Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ионизация потенциал

Температура столба дуги зависит от эффективного потенциала ионизации газов, заполняющих дуговой промежуток, плотности тока в электроде, напряженности поля, полярности и др.  [c.5]

Введение в состав электродных покрытий и флюсов влементов с низким потенциалом ионизации способствует быстрому зажиганию и устойчивому горению сварочной дуги за счет снижения эффективного потенциала ионизации газовой смеси.  [c.5]


Потенциал ионизации, работа выхода и их влияние на условия горения дуги.  [c.11]

Электрохимическая коррозия металлов представляет собой самопроизвольное разрушение металлических материалов вследствие электрохимического взаимодействия их с окружающей электролитически проводящей средой, при котором ионизация атомов металла и восстановление окислительного компонента коррозионной среды протекают не в одном акте и их скорости зависят от величины электродного потенциала металла.  [c.148]

Потенциалы некоторых металлов в водных растворах (Hg, Ag, Си, d и др.) в довольно широком диапазоне концентраций их ионов достаточно хорошо подчиняются уравнению (277). Если же наряду с разрядом ионов данного металла протекает необратимо какой-либо другой катодный процесс (например, разряд водородных ионов, ионизация кислорода и др.), то начинает идти растворение металла (Дт 0) и потенциал последнего перестает быть обратимым.  [c.157]

Электрохимический механизм в виде протекающей с участием свободных электронов электрохимической реакции, при которой ионизация атомов металла [см. уравнение (271)] и восстановление окислительного компонента коррозионной среды [см. уравнение (326) ] проходят не в одном акте и их скорости зависят от величины электродного потенциала металла, имеет место в подавляющем большинстве случаев коррозии металлов в электролитах и является, таким образом преобладающим.  [c.181]

Очень большая замедленность анодной реакции ионизации металла имеет место при возникновении анодной пассивности (см. с. 305). Анодная поляризация металлов в определенных условиях может облегчать переход металлов в пассивное состояние (образование на металле первичных фазовых или адсорбционных защитных пленок), что сопровождается резким торможением анодного процесса с соответствующим самопроизвольным падением плотности тока и значительным смещением потенциала электрода в положительную сторону (участок BE на рис. 137) до значений, достаточных для протекания нового анодного процесса, обычно выделения кислорода [участок EF кривой (Ко,)обр DEF на рис. 137]. Значение этого вида анодной поляризации рассчитать нельзя и его берут обычно из опытных данных.  [c.197]

При выборе ингибиторов коррозии металлов большое значение имеет заряд поверхности металла в данном электролите, т. е. его потенциал ф в шкале нулевых точек (см. с. 164). Если поверхность металла заряжена положительно (т. е. ф > О, например, у РЬ, d, Т1), это способствует адсорбции анионов, которые, образуя на металле анионную сетку , снижают перенапряжение водорода и ионизации металла, что нежелательно, так как приводит к ускорению коррозии. Замедляющее действие могут в этих условиях оказать лишь анионные добавки экранирующего действия, а замедлители катионного типа не применимы.  [c.348]


Действие излучения на коррозионную среду (радиолиз) является процессом ионизации и возбуждения в результате поглощения энергии излучения, что изменяет химический потенциал корро-  [c.369]

Энергия ионизации зависит от строения атома, т. е. от его места в периодической системе элементов (рис. 2.13). Она представляет собой периодическую функцию атомного номера элемента Z и снижается с уменьшением номера группы и увеличением номера периода таблицы Менделеева. Наименьший потенциал ионизации Ui = 3,9 эВ имеют пары s (см. выше). Единственный валентный электрон у щелочных металлов I груп-  [c.44]

Чем больше потенциал ионизации элемента Ui, тем меньше требуемая Л,. Для сварочной дуги, где Ui лежит в пределах 4... 25 эВ, соответствующие длины волн находятся в ультрафиолетовой части спектра.  [c.45]

ЭФФЕКТИВНЫЙ ПОТЕНЦИАЛ ИОНИЗАЦИИ  [c.54]

Так как дуговой разряд существует обычно не в однородном газе, а в смеси газов и паров, находящихся при высокой температуре, то необходимо знание эффективного потенциала ионизации. Практика показывает, что в смеси газов в большей степени ионизируется газ с наименьшим щ. Расчет эффективного потенциала термической ионизации смеси о был выполнен В.В. Фроловым.  [c.54]

Под Uq смеси, обладающей степенью ионизации Хо, следует понимать потенциал ионизации некоторого однородного газа, в котором (при температуре и общем давлении смеси) число заряженных частиц такое же, как и газовой смеси  [c.54]

