Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кислород вязкость газа

Свойства металла шва, наплавленного электродом без покрытия, очень низки (ударная вязкость падает до 0,5 МДж/м вместо 8 МДж/м ). Состав покрытия электродов определяется рядом функций, которые он должен выполнять защита зоны сварки от кислорода и азота воздуха, раскисление металла сварочной ванны, легирование ее нужными компонентами, стабилизация дугового разряда. Производство электродов сводится к нанесению на стальной стержень электродного покрытия определенного состава. Электродные покрытия состоят из целого ряда компонентов, которые условно можно разделить на ионизирующие, шлакообразующие, газообразующие, раскислители, легирующие и вяжущие. Некоторые компоненты могут выполнять несколько функций одновременно, например мел, который, разлагаясь, выделяет много газа (СОг). оксид кальция идет на образование шлака, а пары кальция имеют низкий потенциал ионизации и стабилизируют дуговой разряд, СОг служит газовой защитой.  [c.390]


Состав воды в результате магнитной обработки не меняется. Изменяется структура воды, ее свойства (вязкость, поверхностное натяжение, магнитная восприимчивость, диэлектрическая проницаемость, растворимость в воде углекислого газа, кислорода, теплоты растворения веществ и др.), возникают многочисленные зародыши кристаллов, поверхность которых намного превышает площадь поверхностей нагрева. Эти зародыши кристаллов затем при нагреве, в связи с понижением растворимости накипеобразователей, служат центрами кристаллизации и предопределяют выделение накипеобразователей в виде шлама.  [c.410]

Литые слитки приходится обрабатывать с целью облагораживания структуры и измельчения крупного зерна. Подобная первоначальная обработка, повышающая удлинение и вязкость, осуществляется путем выдавливания в холодном и горячем состояниях, ковки, прокатки и обработки на ротационно-ковочной машине. Отжиг при температуре 510° с последующим медленным охлаждением способствует размягчению более тяжелых редкоземельных металлов, но оказывает слабое влияние на легкие металлы. Отжиг и обработка давлением при повышенных температурах требуют защитных контейнеров или инертной атмосферы для предотвращения коррозии. При высоких температурах все редкоземельные металлы обладают большим сродством к кислороду, водороду н прочим активным газам.  [c.604]

Воздействию низких температур подвергаются очень многие материалы и изделия, например трубы для газо- и нефтепродуктов, мосты, железные дороги, автомобили, летательные аппараты и т. д. В северных районах охлаждение материалов может достигать -60 °С, корпуса самолетов и космических аппаратов могут охлаждаться до температуры жидкого кислорода (-183 С). Детали и отдельные узлы холодильной и криогенной техники, которые используются для получения, хранения, транспортировки сжиженных газов, охлаждаются до температуры жидкого гелия (-269 °С). При низких температурах у металлов наблюдаются потеря пластичности и вязкости и повышенная склонность к хрупкому разрушению. Основное требование к материалам, работающим в условиях низких температур, — это отсутствие хладноломкости.  [c.142]

При газолазерной резке металлов лазер непрерывного излучения на углекислом газе мощностью до 5 кВт позволяет в струе кислорода резать малоуглеродистые стали толщиной до 10 мм, легированные и коррозионно-стойкие стали - до 6 мм, никелевые сплавы - до 5 мм, титан - до 10 мм. Металлы, образующие тугоплавкие оксиды с малой вязкостью, газолазерной резкой разделяются плохо, так как удаление оксидов из зоны резки в этом случае затруднено. К таким металлам относятся алюминий и его сплавы, магний, латунь, хром и целый ряд других металлов, которые выгоднее резать плазменной резкой.  [c.210]


На свойства стали при низких температурах существенно влияют химический состав, способ производства и режим термической обработки. Хорошо сопротивляется динамическим нагрузкам при минусовых тем пературах спокойная мартеновская сталь, раскисленная алюминием. Кипящая мартеновская сталь, раскисленная только ферромарганцем, проявляет низкую ударную вязкость при более высоких температурах. Наиболее хрупкой при низких температурах является кипящая углеродистая сталь, выплавленная в бессемеровских конвертерах. По сравнению со спокойной мартеновской сталью она содержит повышенное количество фосфора и растворенных газов азота и кислорода.  [c.235]

