Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термометры сопротивления германиевые

Германиевые термометры сопротивления. Германиевые термометры сопротивления (ТСГ) в зависимости от их назначения разделяются на три основные группы эталонные, образцовые и рабочие. Термометры рабочие в свою очередь подразделяются на термометры повышенной точности (лабораторные) и технические.  [c.203]

В 1975 г. в Национальной метрологической лаборатории (НМЛ, Австралия) было проведено международное сличение германиевых термометров сопротивления, имевшее целью найти расхождения нескольких магнитных температурных шкал и акустической шкалы НБЭ 2—20 К. Результаты сличения показали [5], что можно при единой процедуре градуировки магнитных термометров сблизить их показания по термодинамической шкале до уровня 1 мК. Вновь отметим, что магнитная термометрия не является первичной, поскольку она нуждается в этом интервале как минимум в четырех градуировочных точках (см. гл. 3).  [c.66]


При ВЫСОКИХ температурах. При низких температурах газовая колба довольно велика (около 1 л), имеет прочные толстые стенки и помещена в вакуумную камеру. Термометры сопротивления из сплава родия с железом крепятся непосредственно к наружной стороне колбы. Регулирование температуры осуществляется нагревателем на радиационном экране датчиком температуры служит германиевый термометр сопротивления. Теплопроводность бескислородной меди с высокой проводимо-  [c.92]

Температурная зависимость удельного сопротивления полупроводника, в который добавлено небольшое количество примеси, показана на рис. 5.7 [12]. На практике в полупроводнике всегда присутствуют как донорные, так и акцепторные примеси, и разработчик полупроводниковых термометров сопротивления может лишь выбирать соотношение между теми и другими. Для описания процессов проводимости рассмотрим германий, содержащий донорные атомы мышьяка в концентрации N(1 и какие-либо акцепторные атомы в концентрации Л а-На рис. 5.7 можно выделить четыре температурных диапазона, в каждом из которых преобладает какой-либо один механизм проводимости". В высокотемпературном диапазоне [I] проводимость обусловлена главным образом электронами, термически возбужденными из валентной зоны в зону проводимости согласно уравнению (5.8), поскольку все примесные атомы давно уже ионизованы. Это область собственной проводимости для германия она начинается чуть выше 400 К. Этот диапазон не представляет особого интереса для германиевых термометров сопротивления.  [c.198]

Рис. 5.7. Схематическая зависимость сопротивления германиевого термометра от температуры [12]. Рис. 5.7. Схематическая зависимость сопротивления германиевого термометра от температуры [12].
Для термометрических приложений особый интерес представляет переход между областями III и IV, который попадает как раз в ту область температур, где чаще всего используются германиевые термометры сопротивления. Согласно рис. 5.7,  [c.199]

Германиевый термометр сопротивления  [c.235]

Рис. 5.34. Схема германиевого термометра сопротивления [49]. 1 — позолоченная медь 2 — тефлон. Рис. 5.34. Схема германиевого термометра сопротивления [49]. 1 — позолоченная медь 2 — тефлон.

Рис. 5.37. Изменения сопротивления при 20,28 К для трех германиевых термометров сопротивления за 90 циклов изменения температуры до комнатной и обратно. Термометр К 15532 показывает скачки сопротивления, которые время от времени наблюдаются у термометров этого типа [57]. Рис. 5.37. Изменения сопротивления при 20,28 К для трех германиевых термометров сопротивления за 90 циклов <a href="/info/46047">изменения температуры</a> до комнатной и обратно. Термометр К 15532 показывает скачки сопротивления, которые время от времени наблюдаются у термометров этого типа [57].
Рис. 5.38. Сходимость коэффициентов ортогонального градуировочного полинома для германиевых термометров сопротивления. Коэффициенты шумов имеют случай- Рис. 5.38. Сходимость коэффициентов ортогонального градуировочного полинома для германиевых термометров сопротивления. <a href="/info/720237">Коэффициенты шумов</a> имеют случай-
Устройства с р—м-переходами не являются термометрами сопротивления в том же смысле, что платиновые или германиевые термометры. Однако при обсуждении магниторезистивного  [c.253]

Принцип действия термометров сопротивления (ТС) основан на зависимости электрического сопротивления металлов, сплавов и полупроводников от температуры. Для определения температуры по измеренному значению электрического сопротивления пользуются эмпирическими формулами или таблицами. Термометры для точных измерений (с погрешностью менее 0,001 К) — платиновый, германиевый — градуируют индивидуально. ТС применяют для измерения температур примерно от 0,01 К до 1100 Т.  [c.179]

