Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Разрушение. Факторы, определяющие характер

Разрушение. Факторы, определяющие характер 75 Раковины газовые 286, 311  [c.510]

Факторы, определяющие характер разрушения  [c.19]

На почвенную коррозию влияют следующие основные факторы, определяющие её скорость и характер разрушения металла  [c.27]

При более низких температурах картина существенно изменяется основным фактором, определяющим прочность, становится интенсивность напряжений в зоне дефекта. Зависимость величины номинальных разрушающих напряжений от температуры в этом случае можно представить таким образом при положительных и естественно низких температурах (вплоть до —60° С) разрушения имеют вязкий и квазихрупкий характер, а разрушающие напряжения превышают величину предела текучести материала.  [c.278]


Шток элементарен по форме, но условия его работы чрезвычайно сложны, а поломка - частое явление в кузнечных цехах. Почти все исследователи указывают, что штоки ломаются заподлицо с бабой или в ее конусе. Это обусловливается характером напряженного состояния металла штока в месте поломок продольными напряжениями от действия массовых сил при резком торможении падающих частей, напряжениями изгиба вследствие разворота бабы при эксцентричном ударе и постоянно действующими поперечными напряжениями сжатия от посадки штока с натягом. При осмотре места излома обнаруживается усталостный характер разрушения внешняя кольцевая темная поверхность свидетельствует о появлении поперечной усталостной трещины, а блестящая шероховатая внутренняя часть -об остаточном межкристаллическом изломе. Факторы, определяющие прочность и стойкость штока, можно разделить на две категории свойства металла, из которого изготовлен шток, и условия нагружения штока.  [c.379]

Химический состав среды, т. е. ее кислотный, основный или нейтральный характер, является определяющим фактором коррозионного процесса. От концентрации водородных и гидроксильных ионов, ионов растворимых солей, растворенного кислорода зависит течение катодной и анодной реакций и растворимость продуктов коррозии. С увеличением концентрации загрязнений -окружающей среды коррозионное разрушение обычно ускоряется. Однако известны случаи, когда в концентрированных растворах коррозия происходит медленно, а в разбавленных — быстро.  [c.20]

Феноменологический и физический пути построения критериев. Описанный выше подход к построению критерия для оценки границы перехода материала в предельное состояние имеет чисто феноменологический характер, никак не связанный с дискретностью строения материи поэтому и сами критерии имеют чисто феноменологический характер. В отличие от феноменологического, мыслим и физический подход к решению проблемы. Однако даже в случае линейного напряженного состояния или чистого сдвига теоретически находить характеристики, определяющие переход материала в предельное состояние, удается лишь для монокристаллов идеальной структуры. В случае же наличия многообразных дефектов структуры монокристалла, а тем более в случае поликристаллического тела (металла), проблема до сих пор не разрешена надежно даже для отмеченных выше элементарных однородных напряженных состояний. В настоящее время предпринимаются многочисленные попытки в направлении построения физических теорий с использованием методов математической статистики и теории вероятностей, к сожалению, пока далекие от возможности непосредственного широкого их использования в практических расчетах. Больше других удалось исследовать вопросы хрупкого разрушения, в том числе рассмотреть масштабный фактор и изменчивость прочности, а также явление усталости. Однако будущее принадлежит именно статистическим теориям, описывающим физику явления с единых позиций.  [c.539]


Резкое понижение пластических свойств стали или ее ударной вязкости в области отрицательных температур получило название хладноломкости. Различают верхнюю Г 1 и нижнюю Тк2 температуры хрупкости. Опыт эксплуатации машин при низких температурах позволил сделать вывод о целесообразности использования для характеристики металла верхней температуры хрупкости, так как при Гк1 на разрушение металла меньше влияют различные случайные факторы (например, особенности плавки, надрезы и т. п.). Температурные границы появления хладноломкости стали зависят от ряда внешних и внутренних факторов. К внутренним факторам относятся химический состав стали и ее структурное состояние, определяемое способами выплавки, механической и термической обработки, а к внешним — конструктивное оформление детали, условия деформирования, характер напряженного состояния.  [c.226]