Для защиты от коррозии стальных конструкций мокрых газгольдеров в зоне периодического смачивания (ватерлиния) в СССР применяют защитную жидкость, представляющую собой раствор полиизобутилена в индустриальном масле, компаундированном битумом. Эта жидкость обладает хорошей адгезией к металлу, не смешивается с водой, морозоустойчива. Плотность ее 0,95 температура застывания менее—25° С вязкость примерно 8,1 по Энглеру (50°С). Плавая на поверхности воды в газгольдере, эта жидкость предохраняет металл от смачивания водой и одновременно предотвращает увлажнение газов, хранящихся в газгольдере. При хранении кислорода эти жидкости применять нельзя.  [c.437]

Газы в стали — кислород (О), азот (N) и водород (Н) — отрицательно влияют на ее свойства. Кислород и азот снижают ударную вязкость и прочность металла, а водород резко снижает прочность, относительное удлинение и сужение стали.  [c.96]

В результате быстрого остывания ванны химические реакции, протекающие в жидком металле и шлаке, не успевают полностью закончиться. Под действием высокой температуры сварочной дуги часть молекул кислорода и азота воздуха в зоне дуги распадается на атомы. В атомарном состоянии газы значительно активнее, чем в молекулярном состоянии. Кислород, соединяясь с железом, образует окись железа РеО, а также целый ряд других окислов. Вследствие этого содержание кислорода в металле шва при сварке незащищенной дугой достигает 0,2—0,3 %, в то время как в мартеновской стали содержание кислорода не превышает 0,01—0,02 /о- Содержание кислорода в металле понижает его механические свойства и особенно ударную вязкость.  [c.88]

Основное покрытие (Б) в качестве шлакообразующей основы имеет плавиковый шпат и карбонаты кальция и магния (мел, магнезит, мрамор). Газовая защита обеспечивается углекислым газом, образующимся при разложении карбонатов. Металл, наплавленный электродами с таким покрытием, по химическому составу соответствует спокойной стали, обладает минимальным содержанием азота и кислорода, высокими показателями ударной вязкости как при положительной, так и отрицательной температуре, хорошей стойкостью против образования кристаллизационных трещин. Эти электроды особенно целесообразны для сварки металла большой толщины, сталей с повышенным содержанием серы и углерода, жестких конструкций из литых углеродистых, низколегированных и высокопрочных сталей. Сварка производится на постоянном токе обратной полярности.  [c.55]

В целях улучшения условий выделения газов из воды необходимо максимально приблизить все частицы потока деаэрируемой воды к поверхности раздела фаз, с тем чтобы растворенные газы могли быстро переходить из воды в паровую фазу. Чем больше поверхность раздела вода — пар, через которую происходит десорбция газов, тем быстрее система приближается к равновесию, т. е. тем полнее из воды удаляются растворенные газы. Это достигается усилением турбулентности потока воды путем ее распыливания, разбрызгивания или сливания через мелкие отверстия и перегородки для разделения ее на мелкие капли, тонкие струйки или пленки, что значительно увеличивает поверхность воды и облегчает удаление из нее газов. Увеличение поверхности соприкосновения воды с паром может быть достигнуто также путем барботирования через воду греющего пара, подаваемого под давлением через сопло или другие устройства. С ростом скорости греющего пара увеличивается динамическое воздействие парового потока на деаэрируемую воду, что способствует повышению эффективности термической деаэрации. С увеличением средней температуры деаэрируемой воды или температуры исходной воды снижаются вязкость и поверхностное натяжение воды и увеличивается коэффициент диффузии кислорода в ней, вследствие чего повышается значение коэффициента десорбции (массопередачи) и в конечном итоге уменьшается остаточное содержание кислорода в деаэрированной воде.  [c.193]