Температуру спая термопары от 20 до 280 °К измеряли с помощью платиновых термометров сопротивления, а в интервале 4—20 К — с помощью германиевых термометров сопротивления. В медном блоке монтировали по три термометра каждого тина. Они использовались и как датчики системы терморегулирования. Эталонные температуры в случае использования жидких водорода или азота рассчитывали по показаниям одного калиброванного платинового термометра. При этом в системе поддерживалось постоянное давление. В случае жидкого гелия система находилась при нормальном атмосферном давлении, температуру оценивали по изменению давления.  [c.395]

В области гелиевых температур (4—10 К) для измерения температуры жидкости используют германиевые преобразователи сопротивления, а для измерения температуры стенки обогреваемой трубки — термоэлектрические преобразователи золото (+ 0,07 % железа) — медь. Необогреваемый входной конец трубки впаивают в цилиндрический медный блок с набором сверлений, параллельных оси трубки. В одно из сверлений на вакуумной замазке вставляют термопреобразователь сопротивления, а в другие — холодные спаи термоэлектрических преобразователей. По показаниям термометра сопротивления определяют температуру жидкости на входе в трубку и равную ей температуру холодных спаев термоэлектрических преобразователей. Горячие спаи приклеивают к трубке на ее обогреваемом участке через папиросную бумагу. Температуру стенки трубки в местах расположения горячих спаев определяют по показаниям термоэлектрических преобразователей с учетом температуры их холодных спаев  [c.380]

В диапазоне от 4,2 до 13,81 К в СССР измерения температур осуществляются на основе государственного специального эталона единицы температуры, созданного для группы германиевых термометров сопротивления.  [c.38]

Если калориметр предназначен для измерения теплоемкостей до 4—5° К (температура жидкого гелия), то измерение температуры в интервале 4—10° К представляет собой отдельную задачу. Иногда и в этом интервале для измерения температуры используют платиновый термометр сопротивления, однако его чувствительность в этой области очень мала. Чаще всего для этой цели применяют угольные термометры. Очень хорошие показатели для измерения температуры в таком интервале дают германиевые термометры, но они пока еще мало распространены и при измерениях теплоемкости не использовались.  [c.303]


Полупроводниковый термометр сопротивления, чувствительный элемент которого выполнен из германия, называют германиевым.  [c.31]

Шкапа температурная пирометра микроволнового излучения 2.13 Шкала температурная термодинамическая 2.3 Шкала температурная термометра магнитной восприимчивости 2.12 Шкала температурная германиевого термометра сопротивления 2.11 Шкала температурная условная 2.2 Шкала Не 1958 г. 2.9 Шкала Не 1962 г. 2.10  [c.73]