Совместное действие эксплуатационных и конструктивных факторов оказывает существенное влияние не только на долговечность, определяемую по числу циклов или времени до разрушения, но также и на характер процессов изменения структуры и пластического деформирования металла, приводящих к ускоренному исчерпанию его деформационной способности.  [c.21]

Реализация того или иного предельного состояния в элементе конструкции зависит от множества факторов. Каждому типу предельного состояния соответствует свой характер и механизм процесса разрушения, в значительной степени определяемые структурой и технологией получения конструкционного материала. В этой связи развитие расчетно-экспериментального комплекса конструкционной прочности идет в следующих направлениях  [c.12]

Проведенные исследования подтверждают, что сопротивление микроударному разрушению сталей перлитного и мартенситного классов определяется главным образом характером структур, получаемых в результате их термической обработки. На эрозионную стойкость этих сталей (после отпуска) влияет количество отдельных структурных составляющих, их дисперсность, форма и характер распределения. Результаты исследования показывают, что структура стали является определяющим фактором при оценке ее эрозионной стойкости.  [c.141]

В условиях формирования структуры поверхностных слоев, определяющих механизм контактного взаимодействия и уровень разрушения, важная роль принадлежит обратной связи при изменении концентрации легирующего элемента в твердом растворе меняются факторы, способные влиять на характер движения и распределения дислокаций при пластической деформации. К этим факторам можно отнести изменение силы трения при движении дислокаций, энергии дефекта упаковки и ближнего порядка в расположении атомов легирующих элементов. Кроме того, в поликристаллическом материале на распределение дислокаций существенно влияют размер зерна и степень его изменения.  [c.200]

Проведенные исследования показали, что результаты испытаний образцов материала малых размеров непригодны для суждения о прочности сосудов, работающих при низких температурах, когда возможно хрупкое разруш ение. В данном случае наиболее важными факторами являются размеры деталей, их форма и напряженное состояние, т. е. факторы, связанные с формой и размерами деталей. Соотношения, выведенные для основных параметров, определяющих влияние масштабного фактора, носят относительный характер и могут служить только для сравнительной оценки предельного состояния прочности при возможности хрупкого разрушения.  [c.362]

К числу наиболее распространенных дефектов, возникающих в сварных швах при высоких температурах, относится межкристаллитное разрушение — образование горячих трещин. Этот вид разрушения связан с развитием растягивающих напряжений в процессе охлаждения сварного соединения, под воздействием которых металл шва подвергается пластической деформации. Характер напряженного состояния и уровень напряжений зависят от ряда факторов, к числу которых в первую очередь относятся теплофизические свойства металла, конструкция сварного узла и толщина металла, определяющие жесткость соединения, упругие свойства металла, технология и режимы сварки. Температура образования горячих трещин зависит от химического состава металла шва. Для углеродистых конструкционных сталей она составляет 1200—1350° С.  [c.546]


Металлургические дефекты (поры и неметаллические включения в виде окислов, сульфидов, силикатов и др.) могут заметно снижать циклическую прочность стали [62—65, 79,]. Основной причиной понижения циклической прочности является концентрация напряжения, создаваемая включением при циклическом деформировании, в результате чего включение становится источником зарождения трещины, определяющей окончательное разрушение. Циклическая прочность зависит от многих факторов, как, например, от формы и величины включения [63—66], упругих свойств заполнителя дефекта, ориентировки дефекта по отношению к приложенной силе, характера приложенных сил, взаимодействия дефектов в отношении создаваемой ими микроконцентрации напряжений [66], уровня приложенного напряжения [62] и пр.  [c.128]

Коррозия перлитных сталей в водных средах имеет электрохимическую природу. Одним из основных факторов, определяющих характер и интенсивность коррозии перлитных сталей, является содержание растворенного кислорода в воде. При этом кислород выполняет двойственную роль. С одной стороны, он служит мощным деполяризатором катодных участков коррозионных пар и тем самым ускоряет протекание коррозии при условии, если катодный процесс является контролирующим фактором. С другой стороны, кислород, окисляя металл, повышает стабильность защитных пленок и, сле.а,ователь-но, может даже снижать скорость коррозии. Чем выше концентрация кислорода в растворе, тем больше возможность образования прочных защитных пленок на поверхности стали и более благородным становится электродный потенциал. Участки металла, получающие больше кислорода, выполняют роль катода по отношению к участкам поверхности металла, которые омываются водой с малой концентрацией кислорода, и вследствие этого возникает так называемая макрогальванопара неравномерной аэрации. Это может служить причиной дополнительного разрушения металла теплосилового оборудования,  [c.26]

