Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кислород, вязкость

В работе [63] применяли, очевидно, более чистое железо, так как введение кислорода повысило кинематическую вязкость расплава. С повышением концентрации кислорода до 0,02% (по массе) кинематическая вязкость железа при 1600° С возрастает при дальнейшем повышении концентрации кислорода вязкость стабилизируется. Азот влияет на повышение вязкости железа менее эффективно, чем кислород. Водород и алюминий снижают кинематическую вязкость железа, причем влияние водорода оказалось более слабым. Разное воздействие водорода и алюминия на уменьшение вязкости железа объясняют тем, что водород очищает жидкую сталь в  [c.50]


При нагреве металла в интервале температур 100—500° С (участок старения) его структура в процессе сварки пе претерпевает видимых изменений. Однако в некоторых сталях, содержащих повышенное количество кислорода и азота (обычно кипящих), их нагрев при температурах 150—350° С сопровождается резким снижением ударной вязкости и сопротивляемости разрушению.  [c.212]

Обработка мартеновского металла так называемыми синтетическими шлаками (шлаками, приготовленными в отдельной печи) позволяет уменьшить содержание не только кислорода, но и серы и тем самым уменьшить число оксидных и сульфидных неметаллических включений, что резко повышает вязкость поперечных образцов.  [c.396]

Кислый мартеновский процесс. Этим способом выплавляют качественные стали. Поскольку и печах с кислой футеровкой нельзя навести основной шлак для удаления фосфора и серы, то применяют шихту с низким содержанием этих составляющих. Стали, выплавляемые в кислых мартеновских печах, содержат меньше водорода н кислорода, неметаллических включений, чем выплавленные в основной печи. Поэтому кислая сталь имеет более высокие механические свойства, особенно ударную вязкость и пластичность, и ее используют для особо ответственных деталей коленчатых валов крупных двигателей, роторов мощных турбин, шарикоподшипников.  [c.35]

Свойства металла шва, наплавленного электродом без покрытия, очень низки (ударная вязкость падает до 0,5 МДж/м вместо 8 МДж/м ). Состав покрытия электродов определяется рядом функций, которые он должен выполнять защита зоны сварки от кислорода и азота воздуха, раскисление металла сварочной ванны, легирование ее нужными компонентами, стабилизация дугового разряда. Производство электродов сводится к нанесению на стальной стержень электродного покрытия определенного состава. Электродные покрытия состоят из целого ряда компонентов, которые условно можно разделить на ионизирующие, шлакообразующие, газообразующие, раскислители, легирующие и вяжущие. Некоторые компоненты могут выполнять несколько функций одновременно, например мел, который, разлагаясь, выделяет много газа (СОг). оксид кальция идет на образование шлака, а пары кальция имеют низкий потенциал ионизации и стабилизируют дуговой разряд, СОг служит газовой защитой.  [c.390]

Таблица 16.9. Вязкость частично диссоциированного кислорода, 10- Па с [3] Таблица 16.9. Вязкость частично диссоциированного кислорода, 10- Па с [3]

Для условий задачи 1.49 (степени диссоциации кислорода и азота в воздушной смеси, энтальпии ее равновесной диссоциации) определите среднюю молярную массу и динамическую вязкость воздуха.  [c.17]

Определить, при какой средней скорости w течение кислорода будет ламинарным, если считать его динамическую вязкость i = 0,00023 пуаза.  [c.141]

В разорванных при 20 С образцах бескислородной меди было обнаружено 7 пор, а в меди огневой рафинировки 49 относительное сужение первой меди равнялось 93 7о, второй 76%. Ударная вязкость меди уменьшалась с повышением содержания кислорода и при 0,04 % была в 4 раза меньше, чем у бескислородной меди [1],  [c.17]

При температуре 72 = 93,51 К динамический коэффициент вязкости кислорода х = 171,5-1Q- Па-с, теплоемкость с р = 1,637 кДж/(кгХ ХК), теплопроводность V = 0,171 Вт/(м-К). Следовательно, для кислорода число Рейнольдса  [c.418]