Рис. 3.12. Акустический интерферометр НФЛ для интервала температур от 2 до 20 К [20]. А — смазка стайкаст В — постоянный магнит С и О — электрические экраны Е— пьезоэлектрический датчик ускорения Е — диафрагма О — акустический канал Я — поршень, на котором крепится уголковый отражатель / — германиевые термометры сопротивления / — уголковый отражатель J( — стержень, который толкает поршень Е — разделитель лучей М — подвес Я — оптическое окно О — опора Р — верхняя камера Q — подвижная труба Р — радиационный экран 5 — термометр сопротивления Т— тепловой якорь (с нагревателем) и — тепловой якорь при Т=4,2 К V — вакуумная полость W — центральная несущая труба У — лазерные лучи 2 — ванна с жидким гелием. Рис. 3.12. <a href="/info/373900">Акустический интерферометр</a> НФЛ для интервала температур от 2 до 20 К [20]. А — смазка стайкаст В — <a href="/info/38894">постоянный магнит</a> С и О — электрические экраны Е— <a href="/info/128731">пьезоэлектрический датчик</a> ускорения Е — диафрагма О — акустический канал Я — поршень, на котором крепится <a href="/info/362781">уголковый отражатель</a> / — германиевые термометры сопротивления / — <a href="/info/362781">уголковый отражатель</a> J( — стержень, который толкает поршень Е — разделитель лучей М — подвес Я — оптическое окно О — опора Р — верхняя камера Q — подвижная труба Р — <a href="/info/251815">радиационный экран</a> 5 — <a href="/info/3942">термометр сопротивления</a> Т— тепловой якорь (с нагревателем) и — тепловой якорь при Т=4,2 К V — вакуумная полость W — центральная несущая труба У — лазерные лучи 2 — ванна с жидким гелием.
Рис. 3.20. Схема криостата Сетаса и Свенсона для магнитной термометрии [10]. А—вывод электрических проводов В — промежуточный экран С — термодатчик О — экран блока Е — вакуумная рубашка из латуни f—измерительные провода (3 — тепловые ключи Я — экран / — стержень из кварцевого стекла / — медные провода К — катушка L — нейлоновая ячейка М — экран из проволочной фольги N — радиационный экран из черной бумаги О — вакуумная рубашка из пи-рекса Р — переход медь—пирекс Q — высоковакуумная откачка / — вакуумная рубашка трубки, передающей давление 5 — образец с солью Т — германиевый термометр сопротивления и — медный блок V—платиновый термометр сопротивления — жидкий Не Z — откачка паров Не. Рис. 3.20. Схема криостата Сетаса и Свенсона для <a href="/info/4002">магнитной термометрии</a> [10]. А—вывод <a href="/info/94293">электрических проводов</a> В — промежуточный экран С — термодатчик О — <a href="/info/73889">экран блока</a> Е — вакуумная рубашка из латуни f—измерительные провода (3 — тепловые ключи Я — экран / — стержень из <a href="/info/63118">кварцевого стекла</a> / — <a href="/info/63788">медные провода</a> К — катушка L — нейлоновая ячейка М — экран из проволочной фольги N — <a href="/info/251815">радиационный экран</a> из черной бумаги О — вакуумная рубашка из пи-рекса Р — переход медь—пирекс Q — высоковакуумная откачка / — вакуумная рубашка трубки, передающей давление 5 — образец с солью Т — германиевый термометр сопротивления и — медный блок V—<a href="/info/251578">платиновый термометр сопротивления</a> — жидкий Не Z — откачка паров Не.
На практике в магнитной термометрии достигнуты большие успехи. На рис. 3.20 и 3.21 схематически показана аппаратура, которую использовали Сетас и Свенсон [10] для установления магнитной шкалы от 0,9 до 18 К. Эта шкала была принята за основу при установлении шкалы ПТШ-76 (см. гл. 2). Образец соли, приготовленный из порошка, помещался в немагнитную нейлоновую капсулу, которая поддерживалась стержнем из кварцевого стекла, прикрепленным к медному блоку. Температура блока измерялась германиевым и платиновым термометрами сопротивления. Медный блок имел полость, куда зали-  [c.127]

Рис. 3.22. С хема криостата Гью-гена и Мичела для газового термометра с измерением диэлектрической проницаемости [30]. А — изотермический экран из меди с высокой теплопроводностью В — блок с термометрами из меди с высокой теплопроводностью, =10 см, й=10 см С — ячейка конденсатора (одна или две) О — отверстия для железородиевых, платиновых и германиевых термометров сопротивления Е — холодный вентиль (один для каждой ячейки) Е — герметичный вывод измерительных проводов О — радиационный экран Н — вакуумная рубашка из нержавеющей стали, =17,5 см, уплотняющаяся с помощью индиевой прокладки / — манометрическая трубка из нержавеющей стали, =1,5 мм, проходящая внутри главной откачной трубы, = =37,5 мм /- теплоотвод от / К — термопара Ацре/хромель (одна из четырех вдоль трубки/). Рис. 3.22. С хема криостата Гью-гена и Мичела для <a href="/info/3930">газового термометра</a> с <a href="/info/282258">измерением диэлектрической проницаемости</a> [30]. А — изотермический экран из меди с высокой теплопроводностью В — блок с термометрами из меди с высокой теплопроводностью, =10 см, й=10 см С — ячейка конденсатора (одна или две) О — отверстия для железородиевых, платиновых и германиевых термометров сопротивления Е — холодный вентиль (один для каждой ячейки) Е — герметичный вывод измерительных проводов О — <a href="/info/251815">радиационный экран</a> Н — вакуумная рубашка из <a href="/info/51125">нержавеющей стали</a>, =17,5 см, уплотняющаяся с помощью индиевой прокладки / — манометрическая трубка из <a href="/info/51125">нержавеющей стали</a>, =1,5 мм, проходящая внутри главной откачной трубы, = =37,5 мм /- теплоотвод от / К — термопара Ацре/хромель (одна из четырех вдоль трубки/).
Конструкция точных германиевых термометров сопротивления претерпела мало изменений с тех пор, как они были впервые разработаны Кунцлером и другими исследователями в 60-х годах [47, 48]. Легированный германий вырезается в форме мостика (рис. 5.34), к ножкам которого прикрепляются золотые проволочки, служащие токовыми и потенциальными выводами. Германий обладает выраженными пьезоэлектрическими свойствами, поэтому очень важно обеспечить крепление без механических напряжений. Обычно для крепления используются сами выводы. Элемент герметически запаивается в позолоченную капсулу, которая заполняется гелием для улучшения теплового контакта. Несмотря на наличие гелия, более двух третей тепла подводится к германиевому элементу через выводы. Это означает, что температура, показываемая термометром, больше зависит от температуры выводов, чем от температуры самой капсулы. Чрезвычайно важно учитывать это при конструировании низкотемпературных установок [50]. То же верно и для платиновых и железородиевых термометров, но в гораздо меньшей степени, поскольку для проволочного чув-ствительного элемента отношение площади поверхности к площади поперечного сечения гораздо больше, чем для германиевого элемента. Как и у других термометров сопротивления, эффект самонагрева измерительным током зависит от теплового контакта с окружающей средой. Если весь термометр погружен  [c.236]

