мо.здкое выражение, например в механизмах с низшими кинематическими парами.  [c.336]

Таким образом, при расчете течения в эллиптической области целесообразно применять разностную сетку с переменным шагом. Использование больших шагов разностной сетки в областях с малыми градиентами приводит к тому, что рост погрешностей округления при численном решении задачи Коши для эллиптических уравнений оказывается практически незаметным и не влияет на устойчивость счета. Для проверки этих соображений были проведены специальные расчеты, в которых рассматривалось различное расположение точек на слое. При использовании разностной сетки с постоянным, но мелким шагом рост погрешностей округления в области / приводил к тому, что после небольшого числа шагов в направлении по нормали к линии тока счет становился неустойчивым. При использовании разностной сетки с постоянным, но большим шагом, таким, что рост погрешностей округления в области / был практически неощутим, погрешности аппроксимации в областях II и IV становились настолько значительными, что по-прежнему счет быстро становил-  [c.189]

Варьирование эффективной температуропрсводности первичного преобразователя. Величина 1 — я, соответствует погрешности сигнала тепломассомера или другого первичного преобразователя плотности теплового потока за счет его инерционных свойств и падает с ростом числа Ро = ат/г". Снижение толщины датчика Н приводит к резкому снижению 1 — Пд, но одновременно и к снижению чувствительности датчика и ухудшению его механических свойств. Поэтому для тепломассометрии процессов с резко переменными тепловыми нагрузками может быть использован метод искусственного увеличения эффективного значения а [13].  [c.80]

Фактор формы Ф отвечает всем требованиям, предъявляемым к независимым переменным планированного эксперимента [61]. В качестве второй независимой переменной взята толщина образца к. Ее увеличение может привести к появлению конвективных токов по периферии жидкога образца, появлению боковых утечек тепла и росту погрешности определения средней температуры образца, уменьшение ее увеличивает погрешность в измерении самой к, а также Q, которую придется делать меньшей. Априорная информация, основанная на многочисленных измерениях ТФХ различных пищевых продуктов, дает основания ограничиваться этими факторами, поскольку остальные факторы либо косвенно через них выражаются, либо лежат в шумовом поле.  [c.127]

Обращает на себя внимание неупорядоченность чередования выпуклостей и вогнутостей фронта пламени, что объясняется характером возмущений, которые не задавалгсь, а возникали при числовом решении вследствие того, что ссот-ветствующая разностная схема аппроксимирует решаемую краевую задачу с погрешностью 0 (Ат /if hi), где 1т, /ii и /i2 — шаги разностной сетки по времени и простраг ст-венным переменным.  [c.344]

При практической реализации численных методов. существенным является анализ порядка аппроксимации и устойчивости расчетной схемы. Понятие аппроксимации определяет, переходят ли в пределе (при т- -0 и Л- -0) конечно-разностные соотношения в точные исходные диф-, ференциальные уравнения и какова точность такого приближенного представления. Приведенные выше конечно-разностные формулы имеют второй порядок аппроксимации по пространственным переменным. Это означает, что допускаемая погрешность — величина порядк/ № и быстро (по квадратичному закону) убывает с уменьшением шага сетки. Аппроксимация по времени для явной схемы (1.1)—первого порядка, для схемы переменных направлений (1.4), (1.5) —второго порядка.  [c.36]



Смотреть страницы где упоминается термин Погрешность переменная : [c.238]    [c.77]    [c.583]    [c.300]    [c.337]    [c.176]    [c.80]   
Метрология, специальные общетехнические вопросы Кн 1 (1962) -- [ c.83 , c.84 ]



ПОИСК



Прямая выравнивания в случае, когда обе переменные имеют погрешности

Сжатые стержни (стойки) 255, 274,----переменного поперечного стержнями экспериментальные наблюдения 578 (пр. 4) на сжатые стержни влияние погрешности производства 560,-------действие поперечной нагрузки 268, 579, на сжатых стержней



© 2025 Mash-xxl.info Реклама на сайте