Малоцикловая усталость при различной форме циклов нагружения и нагрева при мягком режиме испытания. Основным фактором, определяющим характер перераспределепия повреждений в условиях мягкого режима и выдержек в области высоких нагрузок при повышенных температурах, является процесс монотопного накопления деформаций циклической ползучести, интенсивность которого в первую очередь связана с формой и длительностью цикла нагрузки и температурой. Время до разрушения материала с пони-  [c.56]

Характер работы ножевого культиватора зубовой Б., как и всякого орудия, зависит от двух факторов 1) конструктивных (гл. обр. форма и размер рабочего органа, а также вес орудия в целом) и 2) производственных условий — условий применения того или другого орудия. Конструктивными факторами, определяющими характер работы такого одиночно работающего органа, являются форма и размеры поперечного и продольного профиля зуба. Как при работе клинкового ножа плуга, при увеличении уг-,яа заострения у (угла мен ду щек ами ножа) и при увеличении ширины обуха ножа интенсивность раздвигания частиц почвы в стороны возрастает (фиг. 3). Чем больше величина р — горизонтальная составляющая приложенной силы р, параллельная линии хода орудия, — тем ббльшая масса частиц почвы сгруживается впереди зуба, тем большее усилие необходимо затратить в этом случае на перемещение частиц почвы в сторону и тем следовательно большему разрушению подвергнутся комочки почвы. Как видно из фиг. 3, при одинаковой скорости перемеп1,ения частиц почвы по нормали к щеке зуба горизонтальная составляющая указанной силы р больше в случае более значительного угла у, ибо нетрудно определить, что  [c.474]

Такие же результаты, свидетельствующие об изменении характера развития трещин с повышением максимальной температуры при термоциклическом нагружении, получены и для других сплавов — ХН77ТЮР, ХН62ВМКЮ и др. Однако необходимо отметить, что температура — лишь один из трех основных факторов, определяющих как долговечность, так и характер разрушения при термоусталости. Наряду с tmax большое значение имеют нагрузка (амплитуда или размах деформаций) и длительность температурного цикла. Отмеченное выше влияние max относится К случзю, когда ЭТИ два фактора (для каждого рассмотренного материала) оставались неизменными, причем длительность цикла была наименьшей из исследованных (тв —О, пилообразный никл), а размах деформаций — наибольший. Как будет показано ниже, вариация этих двух параметров может изменять характер разрушения, как и максимальная температура цикла.  [c.54]

Роль электронов в металлах как фактора, определяющего их прочность и пластичность, подчеркивалась Я. И. Френкелем еще в ранних работах [1] на основе пористой электронной модели. Современные представления о реальной прочности металлов, учитывающие, с одной стороны, кооперативный характер процессов перемещения атомов при деформации, а с другой — локальный характер разрушения, не отрицают роли электронного фактора. Так, справедливо считается, что наблюдаемые различия прочностных характеристик кристаллов определяются их электронной структурой, а роль дефектов упаковки в механизме деформации и разрушения металлов и качественная связь энергии дефектов упаковки с характеристиками электронной структуры [2] общепринятые. Для дальнейшего развития этих представлений стала очевидной необходимость установления закономерностей взаимосвязи процессов деформации и разрушения с электронными свойствами самих дефектов, ответственных за прочностные свойства металлов [.3]. Со времени открытия явления взаимодействия позитронов с дефектами кристаллической решетки [4] стало понятным, что метод позитронной аннигиляции является уникальным для получения информации об электронной структуре дефектов [5]. В основе этой возможности лежит тот факт, что при наличии в кристал.те дефектов с концентрацией 10 все термализованные позитроны захватываются ими и аннигиляция с электронами в дефектах дает информацию об их электронной структуре. Если концентрация дефектов недостаточна, то в позитронную аннигиляцию будут вносить вклад как совершенные, так и дефектные области кристалла. Следовательно, использование метода электронно-позитронной аннигиляции для анализа структурного состояния в области дефектов, образующих-  [c.139]