Для восстановления первоначальных магнитных свойств магнитомягкие материалы подвергают отжигу, который снимает внутренние напряжения и вызывает рекристаллизацию зерен. Магнитные свойства зависят от размера зерна. Поверхностные слои зерен вследствие искажения строения кристаллов характеризуются повышенной коэрцитивной силой. При мелкозернистом строении суммарная поверхность зерен в единице объема больше, чем при крупнозернистом материале, поэтому в материале, состоящем из мелких зерен, влияние поверхностных искажений слоев сказывается сильнее и у него коэрцитивная сила больше. Внутренние напряжения нередко связаны с наличием в материале различных загрязнений, например кислорода в чистом железе, примесей или присадок кобальта, хрома, вольфрама. Используя примеси, усложняющие кристаллическую решетку, вводя технологическую операцию закалки, а иногда добиваясь ориентации структуры доменов в магнитном поле, получают магнитотвердые материалы. При перемагничивании ферромагнетиков в переменных магнитных полях всегда наблюдаются тепловые потери энергии. Они обусловлены потерями на гистерезис и динамическими потерями. Динамические потери вызываются вихревыми токами, индуцированными в массе магнитного материала, а отчасти и так называемым магнитным последействием, или магнитной вязкостью. Потери на вихревые токи зависят от электрического сопротивления ферромагнетика. Чем выше удельное сопротивление ферромагнетика, тем меньше потери на вихревые токи. Магнитное последействие особенно заметно проявляется в магнитомягких материалах в области слабых полей.  [c.272]

Из данных таблицы видно также, что глубина диффузионного слоя увеличивается в процессе испытаний больше всего у образцов с покрытием № 77. Это объясняется малой вязкостью слоя покрытия, особенно при температуре 800° С. Более тугоплавкое из трех испытанных составов покрытие № 58 эффективнее защищает сплавы титана от окисления кислородом воздуха.  [c.156]

В эксплуатации разрушались болты из стали ЗОХГСА. Разрушение в трех случаях проходило по впадинам резьбы и в двух — по переходу от конусной части к цилиндрической по гру бым рискам от резца. Было установлено низкое качество вы полнения резьбы аварийных болтов надиры, риски, надрывы По этим дефектам наблюдалось множественное растрескивание В зоне ЗР излом имел хрупкий характер, в зоне долома наблю дались скосы с шероховатой поверхностью. В ряде случаев на поверхности излома наблюдались поперечные надрывы. Газовый анализ показал по-вышенное содержание кислорода (7,5— 8,0 см /100 г) и водорода (14,6—15,2 см /100 г) по сравнению с болтами неаварийной плавки (кислород 6,2 см ЮО г, водород 9,24 см ЮО г). Ударная вязкость образцов аварийной плавки была на 26% ниже повторная термическая обработка повысила работу разрушения при статическом и ударном изгибе в среднем на 50 7о- Причиной разрушения болтов явилось некачественное выполнение механической обработки, наличие надиров и острых надрезов в сочетании с повышенной склонностью к хрупкому разрушению материала (высокое содержание водорода).  [c.69]


Sn, Повышение содержания кислорода незначительно влияет на чувствительность к надрезу (оцениваемую величиной а"/ав) при 298 и 77К. Однако вредное влияние кислорода в количестве >0,12 % (по массе) проявляется при 20 К. Очевидно, также, что высокое содержание железа отрицательно сказывается на чувствительности к надрезу как при комнатной, так и при низких температурах. Исходя из этих данных, можно сделать вывод, что сплав Ti—5А1—2,5Sn с низким содержанием кислорода и железа, обозначаемый в дальнейшем дополнительно ELI (повышенной чистоты), обладает значительно более высокой вязкостью надрезанных образцов при 20 К.  [c.279]

Имеющиеся данные о влиянии а-стабилизирующих и р-изо-морфных элементов позволяют объяснить представленные на рис. 30 результаты сравнительного исследования трех промышленных сплавов. Очевидно, что уменьшение содержания алюминия (особенно ниже 5%) или увеличение суммарной концентрации молибдена и ванадия повышает стойкость к КР- Необходимо отметить, однако, что проводить подобные сравнения следует с осторожностью, поскольку рассматриваемые сплавы отличаются содержанием кислорода, соотношением фаз а и р, а также уровнем вязкости разрушения. Тем не менее основные закономерности влияния состава на стойкость к КР достаточно ясны и используются при разработке и совершенствовании сплавов [198]. Теперь мы обратимся к микроструктурным эффектам, которые играют важную роль в поведении титановых сплавов.  [c.97]