Специфический для германиевых термометров сопротивления эффект возникает вследствие довольно высокого значения коэффициента Пельтье для легированного германия. Он проявляется в том, что сопротивление элемента по постоянному и по переменному току различно [53, 54]. Прохождение постоянного тока через германиевый термометр сопротивления приводит к возникновению градиента температуры вдоль элемента вследствие выделения и поглощения тепла Пельтье на спаях элемента с выводами. Наличие градиента температуры вызывает появление небольшой термо-э. д. с. на потенциальных выводах, что приводит к некоторой погрешности в измерении сопротивления. Если же используется не постоянный, а переменный ток частоты f, то от каждого конца элемента распространяются затухающие тепловые волны. Затухание носит экспоненциальный характер, причем показатель экспоненты пропорционален Уf, так что по мере возрастания частоты тепловые волны все больше сосредоточиваются у концов элемента. Для четырехпроводных элементов в форме моста этот эффект исчезает, когда частота измерительного тока поднимается до такого значения, что тепловые волны перестают достигать потенциальных выводов. В этом случае на потенциальных выводах измеряется истинное сопротивление. Частота, на которой это происходит, зависит от температуропроводности и  [c.237]


Нет причин полагать, что стабильность сопротивления германия р- или п-типа является одним из факторов, ограничивающих воспроизводимость результатов, получаемых с германиевыми термометрами сопротивления. Небольшие случайные скачки сопротивления, которые иногда наблюдаются при циклическом изменении температуры, возникают скорее всего на спаях между золотыми выводами и германием. В этих спаях сосредо-  [c.238]

При обсуждении теории процессов проводимости в легированном германии был рассмотрен ряд аналитических выражений для проводимости или удельного сопротивления, в которые входят атомные константы, концентрация или свойства примесных атомов, а также температура. Было отмечено, что, несмотря на достаточно хорошее качественное согласие с экперимен-том, эти выражения нельзя применять для количественного описания характеристик конкретных материалов реальные процессы проводимости слишком сложны. Поэтому экспериментальные данные по зависимости сопротивления от температуры приходится аппроксимировать эмпирическим путем, не слишком полагаясь на физическую теорию, как, впрочем, и в случае платиновых термометров. Однако для германиевых термометров сопротивления эта задача оказывается намного сложнее по двум причинам. Во-первых, зависимость сопротивления от температуры меняется от образца к образцу гораздо сильнее, чем в случае платины, даже если эти образцы изготовлены лю одной технологии. Дело в том, что удельное сопротивление легированного германия очень чувствительно к количеству и свойствам примеси. Во-вторых, удельное сопротивление экспоненциально зависит от температуры, т. е. изменяется с температурой гораздо быстрее, чем удельное сопротивление платины.  [c.240]

Несмотря на свои отличные во многих отношениях характеристики, германиевые термометры сопротивления мало пригодны для использования в сильных магнитных полях. Магни-торезистиБНЫй эффект у них велик (рис. 5.48) и сильно зависит от ориентации (рис. 5.49). Эти термометры не рекомендуется использовать в полях с напряженностью выше 2,5 Тл при любой температуре.  [c.253]

Другой подход к измерению сопротивлений на переменном токе состоит в использовании прибора типа ryobridge фирмы Automati Systems Ltd, который представляет собой настоящий потенциометр переменного тока и разработан с учетом высокого сопротивления выводов у германиевых термометров сопротивления. Это автоматический прибор, работающий на  [c.260]

Германиевый термометр сопротивления является государственным специальным эталоном и воспроизводит единицу температуры в интервале от 4,5 до 13,81 К со средним квадратическим отклонением, не превышающим 0,001 К при неисключенной систематической погрешности, не превышающей 0,005 К [31]. Аналогичные германиевые термометры сопротивления используются в качестве рабочих эталонов в интервале температур от 1,5 до 13,81 К, они имеют среднее квадратическое отклонение при поверке, не превышающее 0,002 К [32].  [c.112]