Приведенная на рис. 4 схема включает также процессы электрохимической коррозии, водородного износа /см. разделы 1,2/. Эта схема отражает адсорбционно-коррозионно-усталостную природу разрушения и износа металла в смазочной среде и является феноменологическим описанием механизма этого разрушения и износа с учетом факторов, определяемых составом смазочной среды. В зависимости от условий эксплуатации, характера нагрузки, материала и конструкции конкретного узла машины роль указанных на схеме факторов может быть различной. Вместе с тем значимость каждого из указанных факторов представляется достаточной для включения в общую схему й рассмотрения применительно к конкретному случаю разработки, анализа механизма действия и применения смазочных материалов, эффективных в условиях коррозионно-ус-талостного износа.  [c.35]

В табл. 3 на рисунках показаны основные типы электрохимической гетерогенности, от которых в первую очередь зависят различные виды коррозионных разрущений. Факторами, определяющими вид разрушения, являются характер электрохимической гетерогенности и стабильность распределения анодных и катодных участков по поверхности во времени. В некоторых случаях электрохимическая гетерогенность поверхности сплава связана с образованием стабильно работающих коррозионных пар, что приводит к ярко выраженной местной коррозии, например, контактная коррозия разнородных металлов, коррозия вследствие неравномерной аэрации, межкристаллитная коррозия и коррозионное растрескивание. Подобные виды коррозии надо относить к явно гетерогенно-электрохимическому механизму коррозии. В других случаях, например, при структурноизбирательной коррозии, вследствие вытравливания отдельных кристаллитов, расположение катодов и анодов коррозионных пар не жестко фиксировано на поверхности. Это также приведет к местной коррозии, но, естественно, уже в микромасштабах. Примером может служить выявление поликристаллической структуры металла при травлении шлифа. В микромасштабе подобный вид коррозионного разрушения можно условно рассматривать и как равномерный.  [c.24]

При термоциклическом нагружении существуют три области, характеризующие разрушение различного характера область усталостного разрушения, область смешанного и область статического разрушения [28]. Конкретное соотношение величин Де, Гщах, обусловливает тот или иной вид разрушения. Аналогичные данные получены и по другим сплавам. Они свидетельствуют о необходимости учета для характеристики типа разрушения всех факторов, определяющих долговечность при термической усталости. Неучет одного из них может привести к неправильным ёыводам о причинах разрушения. Необходимо отметить, что указанные факторы—амплитуда деформации, длительность и температура цикла являются основными, но не единственными, определяющими вид разрушения. Не изменяя в целом общих закономерностей, большое значение имеют технологические и эксплуатационные факторы, например, способ и режим выплавки металла, влияние среды, защитные покрытия. Так, вакуумная выплавка никелевого сплава существенно повышает прочность границ зерен, вследствие чего в одних и тех же условиях нагружения смещается область значений величин Де, Тт х, in, в которой разрушение происходит по границам зерен. Наоборот, при активном повреждении границ зерен, например при эксплуатации в газовых средах или в случае склонности материала к межкристаллитной коррозии, разрушение от термической усталости почти всегда начинается по границам зерен.  [c.176]

В лабораторной обстановке обычно стремятся охарактеризовать изолированно лишь некоторые из факторов, определяющих весь процесс шлакоразъедания — химический состав огнеупора или шлака, температуру начала их взаимодействия, особенность строения огнеупора. Стандартный метод определения шлакоустойчивости огнеупорных материалов (ОСТ 3270) предуоматривал обработку кирпича нормалБНых размеров при 1450° непрерывно возобновляемым и стекающим по кирпичу активным мартеновским шлаком. Рио. 41 иллюстрирует характер разрушения шлаком шамоггного кир-  [c.152]