Как правило, это не зависит от микроструктуры. Однако обработка в р-области, при которой получают игольчатые структуры, например р-5ТА (высокотемпературная обработка на твердый раствор + старение), приводит к увеличению вязкости разрушения. В приведенном на рис. 74 примере увеличение вязкости разрушения составляет 33 МПа-м . При этом следует заметить, что улучшение таких свойств зависит и от состава сплава (см. рис. 73). В менее чувствительных к КР сплавах, например в сплаве — 4А1—ЗМо—IV положительное влияние технологической обработки в р-области более выражено для высоких уровней прочности [41]. В высокочувствительных к КР сплавах, например сплавах на основе Т1 — 8А1 или сплавах с высоким содержанием кислорода, структуры, полученные р-обработкой на твердый раствор с последующим быстрым о.хлаждением, относительно устойчивы к КР. В сплавах с такими структурами после старения нивелируется благоприятное влияние термической обработки в р-области за счет свойственной чувствительности к КР. Эти эффекты более детально описываются в разделе по практическим аспектам коррозионного растрескивания титановых сплавов.  [c.367]

Азот и кислород образуют хрупкие неметаллические включения, ухудшающие свойства металла (уменьшение вязкости и повышение порога хладноломкости),  [c.363]

Кинематическая вязкость 299 Кислород 285 Кислоты 279—280  [c.339]

Структура металла шва. Металл шва, сваренного под слоем флюса, имеет обычную литую структуру со столбчатыми кристаллами, направленными перпендикулярно кромкам шва. Несмотря на столбчатое строение, металл шва отличается большой вязкостью (относительное удлинение до 250/о, ударная вязкость до 12 кгм(см ), следовательно, решающим фактором, вызывающим хрупкость металла, является не столбчатая структура металла (как считалось ранее), а загрязнённость его азотом и кислородом. На основании опытных  [c.330]

Водород повышает твёрдость стали, но сильно уменьшает её вязкость и предел прочности. Он способствует образованию флоке-нов, особенно в легированных сталях. Азот ухудшает механические свойства конструкционной стали и увеличивает её склонность к старению. Кислород способствует росту зерна, вызывает явление синеломкости (при / = 200—300° С), красноломкости (при t = = 850—950° С) и понижает ударное сопротивление, предел прочности и удлинение.  [c.184]

Вязкость с повышением температуры уменьшается, а сила предельного диффузионного тока, как это видно из перечисленных выше факторов, увеличивается. С повышением температуры электролита толщина диффузионного слоя увеличивается, но очень мало —0,19% на ГС. Такой вывод на первый взгляд кажется несколько неожиданным. Однако из анализа уравнения (Г20) следует, что толщина диффузионного слоя зависит от коэффициента диффузии в большей степени, чем от вязкости коэффициент диффузии входит в степени Гз, а вязкость — в степени Ге- А так как коэффициент диффузии с повышением температуры увеличивается, толщина диффузионного слоя на вращающемся дисковом электроде с повышением температуры также несколько увеличивается (в 1,1 раза) при изменении температуры с 20° до 80° С) [1,12]. Ввиду того, что растворимость кислорода с повышением температуры до 100° С уменьшается, величина предельного диффузионного тока при восстановлении кислорода как до перекиси водорода (п = 2), так и до воды (п = 4) на медном амальгамированном вращающемся электроде с повышением температуры достигает максимума (табл. ГЗ).  [c.27]

Это происходит вследствие уменьшения растворимости кислорода с повышением температуры, которая оказывает на величину предельного диффузионного тока большее влияние, чем увеличение коэффициента диффузии и уменьшение вязкости. Толщина же диффузионного слоя с повышением температуры несколько увеличивается.  [c.28]

Марганец ( металл) в чистом виде в природе не существует, встречается он в соединении с кислородом, образуя марганцевую руду, из которой и добывается. Наличие марганца Б чугуне до 1% повышает прочность чугуна значительное содержание марганца препятствует выделению из чугуна графита, чугун становится белым, твердым и хрупким. Содержание марганца в стали. повышает ее вязкость.  [c.8]


Кремний в природе встречается только в соединении с кислородом (кремнекислота) и в таком виде известен как кремнезем или кварц содержится в песке, в булыжнике, в железных рудах увеличивает вязкость и упругость металла особенно в присутствии марганца.  [c.8]