Рис. 2.19. Изменение эффективного потенциала ионизации в системе паров К—Fe Рис. 2.19. Изменение <a href="/info/7549">эффективного потенциала ионизации</a> в системе паров К—Fe
По теплофизическим свойствам гелий существенно отличается от аргона. Он имеет высокий потенциал ионизации (24,5 вместо 15,7 эВ) и в 10... 15 раз большую теплопроводность при температурах плазмы. Кроме того, он легче аргона примерно в 10 раз. Достаточная для существования дуги ионизации аргона при п 10 ионов/см наступает примерно при 16 000 К, в то время как для гелия — при 25 ООО К. Все эти особенности существенно влияют на свойства W-дуги в гелии. Например, добавление к аргону гелия постепенно превращает конусную дугу в сферическую (рис. 2.55, а). Пинч-эффект в гелиевой плазме практически не имеет места до весьма больших плотностей тока, так как значительная теплопроводность гелия дает низкий температурный градиент по радиусу столба и весьма высокое внутреннее давление р = nkT.  [c.101]

Вероятность прямой ионизации атома (молекулы) газа электрич. нолем оказывается значительной, если на расстояниях порядка ра.змеров атома (молекулы) газа создаётся падение нотесщиала порядка ионизац. потенциала этой частицы (см. Ионизация полем). Это значит, что напряжённость ноля должна достигать (2—6)-dO В/см, т. е. 20—60 В/нм. Столь сильное поле легко создать у поверхности острия (на расстоноии 0,5 — 1 нм от неё) при достаточно малом радиусе кривизны поверхности — от 10 до 100 нм. Именно поэтому (наряду со стремлением к большим увеличениям) образец в И. п. изготовлен в виде тонкого острия.  [c.209]

Оптические свойства У. и. При взаимодействии У. и. с веществом могут происходить ионизация его атомов и фотоэффект. Оптич. свойства веществ в УФ-области спектра значительно отличаются от их оптич. свойств в видимой и ИК-областях. Характерной чертой для УФ-излучения является уменьшение прозрачности (увеличение коэф. поглощения) большинства тел, прозрачных в видимой области. Напр., обычное стекло непрозрачно для У. и. с =320 км в более коротковолновой области прозрачны лишь увиолевое стекло, сапфир, фтористый магний, кварц, флюорит, фтористый литий (имеет наиб, далёкую границу прозрачности—до Х=105нм) и нек-рые др. материалы. Из газообразных веществ наиб, прозрачность имеют инертные газы, граница прозрачности к-рых определяется величиной их ионизац. потенциала (самую коротковолновую границу прозрачности имеет Не—>. = 50,4 нм). Воздух непрозрачен практически при >.< 185 нм из-за поглощения У. и. кислородом.  [c.221]


Различают три вида ионизации в газах соударением, облучением (фотоионизация) и нагревом (термическая ионизация). Суть ионизации независимо от ее вида заключается в том, что за счет энергии, полученной нейтрдльным атомом газа тем или иным образом, этот атом теряет электрон и становится положительно заряженным ионом. Количество энергии, которое необходимо затратить для отрыва электрона от ядра атома, называют энергией ионизации-, ее измеряют в электронвольтах. Эта энергия численно равна потенциалу ионизации, который измеряется в вольтах и характеризует величину напряженности внешнего электрического поля, при которой электрон приобретает энергию, равную энергии ионизации. Потенциал ионизации зависит от строения атома и различен для различных химических элементов. Чем меньше потенциал ионизации, тем легче оторвать электрон от атома.  [c.86]

Здесь Со, с , с — соответственно число нейтральных частиц, л-кратпых ионов, электронов в единице объема, т — масса электрона, Т — темп-ра, / — п-ж ионизац. потенциал, gn — статистич. вес л-го состояния, к — постоянная Больцмана. Ур-пие (1) совместно с условием электрич. нейтральности с = п п позволяет определить концентрации различных ионов при ионизац. равновесии. Множитель 2g /g в (1) обычно 1. Выражепие (1) паз. ф-лой Саха.  [c.262]

Для стабильного горения дуги необходимо, чтобы в ее столбе все время находились заряженные частицы, количество которых уменьшается вследствие рекомбинации. Ионизирующее действие материалов определяется не только величиной потенциала ионизации, но и упругостью пара данного соединения или простого вещества, так как упругость пара определяет скорость испарения и тем самым концентрацию легкоионизирующихся атомов в атмосфере дуги. Поэтому эффективный потенциал ионизации любой газовой смеси определяется не только потенциалом ионизации, но и концентрацией элементов в дуговом промежутке.  [c.5]

В качестве стандартного электрода, потенциал которого при любых температурах условно принимают равным нулю, служит натриевый электрод, находящийся в равновесии с хорошо проводящей расплавленной солью натрия, для которой допускается полная ионизация (например, Na l или NaBr).  [c.173]

При определенном смещении потенциала в отрицательную сторону на катоде может начаться какой-либо новый процесс. В водных растворах таким процессом обычно является разряд водородных ионов, обратимый потенциал которого более чем на 1 В отрицательнее обратимого потенциала процесса ионизации кислорода. При достижении обратимого потенциала водородного электрода в данном растворе (КнЛобр на процесс кислородной деполяризации начинает накладываться процесс водородной деполяризации [кривая (1/hJo6pпроцесс катодной деполяризации будет соответствовать кривой (Ко обр A DEK на рис. 159, которую называют общй кривой катодной поляризации.  [c.242]