МПа, считали 1676—1886 тыс. кДж/(м -ч), т. с. 400—450 тыс. ккал/(мУч). Такой тепловой поток способен приводить к нарушению нормального пузырькового режима кипения в экранных трубах, переходу на нестабильное пленочное кипение, частым и значительным колебаниям температуры стенки, разрушению защитной пленки магнетита, коррозии оголенного металла под действием кипящей воды [2]. Исследования коррозионных повреждений экранных труб котлов ТГМ-151 (11 МПа) и ТГМ-96 (15,5 МПа) Волгоградской ТЭЦ-2 показали ошибочность изолированного рассмотрения основных факторов, определяющих повреждения, т. е. теплового напряжения и водно-химического режима. Эти факторы взаимосвязаны, и требуется сов.местное пх рассмотрение [3]. Там же было признано целесообразным условное разделение различных видов повреждений экранных труб от внутренней коррозии на два типа I — вязкие повреждения, когда результатом коррозии является потеря металла , т. е. утонение стенки трубы II— хрупкие повреждения, когда такое утоиенне отсутствует либо оно совсем незначительно. К первому типу отнесли пластичные повреждения в результате протекания под слоем относительно рыхлых отложений электрохимической коррозии (подшламовой, ракушечной, щелочной) [3]. К нему же, очевидно, относятся и повреждения в результате пароводяной и стояночной коррозии, протекающие как при наличии, так часто и при практическом отсутствии отложений. Ко второму типу отнесли бездеформационные хрупкие повреждения межкристаллптного характера, обусловленные влиянием водорода на металл труб [3, 4].  [c.10]

Процессы усталостного повреждения, условия возникновения и распространения трещин под циклической нагрузкой носят случайный характер, так как тесно связаны со структурной неоднородностью материалов и локальным характером разрушения в микро- и макрообъемах. Усталостные разрушения обычно возникают на поверхности, поэтому качество и состояние поверхности часто является причиной случайных отклонений в образовании разрушения. Эта особенность усталостных явлений порождает существенное рассеяние механических характеристик, определяемых при испытании под циклической нагрузкой. Рассеяние свойств при усталостном разрушении значительно превышает рассеяние свойств при хрупком и вязком разрушениях. В связи с этим статистический анализ и интерпретация усталостных свойств материалов и несущей способности элементов конструкций позволяют отразить их вероятностную природу, являющуюся основным фактором надежности изделий в условиях длительной службы.  [c.129]

На рис. 8 представлены данные о взаимосвязи микроструктуры и уровня прочности хромомолибденовой стали. Сначала с повышением температуры нагрева при отпуске прочность снижалась, как и пластичность, вследствие водородного охрупчивания. При температурах 700°С начинается сфероидизация, а при дальнейшем повышении температуры отпуска прочность и восприимчивость к водородному охрупчиванию возрастают. Состоянию наименьшей прочности на рис. 8 сответствует в значительной степени сфероидизированная структура [32]. Таким образом, важно внимательно контролировать как микроструктуру, так и уровень прочности материала, чтобы четко определить, какой из факторов играет определяющую роль. Кроме того, как уже упоминалось, на классификацию стойкости микроструктур может повлиять и характер разрушения (хрупкое или вязкое).  [c.62]


При таких высоких температурах эксплуатации определяющую роль в разрушении играет не дислокационная структура, а диффузионные процессы, имеющие даже при небольших напряжениях направленный характер и способствующие развитию диффузионной ползучести. Так как диффузионные процессы легче всего протекают по границам зерен, имеющих повышенное количество дефектов строения, то кроме химического состава на жаропрочность существенное влияние оказьгеает структура металла. Обьи-но добиваются получения легированного твердого раствора с вкраплениями по границам зерен или внутри них дисперсных карбидных или интерметал-лидных фаз. Более крупное зерно способствует повышению жаропрочности, хотя при этом снижается пластичность. Чрезвычайно важный фактор стабильность структуры, так как перемещение атомов ведет к увеличению ползучести.  [c.175]