Функция Дт] = / (р) для кислорода при плотностях выше 1,05 кг/дм резко возрастает и не может быть отображена с помощью экстраполяции по плотностям уравнения, составленного в работе [70]. Учитывая трудности, встретившиеся при попытке описать одним уравнением кривую избыточной вязкости азота при плотности от нуля до трех критических, мы не пытались составить такое уравнение для кислорода. Вязкость кислорода при плотностях менее 0,92 кг1дм можно рассчитывать по уравнению [70]  [c.193]

Наличие такой полосчатой структуры вызывает сильную анизотропию свойств, т. е. различие свойств образцов, вырезанных вдоль и поперек прокатки. В основном снижение так называемых поперечных свойств проявляется на характеристиках, связанных с заключительной стадией деформации (ударная вязкость, относительное сужение), другие механические свойства менее чувствительно реагируют на полосчатость. Анизотропию свойств характеризуют отношением ХпопДпрод, где X — свойство металла в (поперечном и продольном наяравле-ниях. Обычно ударная вязкость в поперечном направлении вдвое меньше, чем в продольном (соответственно коэффициент анизотроппи 0,5) путем повышения чистоты металла по сере и кислороду, используя усовершенствованные методы выплавки пли уменьшая строчечность совершенствованием методов прокатки ( поперечная прокатка ), коэффициент анизотропии ударной вязкости повышается до 0,7—0,8.  [c.191]

Как указывалось выше, толщина диффузионного слоя (которая колеблется обычно в пределах 0,001—0,1 см) растет при увеличении кинематической вязкости электролита v и коэффициента диффузии диффундирующего вещества и уменьшается при увеличении скорости движения электролита v . Коэффициент диффузии кислорода в воде равен 1,86 10" см /с при 16° С и 1,875 10" mV при 2, 7° С, т. е. увеличивается с ростом температуры. Изменение коэффициента диффузии кислорода в водных растворах Na l при 18° С приведено ниже  [c.238]

Начальные участки поляризационных кривых (рис. 293) указывают на преобладание катодного контроля при коррозии железа в расплаве Na l, а значение энергии активации катодного процесса в этой области (18 ккал/моль — рис. 294) близко к значению энергии активации вязкости Na l (13 ккал/моль), что указывает на контроль катодного процесса диффузией основного деполяризатора (кислорода) к катоду, скорость которой в значительной мере зависит от вязкости расплава.  [c.409]

При газолазерной резке металлов лазер непрерывного излучения на углекислом газе мощностью до 5 кВт позволяет в струе кислорода резать малоуглеродистые стали толщиной до 10 мм, легированные и коррозионно-стойкие стали — до 6 мм, никелевые сплавы — до 5 мм, титан—до 10 мм. Металлы, образующие тугоплавкие оксиды с малой вязкостью, газолазерной резкой разделяются плохо, так как удаление оксидов из зоны резхл в этом случае зтрудн но. К таким металлам относятся люминий и его сплавы, магний, латунь, хром и целый ряд других металлов, которые выгоднее резать плазменной резкой.  [c.128]

Пусть требуется определить вязкость сжиженного кислорода (т. е. значение т], на левой пограничной кривой) при 7"= 135 К (т=0,874). Веществом, термодинамически подобным кислороду, является азот, поскольку у Оа и N2 значения критических коэффициентов близки. У сжиженного азота значение вязкости при т=0,874 равняется 7,6 10 н сек1м .  [c.210]

Медь. Вторым после серебра металлом с низким сопротивлением является медь. Для проводников используется электролитическая медь с содержанием Си 99,9% и кислорода 0,08%. Высокой вязкостью и пластичностью обладает бескислородная медь, содержащая кислорода не более 0,02%. Температура плавления меди 1084° С, температура рекристаллизации — около 270° С. При нагревании выше этой температуры резко снижается прочность и возрастает пластичность. На воздухе поверхность медного проводника быстро покрывается слоем закиси — окиси меди с высоким удельным сопротивлением. Высокочастотные медные токоведущие элементы защищают от окисления покрытием из серебра. Для обмоток маслонаполненных трансформаторов используют луженую медную проволоку. Техническая медная проволока диаметром от 0,1 до 12 мм выпускается твердая и мягкая, подвергаемая отжигу в печах без доступа воздуха. Мягкая проволока диаметром до 3 мм имеет временное сопротивление в среднем 0р = 27 /сГ/лл для твердой проволоки больше (Ор = 39 кГ мм% удельное сопротивление для твердой проволоки р = 0,018 ом -мм 1м, а для мягкой р = 0,0175 ом-мм м. Температурный коэффициент сопротивления меди TKR =4-45-10" Ijapad. Твердую медь применяют для контактных проводэв, коллекторов и т. п. Во всех этих  [c.274]