Чтобы определить параметры плазмы, представляющей собой высокотемпературную равновесно реагирующую газовую смесь, прежде всего необходимо найти ее состав. Очевидно, что точность расчета состава будет определяться не только погрешностью вычислительного процесса, но в первую очередь — полнотой учета физических и химических эффектов, имеющих место в реагирующей смеси. Однако полный учет этих явлений затруднен. В то же время для получения результатов с достаточной для инженерных расчетов точностью можно принять следующие допущения в реакции горения участвует все топливо воздух состоит только из азота и кислорода смесь газов, составляющих продукты сгорания, является идеальным газом в исследуемом диапазоне температур и давлений полностью отсутствует термическая ионизация газовых компонент рассматривается однокомпонентпая легкоионизируемая присадка ее влияние на термодинамические параметры газовой смеси учитывается в приближенной форме введением соответствующих поправочных коэффициентов влияние присадки на вязкость и теплопроводность не учитывается а электропроводность рассчитывается методом малых возмущений.  [c.109]

Ингибитор Тайга-1 (ТУ 38 40347-73) представляет собой темно-коричневую легкоподвижную жидкость с характерным запахом растворим в спирте, ацетоне, бензоле, керосине и других растворителях, в воде образует эмульсию. Плотность при 20°С - 0,92-0,96 г/см вязкость при 50°С - 4-10 сСт температура застьшания - минус 58-59 С температура вспышки — 20°С. Ингибитор Тайга- относится к малотоксичным продуктам, защищает черные металлы в слабокислых и нейтральных средах, содержащих сероводород, кислород, углекислый газ, ионы хлора. Ингибитор может применяться для защиты нефтедобывающего оборудования от коррозии, вызьша-емой сильно обво,дненной нефтью, пластовыми и сточными водами, содержащими сероводород и кислород. Защитное действие для углеродистой стали в средах, содержащих сероводород при концентрации 300 мг/л - 97%.  [c.25]

При помощи ударной трубы возможно создание высокотемпературных потоков газа в широком диапазоне плотностей. Несмотря на кратковременность процесса, быстродействующая аппаратура дает возможность проводить тепловые замеры. Более того, кратковременность действия потока имеет даже определенные преимущества, так как с высокой точностью позволяет считать процесс передачи тепла стенкам одномерным. Результаты многих работ [1—4], в которых изучалось развитие пограничного слоя и теплообмен на стенке ударной трубы с помощью тонкопленочных термометров сопротивления, показали, что температура поверхности стенки трубы может быть измерена очень точно. Поэтому в настоящее время появилось два метода измерения коэффициентов переноса, в основе которых лежат результаты измерений теплопередачи к стенкам ударной трубы. Впервые численное решение задачи теплообмена было получено в работе [5] и экспериментально проверено в работе 61, в которой авторы измерили теплообмен в критической точке тупоносого тела, помещенного в ударную трубу. Результаты работы 6] в основном подтвердили теорию, изложенную в работе [5], но при этом обнаружилось, что теплообмен в сильной степени зависит от числа Ье (числа Люиса) и вязкости газа поэтому получить данные о коэффициенте вязкости высокотемпературного газа в невоз-ыущенном потоке было практически невозможно. Авторы работы [7] используя теорию, предложенную в работе [5], а также результаты работы [8], дающей теоретический анализ ламинарного пограничного слоя на стенке ударной трубы, показали, что тепловой поток на боковой стенке очень слабо зависит от числа Люиса. Поэтому в соотнощении для теплообмена единственной неизвестной можно считать коэффициент вязкости в невозмущенном потоке. Это позволило им, используя данные по определению теплового потока к стенкам ударной трубы, при сравнении с численными решениями уравнений пограничного слоя на стенках получить экспериментальные результаты по определению коэффициента вязкости диссоциированного кислорода. Оценивая результаты эксперимента, они пришли к выводу, что на теплообмен к боковой стенке очень слабо влияет фитерий Прандтля, число Люиса, а лучистый тепловой поток в диапазоне температур 2000—4000° К еще пренебрежимо мал. Погрешность экспериментальных данных о вязкости, полученных по этой методике, оценивается авторами в пределах 16%- Сравнение полученных опытных данных с данными, рассчитанными по формуле  [c.217]