Практика технического металловедения убедительно показала, что величина ударной вязкости при комнатной температуре испытаний не может служить мерой сопротивления разрушению материалов в различных ужесточенных условиях испытаний (например, при понижении их температуры) и во многих случаях не может выявить влияние различных структурных и металлургических факторов, ответственных за ухудшение эксплуатационных характеристик. Это обусловлено тем обстоятельством, что при вязком разрушении чувствительность к структурным факторам охрупчивания резко снижается. В то же время изменение условий нагружения, способствующее хрупкому разрушению, позволяет четко выявить отрицательное влияние тех или иных структурных факторов. Такое изменение условий может быть достигнуто путем снижения температуры испытаний, обеспечивающей в ряде о. ц. к. металлов выявление вязко-хрупкого перехода. Определяемая таким образом температура хладноломкости достаточно адекватно отражает склонность сталей к опасному хрупкому разрушению в различных экстремальных условиях эксплуатации. Температуру хладноломкости, вопреки встречающимся ошибочным воззрениям, нельзя рассматривать как константу материала она зависит от конфигурации и размеров образцов, остроты надреза и вида испытаний (рис, 19.1). Положение порога хладноломкости, четко детерминированное для низкоуглеродистых сталей, становится трудноопределяемым при повышении их прочности в связи с увеличением содержания углерода (рис. 19.2) или снижением температуры отпуска после закалки. Тогда в ряде случаев в связи с пологим характером температурных зависимостей ра-  [c.326]

Для образца с трещиной в центре (см. рис. 2) различие в кривых G для постоянной нагрузки и постоянного перемещения относительно мало. Это видно на рис. 2, на котором кривая для постоянного перемещения бд отнесена к начальному размеру трещины /3. Очевидно, что все предыдущие рассуждения остаются в силе, и остановка трещины может произойти только за счет изменения характера разрушения. Но если рассмотрим поведение образца с одним боковым надрезом, предложенного Сулливаном (1964 г.) и показанного на рис. 4, то заметим, что основные различия, зависящие от граничных условий, начинают проявляться в том порядке, в каком они ожидались. Предположим, например, что сопротивление хрупкому разрушению не зависит от длины и скорости распространения трещины. Тогда, как и в предыдущем случае, при достижении критической нагрузки появляется неустойчивость и происходит непрерывное распространение трещины. Однако, если предположить, что после появления начальной неустойчивости в распространении трещины определяющим фактором является постоянство прогиба, то трещина в зависимости от ее длины может подвергнуться либо мгновенному раскрытию  [c.27]

Коррозией (от латинского соггоз1о — разъедание) называется постепенное разрушение металлов вследствие химического или электрохимического взаимодействия их с коррозионной средой. Различают большое число различных видов коррозии, определяемых в зависимости от многообразных влияющих факторов, а также от характера вызываемых ею разрушений металла. Все существующие виды коррозии группируются по следующим двум основным типам, зависящим от природы воздействия среды, окружающей металл.  [c.8]

Кинетические модели динамического разрушения. Откольная прочность, работа разрушения и другие критерии откола применимы для сопоставления разных материалов и инженерных оценок их прочностного ресурса. Однако таких простых критериев зачастую недостаточно для прогнозирования действия взрыва, высокоскоростного удара, и других интенсивных импульсных воздействий. Для количественного анализа подобных явлений привлекаются методы компьютерного моделирования, где движение среды рассчитывается путем интегрирования фундаментальных уравнений сохранения, а свойства конкретных материалов описываются уравнениями состояния и набором определяющих соотношений. Поскольку фактор времени в этих условиях играет важную роль, для описания разрушений нужны кинетические определяющие соотношения. Известные соотношения такого рода имеют эмпирический или полуэмпиричес-кий характер и построены на основе общих представлений о механизме разрушения. Рассмотрим кратко эти механизмы и попытаемся выделить основные определяющие факторы разрушения.  [c.220]

Величина максимального растягивающего напряжения является, по-видимому, основным параметром состояния, определяющим предельные условия и скорость разрушения материала. Для описания разрушения существенно, что по мере роста несплошностей пороговые напряжения, необходимые для дальнейшего развития процесса, снижаются. Поэтому степень разрушения в том или ином ее выражении должна бьггь вторым определяющим параметром. Роль пластической деформации не вполне ясна и, если она велика, по-видимому, в первом приближении может выражаться в деформационном упрочнении материала. В результате деформационного упрочнения возрастает возможная анизотропия напряженного состояния тела в целом и материала в окрестности концентраторов напряжений, являющихся потенциальными очагами разрушения, и тем самым достигается пороговое напряжение разрушения. Роль температуры несомненно важна с точки зрения возможности структурных превращений и плавления, но в пределах одного фазового состояния ее вклад при высокоскоростной деформации, по-видимому, много меньше, чем в обычных условиях. Поскольку в экспериментах наблюдалось влияние ориентации нагрузки относительно текстуры материала на сопротивление откольному разрушению, ориентационный фактор, вообще говоря, также должен быть включен в рассмотрение, то есть достаточно полное описание разрушения должно иметь тензорный характер [92].  [c.223]