На коррозионное растрескивание оказывают влияние температура раствора и вязкость среды [30]. Установлено, что с повышением температуры увеличивается скорость роста трещины. По-видимому, это связано с уменьшением растворенного в воде кислорода, а также скорости пассивации титана. Критический коэффициент интенсивности напряжен ний сплава Т — 8 % А1 — 1 % V — 1 % Мо в 3,5 %-ном растворе Na I мало изменяется [ 30].  [c.37]

Антирады. Известно, что в результате поглощения излучения высокой энергии в органических материалах образуются активные свободные радикалы, способные вызвать цепные реакции с образованием нежелательных продуктов. Поэтому любые методы дезактивации радикалов должны приводить к общему увеличению стойкости жидкости. Так как механизм действия многих антиоксидантов сводится также к дезактивации свободных радикалов, то окислительная и радиационная деструкции являются близкими по механизму реакциями. Практически при облучении жидкостей, содержащих стандартные антиоксиданты, последние быстро распадаются в результате взаимодействия с радикалами, образовавшимися под действием излучения, поэтому в среде, содержащей кислород, жидкость становится очень чувствительной к обычной окислительной деструкции. Мейхони и др. [21 ] было показано, что такие захватчики радикалов, как иодофенол и иодонафталин, при облучении сложных эфиров с разной степенью эффективности влияли на изменения вязкости, хотя они не обеспечивали защиту обычных антиоксидантов от разрушения при облучении дозами 1-10 эрг/г в атмосфере азота.  [c.134]

Характеристики вязкости смазки и температура ее десорбции определяют закономерности износа в зоне контакта. При этом смазочная среда предохраняет поверхности трения от непосредственного контакта. При добавлении в смазку химически активных веществ (сера и фосфоросодержащие вещества) процессы периодического разрушения и восстановления окис-ной пленки заменяются процессом образования и периодического разрушения пленок другого химического состава, структура и свойства которых зависят от компонентов химически активных добавок и могут изменяться в весьма широких пределах.. Износ при, ,этом остается механико-химическим, т. е. связанным с пластической деформацией, образованием и разрушением вторичных защитных структур на основе взаимодействия металла с химически активными добавками, но по интенсивности может изменяться как в сторону уменьшения, так и увеличения. Стойкость против задира резко увеличивается. Тонкие слои антифрикционных металлов на телах качения защищают поверхность стали от взаимодействия с кислородом воздуха, Т. е. играют роль смазочной среды. Поэтому покрытие рабочих поверхностей подшипников качения тонким слоем антифрикционных металлов предотвращает интенсивное окисление поверхностей трения и снижает скорость окислительного износа. Тонкие пленки увеличивают также площади фактического контакта при соприкосновении тел качения,  [c.105]


Одним из способов достижения высокой вязкости разрушения сплавов на основе железа, предназначенных для криогенной техники, является снижение концентрации охрунчивающих примесей (углерода, кислорода и азота) путем введения химически активных (поглощаюших) элементов, которые будут связывать указанные примеси. Были опробованы добавки одиннадцати активных металлов в системе Fe—I2Ni, включая А1, Hf, La, мишметалл, Nb, Si, Та, Ti, V, Y и Zr. Предварительные исследования [2] показали, что AI, Nb, Ti и V наиболее эффективно повышают вязкость разрушения. Для наиболее подробного исследования в качестве оптимального варианта химически активного элемента был выбран алюминий. Задачами исследования были оптимизация содержания никеля и алюминия, изучение влияния примесей, механизмов упрочнения и свариваемости.  [c.251]

Аустенит снижает вязкость разрушения, что показано на сплавах с повышенным содержанием никеля, имеющих остаточный аустенит. Результаты исследования показали, что вязкость разрушения сильно снижается в сплавах, в которых основной вредной примесью является кислород. Основная роль химически активного металла — алюминия— состоит в удалении таких примесей путем связывания их в соединения. Кроме того, добавка алюминия измельчает размер зерна, что способствует повышению прочности и вязкости разрушения. Сплав Fe—12Ni—0,5А1, сваренный дуговой сваркой вольфрамовым электродом в среде защитного газа с последующей термообработкой после сварки, имеет вязкость разрушения в зонах шва и термиче-  [c.258]