Аустенит снижает вязкость разрушения, что показано на сплавах с повышенным содержанием никеля, имеющих остаточный аустенит. Результаты исследования показали, что вязкость разрушения сильно снижается в сплавах, в которых основной вредной примесью является кислород. Основная роль химически активного металла — алюминия— состоит в удалении таких примесей путем связывания их в соединения. Кроме того, добавка алюминия измельчает размер зерна, что способствует повышению прочности и вязкости разрушения. Сплав Fe—12Ni—0,5А1, сваренный дуговой сваркой вольфрамовым электродом в среде защитного газа с последующей термообработкой после сварки, имеет вязкость разрушения в зонах шва и термиче-  [c.258]

Вредные примеси (сера и фосфор) и растворенные газы (азот и кислород) повышают порог хладноломкости. Однако наибольшее влияние на ударную вязкость стали при минусовых температурах оказывает химический состав. Хорошо сохраняют ударную вязкость в области низких температур стали, легированные 5—6 % никеля. Аустенит-ные хромоникелевые стали и сплавы на никелевой осново весьма пластичны в области очень низких температур. Поэтому ГОСТ 5632—72 допускает, например, поковки из сталей 04Х18Н10 и 08Х18Н12Б к применению в сосудах, работающих под давлением до температуры —269 °С.  [c.207]


Сжигание мазута в определенных условиях может сопровождаться появлением сажи, что хорошо видно по окраске дыма. Причиной сажеобразования бывают нехватка воздуха, грубые нарушения гидродинамики форсунок, повышенная вязкость топлива и т. п. Положение усугубляется при работе с малой нагрузкой, когда температуры топки недостаточны для дожигания мелкодисперсных частиц углерода. Особенно опасны в этом отношении пусковые периоды. Неналаженность оборудования сочетается здесь иногда с длительной (сутками) работой на холостом ходу, необходимой для наладки регулирования турбины, сушки генератора, настройки электрической защиты и т. п. Образуюш,аяся сажа накапливается по газоходам и особенно в узких пазах набивки регенеративного воздухоподогревателя. При дальнейшем повышении нагрузки, а следовательно, и температуры происходит самовозгорание сажи или зажигание ее от случайных очагов. В рекуперативных трубчатых подогревателях пожары, как правило, бывают после останова котла, так как при его работе дымовые газы бедны кислородом и процесс горения не развивается. В регенеративных воздухоподогревателях кислород поступает при прохождении набивки через воздушный канал, и раз начавшись, пожар быстро прогрессирует. После прогрева до 800—1 000° С в горение включается сталь, имеющая теплоту сгорания около 1 ООО ккал1кг. Температура быстро повышается, ротор деформируется и заклинивается, набивка размягчается, спекается в куски или в виде жидких струй вытекает в короб. Пожары развиваются с большой скоростью и наносят огромный ущерб. Первым признаком пожара является быстрый рост температуры уходящих газов и горячего воздуха. Для практических целей за сигнал тревоги надо принимать повышение температуры на 20—30° С выше обычной. По мере развития пожара начинается выбивание искр через периферийные уплотнения воздушного сектора и разогрев до видимого глазом каления газовых коробов.  [c.291]

Эффективность смазок для титана. Обладая высокой поверхностной активностью, титан очень интенсивно образует окисные пленки (хемсорбция кислорода) и адсорбирует газы из окружающей среды (активированная физическая адсорбция газов). Защищенная газами активная поверхность титана теряет способность адсорбировать обычно применяемые в промышленности виды смазок. В работах Е. Рабиновича и А. Кингсбери [136] показано, что минеральные масла (испьггывалось 15 марок масел с различными антифрикционными добавками и без них) с вязкостью от 50 до 1000 сСт не эффективны (/ = 0,45 н- 0,47) производные углеводородов с длинной цепью также не эффективны (/ близок к 0,47) реагирующие с поверхностью титана неорганические жидкости (крепкий раствор каустической соды в воде, раствор йода в спирте, раствор сероводорода в воде и др.) значительно снижают коэффициент трения, но свойства этих жидкостей (низкая вязкость, испарение составляющих и др.) не позволяют использовать их для практического применения в качестве смазки синтетические соединения с длинной цепью (силиконовые масла, полиэтиленовые и полипропиленовые гликоли, растворы сахара, патока, мед и др.) уменьшают коэффициент трения причем самыми эффективными являются полиэтиленовые гликоли (/ =0,26) некоторый положительный результат в снижении коэффициента трения отмечается для углеводородов, содержащих галогены.  [c.188]