Длительное время внутренняя коррозия барабанных котлов объяснялась в основном недостатками водно-химического режима. В последние 10—15 лет со всей очевидностью установлено важное, а иногда и решающее влияние иа протекание и интенсивность коррозии экранных труб тепловой иагрузки и гидродинамических факторов. Установлена также непосредственная связь внутренней коррозии многих котельных элементов с их конструктивными особенностями. Неправильна постановка вопроса, какой из факторов является определяющим в протекании коррозии парогенерирующих труб внутритрубные отложения или тепловая нагрузка. Эти факторы жестко взаимосвязаны, и требуется конкретный подход в каждом отдельном случае [3]. Роль теплового напряжения в вязких (первого типа) и хрупких (второго типа) повреждениях иаро-генерирующих труб (см. 2.2) действительно значительна, но механизм воздействия теплового потока иа эти повреждения различен. При повреждениях первого типа его влияние при традиционном водном режиме связано с зависимостью скорости железоокисного накипеобразования от тепловой нагрузки. В дальнейшем протекает процесс электрохимической коррозии с утонением стенки труОы, скорость которого существенно зависит от качества котловой воды и ряда других факторов, в том числе и от тепловой иагрузки. При повреждениях второго типа, т. е. связанных с водородным охрупчиванием, разрушение труб фактически определяется только высоким уровнем теплового потока, вызывающего переход на нестабильный режим кипения при данном характере отложений (см. 2.3). Необходимо совместно рассмотреть влияние и водного режима, и тепловой иагрузки на коррозию экранных труб. Увеличение тепловой нагрузки вызывает существенную интенсификацию железоокисного и медного накипеобразования. Но в свою очередь наличие опасных пористых, мало-теилоироводиых отложений приводит к снижению того теплового потока, когда нарушается нормальный режим кииения и возникают частые и значительные теплосмены с разрушением защитных пленок, развитием пароводяной и водородной коррозии (см. 2.3, 3.1, 3.3).  [c.199]

Наибольшее значение в определении величины коррозии подземных конструкций имеют коррозионные макропары, а, б, в, и г, определяемые неодинаковйм доступом кислорода к различным участкам корродирующей поверхности. Основными факторами, влияющими на коррозионную активность почвы, являются удельное электросопротивление почвы, влажность я способность почвы удерживать влагу во времени, кислотность и pH почвы, солевой состав и воздухопроницаемость. Для небольших подземных конструкций основное значение имеет работа микрокоррэзион-ных пар, приводящих к относительно равномерному коррозионному разрушению. Протяженные подземные конструкции, вследствие неодинаковой кислородной проницаемости почв на смежных участках, разрушаются под действием коррозионных макропар. Этот вид коррозии имеет язвенный характер и более опасен.  [c.161]


Наиболее близким по химическому составу к интерметаллическому соединению N[gZn2 является сплав № 41, с которым в основном и была проведена Настоящая работа. Микрофотография сплава № 41 приведена на фиг. 65. Рентгенографический анализ сплава № 41 показал, что сплав является интерметаллическим соединением М 2пг. По аналогии с механизмом межкристаллитной коррозии дуралюмина возникло предположение, что определяющими факторами коррозионного растрескивания сплавов А1-2п-М является коррозионная стойкость и характер разрушения интер металлического соединения Ж Ъг 2, также выпадающего по границам зерен.  [c.79]


Смотреть страницы где упоминается термин Разрушение. Факторы, определяющие характер : [c.101]    [c.160]    [c.82]    [c.269]    [c.997]    [c.345]    [c.16]    [c.161]    [c.243]    [c.8]    [c.190]    [c.234]   
Металловедение и технология металлов (1988) -- [ c.75 ]



ПОИСК



1.125, 126 — Определяемые



© 2025 Mash-xxl.info Реклама на сайте