Во Всесоюзном научно-исследовательском институте физико-технических и радиотехнических измерений (ВНИИФТРИ) хранится государственный первичный эталон единицы температуры в диапазоне от 13,81 до 273,15 К. В этом же институте создан и хранится государственный специальный эталон единицы температуры в диапазоне от 4,2 до 13,81 К на основе температурной шкалы германиевого термометра сопротивления. В ВНИИМ им. Д. И. Менделеева хранятся государственные первичные эталоны единиц температуры в диапазоне от О до 2500 °С.  [c.49]

В области температур от 4,2 до 13,81 К температура измеряется по шкале германиевого термометра сопротивления ТШГТС, основанная на зависимости электрического сопротивления германия от температуры. Зависимость эта выражается полиномом восьмой степени, девять коэффициентов которого определяются градуировкой германиевого термометра по газовому термометру.  [c.61]

В области термометрии существуют различные эталоны и различные поверочные схемы для нескольких диапазонов значений температуры. В диапазоне от 1,5 до 4,2 К единица температуры воспроизводится в соответствии с гелиевой щкалой Не 1958 Государственным специальным эталоном, состоящим из гелиевого конденсационного термометра и электроизмерительной аппаратуры для измерения сопротивления. Погрешность воспроизведения единицы температуры определяется погрешностью измерений давления насыщенных паров гелия эталонным конденсационным термометром. Среднее квадратическое отклонение результата измерений составляет 0,001 К при неисключенной систематической погрешности в пределах 0,003 К. Путем сличения в криостате единица температуры передается вторичным рабочим эталонам и эта-лонам-свидетелям, в качестве которых используются германиевые термометры сопротивления, и далее образцовым полупроводниковым термопреобразователям сопротивления. Предусмотрен только один разряд образцовых средств измерений. В качестве рабочих средств измерений используются термодиоды, термоэлектрические преобразователи и полупроводниковые термопреобразователи сопротивления. Они поверяются сличением с образцовыми средствами измерений или с рабочими эталонами в гелиевой ванне с регулятором давления.. Предел допускаемой абсолютной погрешности рабочих приборов не превышает 0,3 К.  [c.82]

В настоящее время имеется перспектива создания такого эталона. Известно, что термометры сопротивления, изготовленные из полупроводниковых материалов, имеют очень высокую чувствительность, и остается только развить методы, обеспечивающие достаточную нх воснроизводи.мость. Кривые на фиг. 2 представляют собой температурные характеристики такого термометра — германиевого полупроводника с проводимостью р-тнпа.  [c.155]

Германий, применяемый в электронике, подразделяется на марки, отличаюн1иеся легирующими примесями, значениями удельного электросопротивления и диффузионной длины неосновных носителей заряда. Из германия производят диоды, транзисторы, фотодиоды и фоторезисторы, датчики Холла, линзы для приборов ИК-тех-ники, рентгеновской спектроскопии, детекторы ионизирующих излучений, термометры сопротивления, эксплуатируемые при температуре жидкого гелия. Рабочий диапазон температур для приборов на основе германия -60- -70 °С, что в 2 раза меньше, чем для кремния. Германиевые приборы нужно защищать от действия влажного воздуха.  [c.651]

Температурная шкала германиевого термометра сопротивления ТШГТС. Шкала ТШГТС, основанная на зависимости электрического сопротивления германиевого термометра от температуры Т, устанавливается для диапазона температур от 4,2 до 13,81 К. Зависимость Я = Т) выражается соотношением  [c.63]

Эталонный германиевый термометр сопротивления воспроизводит и хранит единицу температуры и температурную шкалу ТШГТС в диапазоне от 4,2 до 13,81 К (ГОСТ 8.157-75). Зависимость электрического сопротивления Я германиевого термометра от температуры Т в интервале от 4,2 до 13,81 К выражается соотношением  [c.203]


Смотреть страницы где упоминается термин Термометры сопротивления германиевые : [c.111]    [c.232]    [c.235]    [c.236]    [c.249]    [c.257]    [c.382]    [c.82]    [c.348]    [c.429]    [c.214]    [c.63]    [c.253]    [c.483]   
Теплотехнические измерения и приборы (1984) -- [ c.46 , c.48 , c.78 ]



ПОИСК



Термометр

Термометр германиевый

Термометр сопротивления

Термометрия



© 2025 Mash-xxl.info Реклама на сайте