Предложена программа расчета ЖРД с газообразными продуктами сгорания для установившегося режима работы и обычного сверхзвукового сопла [134]. В табл. 16 указаны учитываемые программой процессы и диапазоны свойственных им потерь. Расчеты базируются на двух подпрограммах — анализе двумерного течения в сопле с учетом кинетики химических реакций (TDK) и анализе турбулентного пограничного слоя (TBL). По первой рассчитывается удельный импульс для невязкого газа с конечными скоростями химических реакций. Подпрограмма позволяет учитывать две зоны с разным соотношением компонентов, а также неполное выделение энергии. Во второй рассчитывается влияние вязкости и теплопередачи в стенку камеры. Расчет носит итерационный характер в последовательности TDK- TBL- TDK и завершается определением удельного импульса (рис. 90). На рис. 91 графически представлены учитываемые виды потерь (интересно сравнить этот метод с аналогичной процедурой расчета удельного импульса РДТТ, которую иллюстрирует рис. 57). Эта программа пригодна для топлив, состоящих из следуюш их химических элементов углерод, водород, азот, кислород, фтор и хлор. Разработан метод расчета взаимосвязи полноты сгорания в камере с потерями в сопле.  [c.170]

Ингибитор И-1-Д (ТУ 38 40366-75) представляет собой мазеобразную жидкость темно-коричневого цвета плотность при температуре 20°С - 0,95-0,97 г/см вязкость при температуре 50°С - 110-120 сСт температура застывания 10-12°С. Ингибитор И-1-Д относится к малотоксичным продуктам. Ингибитор И-1-Д хорошо растворим в минеральных маслах (индустриальном и веретенном), предельных углеводородах (гексане, октане), толуоле, ксилоле, олифе, дихлорэтане, этиловом спирте, ацетоне. Гфедназначен для защиты оборудования от действия сероводорода, углекислого газа, кислорода в нефтегазодобывающей промышленности, а также в средах, содержащих разбавленные водные растворы минеральных кислот.  [c.21]

Ингибитор И 21-Д - углеводородорастворимый ингибитор для высокоминерализованных сред, содержащих сероводород, кислород и углекислый газ. Внешний вид — темно-коричневая подвижная жидкость, плотность - 0,8-0,9 г/см вязкость при температуре 20°С г. 4,0-6,5 сСт. Ингибитор растворим в низкомолекулярных одноатомных спиртах, ацетоне, ароматических и алифатических углеводородах. Защитное действие в 3%-ном растворе М аС содержащем 800 мг/л H2Si при 200С и концен-фации 100-200 мг/л - 86-96% в 3%-ном растворе N t, содержащем 400-700 мг/л Oq при температуре 20°С и концентрации 200-300 мг/л 86-91%.  [c.29]

Тиосульфат не регенерируется обычным способом и поэтому накапливается в растворе, повышая его вязкость и агрессивность. При эксплуатации необходимо принимать меры, исключающ ие контакт растворов моноэтаноламина с воздухом. Это достигается созданием защитных подушек из инертного газа. Когда же нельзя устранить попадание кислорода в систему, рекомендуется вводить добавки, предотвращающие окисление раствора [10, 11].  [c.219]