Общее (но не универсальное) благоприятное влияние технологической обработки в -области на свойства разрушения были описаны ранее, В работе [242] изучалось влияние содержания кислорода и параметров обработки на механические свойства и вязкость разрушения (но не Хгкр) сплава Т1 — 6А1 — 4У. Было показано, что окончание прокатки при 925 °С обеспечивает лучшее сочетание свойств, особенно для материала с низким содержанием кислорода (0,05—0,07%). Окончание прокатки в р-области приводит к получению самых низких свойств прочности и вязкости материала. Сообщалось о том, что свойства после прокатки значительно выше в случае предварительной ковки в области р, чем в области (а-рр). Следует иметь в виду, что материал был испытан в состоянии после прокатки, поэтому имел низкие значения предела текучести дальнейшая работа по исследованию влияния этих параметров обра-  [c.422]

Выпускаемые нефтяной промышленностью масла различных сортов отличаются друг от друга по ряду показателей, из которых важнейшими являются вязкость, смазочная способность (маслянистость), температура вспышки, температура застывания, способность отделяться от воды (т. е. деэмульгировать), химическая и термическая стабильность (т. е. способность выдерживать значительный нагрев в присутствии кислорода воздуха без существенного изменения состава масла). Все эти свойства масел зависят от их химического состава, технологии получения и способа очистки. Очистка смазочных масел производится для того, чтобы удалить из них непредельные углеводороды и асфальто-смолистые вещества, присутствие которых в маслах приводит к быстрому окислению и осмолению последних в процессе эксплуатации. Окисление масел вызывает коррозию смазываемых поверхностей и элементов смазочной системы, а также загрязнение их продуктами окисления. Присутствие в маслах большого количества продуктов окисления и смолистых веществ может привести к закупориванию трубопроводов и смазочных каналов. Помимо этого, очистка масел улучшает также температурно-вязкостные характеристики их.  [c.22]

Основными недостатками жидкостей на основе сложных эфиров кремневой кислоты являются склонность к гидролизу, т. е. к образованию нерастворимых соединений с водой или влагой боздуха (ортосиликаты менее стойки к гидролизу, чем дисилоксаны той же вязкости). Кроме того, они не обладают высокой стабильностью к окислению (по стойкости к воздействию кислорода они схожи с обычными минеральными маслами), не относятся к числу лучших смазочных материалов, имеют повышенную вспенивае-мость (выше вспениваемости диэфиров).  [c.46]

Вредные примеси (сера и фосфор) и растворенные газы (азот и кислород) повышают порог хладноломкости. Однако наибольшее влияние на ударную вязкость стали при минусовых температурах оказывает химический состав. Хорошо сохраняют ударную вязкость в области низких температур стали, легированные 5—6 % никеля. Аустенит-ные хромоникелевые стали и сплавы на никелевой осново весьма пластичны в области очень низких температур. Поэтому ГОСТ 5632—72 допускает, например, поковки из сталей 04Х18Н10 и 08Х18Н12Б к применению в сосудах, работающих под давлением до температуры —269 °С.  [c.207]


Смотреть страницы где упоминается термин Кислород, вязкость : [c.108]    [c.131]    [c.81]    [c.364]    [c.131]    [c.275]    [c.107]    [c.96]    [c.56]    [c.330]    [c.181]   
Справочник по теплофизическим свойствам газов и жидкостей (1972) -- [ c.496 , c.499 , c.666 , c.670 , c.674 , c.675 ]



ПОИСК



Вязкость жидкого воздуха и его компонентов Экспериментальные данные о вязкости жидких азота, кислорода, аргона и воздуха

Динамическая вязкость жидкого и газообразного кислорода

Кислород

Кислород Коэффициент вязкости динамический

Кислород вязкость газа

Кислород диссшщированный, вязкость

Кислород, вязкость жидком и газообразном состояниях

Кислород, вязкость линии насыщения

Кислород, вязкость температурах

Кислород, вязкость теплопроводность

Кислород, вязкость термодиффузии

Кислород, вязкость удельный объем при высоких

Кислород, вязкость энталышя при высоких температурах н различных давления

Кислород, вязкость энтропия при высоких температурах и различных давления



© 2025 Mash-xxl.info Реклама на сайте