Если условия контактной коррозии металлов таковы, что суммарная анодная кривая пересекается с суммарной катодной кривой ( к)обр кс в области значительной зависимости последней от перенапряжения катодного процесса (перенапряжения ионизации кислорода), например в точке 1, то нетрудно заметить, что величина суммарного коррозионного тока Г (который полностью или большая часть его приходится на основной металл) определяется ходом суммарных катодной (в основном) и анодной кривых. Суммарные же величины отличаются от кривых основного (анодного) металла на величину соответствующих токов металла катодного контакта, которые определяются ходом катодной (в основном) и анодной кривых этого металла. Ход катодной кривой металла катодного контакта определяется катодной поляризуемостью его катодных участков Рк, и величиной поверхности этих участков Skj, а ход анодной кривой этого металла — его обратимым электродным потенциалом в данных условиях (V a.)oep. анодной поляризуемостью его анодных участков Ра, и величиной поверхности этих участков Чем положительнее значения (УмеХбр> тем меньше его анодные функции при контакте с другим металлом и больше катодные функции. Таким образом, эффективность ускоряющего действия металла катодного контакта на коррозию основного металла зависит от природы металла катодного контакта [его обратимого электродного потенциала в данных условиях (Каг)обр. поляризуемости электродных процессов Ркг и Рзг и соотношения 5к. Sa J и его поверхности 5а. При этом в условиях преимущественного катодного контроля процесса коррозии главную роль будут играть (Ка обр. Skj и Рк2-  [c.360]

Если при протекании анодного процесса выход ионов металла в раствор не поспевает за отводом электронов, отрицательный )аряд на металлической обкладке двойного слоя уменьшится, а потенциал металла сдвинется в положительную сторону. Этот вид анодной поляризации принято называть перенапряжением ионизации металла.  [c.34]

Таким образом, коррозия с кислородной деполяризацией является термодинамически более возможным процессом, так как равновесный потенциал восстановления кислорода более положителен, чем равновесный потенциал выделения водорода. Общая кривая катодной поляризации (рис. 16) имеет сложный вид и является суммарной из трех кривых, характеризующих поляризацию при ионизации кислорода (/), копцептрацнонную поляризацию (//) и поляризацию при разряде ионов водорода (///). Как это видно из рис. 16, общая катодная кривая слагается из трех участков, характерных. для этих трех процессов.  [c.45]


Ионная, или гетерополярная, связь типична для молекул и кристаллов, образованных из разных ионов (анионов и катионов). Типичный представитель ионных кристаллов — соль Na I. Образование катиона — результат потери атомом электрона. Мерой прочности связи электрона в атоме может служить потенциал ионизации атома (см. гл. 2).  [c.9]

В сварочных дугах имеются три характерные зоны — катодная, анодная и столб дуги. Столб сварочных дуг при атмосферном давлении представляет собой плазму с локальным термическим равновесием, квазинейтральностью и свойствами идеального газа. В столбе вакуумных сварочных дуг термическое равновесие может не наблюдаться, т. е. Te> Ti=Tn). С помощью физики элементарных процессов в плазме определяют потенциал ионизации газов Ui, эффективное сечение взаимодействия атомов с электронами (по Рамзауэру) Qe и отношение квантовых весов а . С использованием термодинамических соотнощений (первое начало термодинамики, уравнение Саха) определяют эффективный потенциал ионизации о, температуру плазмы столба Т, напряженность поля Е и плотность тока / в нем.  [c.60]

Значения ф представляют собой периодическую функцию атомного номера элемента и примерно в 2 раза меньше потенциала ионизации того же нещества (рис. 2.22).  [c.62]


Смотреть страницы где упоминается термин Ионизация потенциал : [c.382]    [c.233]    [c.346]    [c.46]    [c.5]    [c.11]    [c.12]    [c.314]    [c.35]    [c.65]    [c.78]    [c.446]    [c.448]    [c.449]    [c.454]    [c.462]    [c.38]    [c.44]    [c.45]    [c.54]    [c.59]   
Теория сварочных процессов (1988) -- [ c.6 , c.44 , c.552 ]



ПОИСК



Ионизация

Ионизация и непрерывные спектры поглощения потенциалы

Номер и потенциал ионизации веществ

ПРИЛОЖЕНИЕ II. Потенциалы ионизации веществ, рассматриваемых в V выпуске

Потенциал ионизации атомных и молекулярных частиц

Потенциалы ионизации газов

Потенциалы ионизации и возбуждения

Потенциалы ионизации нормальные чистых металло

Потенциалы ионизации термодинамические

Потенциалы ионизации электрического поля

Потенциалы сверла ионизации

Сродство к электрону и потенциал ионизации (Лт) и А)

Щелочные металлы потенциалы ионизации

Электроотрицательность элементов потенциал ионизации

Эффективный потенциал ионизации



© 2025 Mash-xxl.info Реклама на сайте