Прорвавшиеся в картер газы содержат пары бензина, пары воды, сернистый газ, хлор и другие вещества. Пары бензина, конденсируясь, разжижают масло, при этом уровень масла может увеличиваться, уменьшается его вязкость и ухудшаются смазочные свойства. Часть паров воды проникает в картер и конденсируется. Наличие воды в масле приводит к вспениванию его во время работы двигателя и к образованию густых и липких эмульсий, что, особенно в зимнее время, нарушает нормальную циркуляцию масла в системе смазки и может вызвать перебои в подаче масла к трущимся поверхностям. Серн истый газ при конденсации паров воды, растворяясь в воде, образует сернистую кислоту, переходящую в присутствии кислорода воздуха в серную кислоту. Серная кислота, попадая на трущиеся поверхности деталей, вызывает сильный коррозийный износ деталей, особенно подшипников с антифрикционными сплавами на свинцовой основе.  [c.63]

Пузыри и мошка. Пузыри и мошка (мелкие пузыри) — очень распространенный вид пороков стекла. Они имеют различную форму, размеры и происхождение (рис. 77) и могут быть заполнены различными газами — чаще всего углекислым, окисью углерода, сернистым газом, кислородом и водородом. Пузыри и мошка портят внешний вид стеклоизделий, снижают их химическую и механическую стойкость. Образуются они прежде всего вследствие недостаточной очистки стекла. Ввиду высокой вязкости стекломассы процесс освобождения ее от газов, выделившихся главным образом при силикато-образовании, требует длительного времени и высокой температуры. Поэтому полное удаление пузырей из стекла— задача весьма сложная, особенно для тугоплавких стекол оно не всегда удается полностью.  [c.506]


Фтористо-кальциевое покрытие состоит из карбонатов кальция, магния (мрамор, мел, доло.мит, магнезит) и плавикового шпата, а также из ферросплавов (ферромарганец, ферросилиций, ферротитан и др.). Электроды с фтористо-кальциевым покрытием иногда называют основными или низководородистыми . Расплавленный металл защищается углекислым газом и окисью углерода, которые образуются вследствие диссоциации карбонатов. Электроды с основным покрытие . применяют преимущественно при сварке постоянным током обратной полярности во всех пространственных положения.к. Металл, наплавленный такими электродами, чаще всего соответствует спокойной стали и содержит незначительное количество кислорода, водорода и азота. Содержание серы и фосфора в нем обычно не превышает 0,035% каждого, содержание марганца и кремния зависит от назначения электродов (от 0,5 до 1,5% Мп и от 0,3 до 0,6% 51). Металл шва, стойкий против образования кристаллизационных трещин, старения, имеет достаточно высокие показатели ударной вязкости как при положительных, так и при отрицательных температурах. Электроды с основным покрытием применяют для сварки металлов большой толщины, для изделий, работающих в тяжелых эксплуатационных условиях или транспортирующих газы, а также для сварки литых углероди-  [c.70]

Дуговая сварка в среде инертных газов. Сварку можно выполнять неплавящимся (вольфрамовым) электродом с присадкой и без нее и плавящимся электродом из титана как вручную, так и автоматически. При этом применяют нейтральные газы повышенной чистоты аргон (99,7—99,92% по объему), гелий (99,97— 99,98% по объему). Наличие в защитном газе, например, примесей кислорода и азота более 0,2—0,25% заметно снижает пластичность и ударную вязкость металла шва. При ручной сварке рациональнее применять аргон, а при автоматической — гелнй. Хорошие результаты дает также смесь из 20—30% аргона и 70— 80% гелия.  [c.82]

Кнюппель и Мауер [187], исследовав 200 плавок различного способа выплавки, установили, что основное влияние на ударную вязкость после деформационного старения оказывают азот, фосфор и кислород, причем величины их удельного влияния относятся соответственно как 3,3 1 0,75. Эти авторы пришли к выводу, что склонность сталей к деформационному старению зависит только от их химического состава и не зависит от способа выплавки. Примечательно замечание, что установленное ими влияние химического состава имеет значение только для использованной термической обработки (нормализация на спокойном воздухе), так как, например, влияние кислорода с увеличением скорости охлаждения становится слабее, чем это следует из вышеприведенного. К. Ф. Стародубов и И. И. Коссая исследовали влияние на склонность стали к старению суммарного содержания в ней газов (азота, кислорода, водорода), переплавляя сталь в вакууме [190]. Ряд авторов определенно указывает, что учет влияния азота, фосфора, кислорода на степень охрупчивания при деформационном старении будет неполным, если не принимать во внимание содержание в стали марганца и углерода . Что касается марганца, то его наличие в стали улучшает вязкость после деформационного старения, причем особенно важно не абсолютное содержание марганца, а значение соотношения Мп С [71, 123]. Поэтому, в частности, изменение содержания углерода в пределах содержания его в низкоуглеродистой стали при неизменном содержании марганца будет изменять склонность стали к деформационному старению. Увеличение содержания углерода усиливает Неблагоприятное влияние азота и фосфора на охрупчивание при деформационном старении [71]. Данные же о  [c.99]

Сталь получают из чугуна. Процесс варки стали заключается в выжигании (окислении) из чугуна части углерода, серы, фосфора и других элементов. Окисление осуществляется кислородом воздуха. Получающиеся при этом окислы связываются между собой непосредственно или при помощи флюсов и образуют шлак, который всплывает на поверхность расплавленного металла и удаляется. Часть продуктов окисления в виде газов удаляется в атмосферу. В качестве флюсов обычно применяют известняк и кв-арцевый песок. Для придания стали особых свойств (повышенной прочности, необходимой пластичности, вязкости и т. д.) в процессе плавки в нее добавляют те или иные присадки (феррохром, ферровольфрам, ферромолибден и т. д.).  [c.38]

Первый период обжига, при котором происходит образование окисного слоя на поверхности металла, обычно заканчивается через 1—2 мин после начала обжига. Затем начинается второй период, при котором протекают процессы в расплавляющемся слое эмали и на границе железо—эмаль. При дальнейшем нагревании начинают плавиться соли, находившиеся в растворенном виде в шликере. Грунтовой слой спекается, а затем начинает оплавляться, причем постепенно снижается вязкость грунта. В этот момент прекращается свободный доступ кислорода к поверхности металла. Одновременно происходит интенсивное выделение газов из металла и газов, образующихся в зоне контакта грунта с металлом в результате раскисления РсгОз и F gOi и взаимодействия углерода металла с некоторыми компонентами эмали  [c.188]

Механизм и основные закономерности распыления расплава водой идентичны рассмотренным при использовании газа. Наиболее существенное отличие заключается в необходимости применения более высоких давлений для придания нужной скорости потокам воды, так как ее вязкость значительно больше вязкости любого из указанных газов. Поэтому обычно давление распыляющего потока воды составляет 3,5. .. 20 МПа. Учитьшают также, что из-за парообразования на контактах вода — расплавленный металл диспергирование образующихся капель металла идет более интенсивно. При распылении водой большая часть частиц имеет неправильную форму из-за ускоренного охлаждения капель. Однако, уменьшив скорость потока воды и повысив температуру расплава, можно получать порошки с большим содержанием частиц сферической формы. После распьшения водой порошокч ырец, содержащий кислород в виде оксидов, углерод и другие примеси, подвергают отжигу в восстановительной среде, что приводит к его рафинированию и улучшению технологических свойств.  [c.14]

Вязкость в кг сек/м некоторых газов при 0° и давлении в 10дмм рт. ст. углекислый газ 1,5-Ю" , кислород 2,0 10 , азот 1,7-10 водород 0,88-10 , водяной пар 0,92-10 .  [c.400]


Смотреть страницы где упоминается термин Кислород вязкость газа : [c.442]    [c.703]    [c.275]    [c.430]    [c.776]    [c.322]    [c.203]    [c.29]    [c.215]    [c.425]    [c.178]    [c.349]    [c.121]    [c.12]    [c.138]   
Справочник по теплофизическим свойствам газов и жидкостей (1963) -- [ c.440 , c.441 ]



ПОИСК



Вязкость газов

Газы, вязкость

Кислород

Кислород, вязкость



© 2025 Mash-xxl.info Реклама на сайте