Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозия почвенная

Для сосудов, устанавливаемых в грунте, большую проблему составляет борьба с подземной (почвенной) коррозией. Эта коррозия определяется агрессивностью грунта и электрохимической коррозией. Почвенная коррозия возрастает при наличии блуждающих токов.  [c.371]

Некоторые случаи коррозии химической аппаратуры и почвенной коррозии  [c.21]

Только в случае коррозионных пар, имеющих достаточную большую протяженность (например, почвенная коррозия трубопроводов, коррозия под действием контакта в трубе и т. п.), приходится наряду с поляризационными характеристиками катода и анода учитывать также и омический фактор. Зная величину омического сопротивления коррозионных элементов, можно решать количественные вопросы о соотношении между торможением процесса коррозии омическим фактором и ранее рассмотренным анодным и катодным торможением, т. е. о соотношении между омическим, анодным и катодным контролем процесса.  [c.53]


Коррозионностойкими (нержавеющими) называют стали, обладающие стойкостью против электрохимической коррозии (атмосферной, почвенной, щелочной, кислотной, солевой,  [c.262]

Изложены закономерности учения о коррозии металлов и основы технологии противокоррозионной защиты. Рассмотрены биогенная и почвенная коррозия, высокотемпературное окисление металлов, питтинговая и межкристаллитная коррозия, коррозионное растрескивание, влияние радиации и блуждающих токов. Охарактеризована стойкость основных групп металлических конструкционных материалов, в том числе новых сплавов, используемых в химической, атомной, энергетической и других отраслях промышленности.  [c.4]

Как показано в разделе 6.1.3, скорость коррозии железа или стали в природных водах лимитируется диффузией кислорода к поверхности металла. Следовательно, бессемеровская или мартеновская сталь, ковкое железо или чугун мало или совсем не будут различаться по своим коррозионным свойствам в природных водах, в том числе и в морской [11]. Это утверждение приложимо и к коррозии в различных почвах, так как факторы, определяющие скорость почвенной коррозии и коррозии погруженного в воду металла, одинаковы. Таким образом, для этих сред подойдут любые, самые дешевые сталь или железо, лишь бы они обладали требуемой механической прочностью при данной толщине сечения.  [c.123]

Для ряда почв даже максимальный глубинный показатель скорости коррозии различных низколегированных сталей, как правило, находится в допустимых пределах ощибок опытов. Металлургический процесс изготовления стали не влияет на скорость ее коррозии в почвенных условиях [59, 60]. Среднюю, ориентировочную скорость коррозии железа и низколегированных сталей в ряде почв считают равной 0,2-0,4 мм/год. Эти данные относятся к коррозии незащищенных образцов или элементов конструкций небольшого размера, когда отсутствует ускоряющее влияние блуждающих токов. На протяженных объектах, например трубопроводах, скорость увеличения глубины местных коррозионных поражений может возрастать в десятки раз. При осуществлении защитных мероприятий (нанесение покрытий, электрохимическая защита конструкций и т. д.) скорость коррозии, напротив, может быть снижена в десятки раз.  [c.136]

Опасность коррозии стальных подземных трубопроводов обусловлена характером воздействия блуждающих токов и степенью агрессивности фунтов. Наложение блуждающих токов на подземное металлическое сооружение приводит к их взаимодействию с токами почвенной коррозии, что может существенно ускорить коррозионное разрушение металла.  [c.21]


Влияние воздухопроницаемости, структуры и гранулометрического состава. Воздухопроницаемость почвы имеет большое значение для почвенной коррозии, так как коррозия протекает с кислородной деполяризацией. Состав почвенного воздуха отличается от состава атмосферного воздуха.  [c.43]

Почвенная коррозия протекает по одинаковому механизму с электрохимической коррозией металлов в растворе и в атмосфере, однако доступ кислорода различен в растворе он определяется условиями перемешивания, в атмосфере толщиной пленки влаги, а в почве воздухопроницаемостью (рис. 14) почвы.  [c.44]

Подземная коррозия трубопроводов — основная причина выхода трубопроводов из строя по факторам, вызывающим максимальное коррозионное воздействие, подразделяется на почвенную коррозию, коррозию блуждающими токами и биокоррозию.  [c.183]

Почвенная коррозия. Основные факторы, определяющие интенсивность коррозионного воздействия, это характеристики грунта и технологические параметры эксплуатации трубопровода. Агрессивность грунта зависит от многих факторов структуры и гранулометрического состава, влажности, минерализации грунтовых вод, pH, состава газовой фазы и условий аэрации.  [c.183]

Лаборатория предназначена для контроля состояния изоляции, определения параметров электрохимической защиты нефтегазопроводов от почвенной коррозии и коррозии, вызываемой блуждающими токами, а также для наладки работы защитных установок.  [c.202]

ЭЛЕКТРОХИМИЧЕСКАЯ ЗАЩИТА. МЕТАЛЛИЧЕСКИХ СООРУЖЕНИЙ ОТ ПОЧВЕННОЙ КОРРОЗИИ  [c.10]

Основными методами электрохимической защиты от почвенной коррозии являются протекторная и катодная. Эти методы защиты в настоящее время повсеместно при-  [c.10]

Рис. 1. Схемы электрохимической защиты сооружений от почвенной коррозии Рис. 1. Схемы <a href="/info/39837">электрохимической защиты</a> сооружений от почвенной коррозии
Таким образом, существующие схемы протекторной и катодной защиты сооружений от почвенной коррозии  [c.19]

Из этого следует, что катодная защита большими токами изолированных сооружений в условиях плотной застройки от почвенной коррозии не всегда оправдывает себя и требует глубокого изучения. В этой связи целесообразно применять катодную установку для выполнения одновременно двух функций для защиты подземных сооружений от коррозии и ликвидации сырости подвальных помещений, фундаментов зданий (магазины, склады, мастерские, овощехранилища, гаражи и т. п.). Для этого, например, достаточно возле здания или на его дне во время строительства установить горизонтальный или вертикальный анодный заземлитель из малорастворимого материала.  [c.34]

По уравнению (23) рассчитываются блуждающие токи в зоне рельсового транспорта на расстоянии до 500 м. При хорошей изоляции трубопроводов следует применить либо вентильные перемычки с рельсами, либо другие известные средства, уменьшающие входное (переходное) сопротивление магистрального трубопровода. Более удаленные от рельсов подземные сооружения (/> 500 м), из-за малых значений блуждающих токов, практически не будут подвержены коррозии. Защиту их от почвенной коррозии целесообразно выполнять с помощью протекторов или катодных станций.  [c.48]

Авторами предложена комплексная защита сооружений, рельсов и крепежной арматуры от блуждающих токов путем использования вентильных перемычек и энергии контактной сети, которая подробно описана в [28]. Такая система позволяет сократить число катодных станций и одновременно защитить от блуждающих токов и почвенной коррозии как рельсы, так и другие сооружения.  [c.55]

Установлено, что ежегодный рост количества и мощности катодных станций вызван не агрессивностью грунтов, а действием блуждающих токов развивающегося рельсового транспорта (трамвая). Катодные установки, в свою очередь, наводят огромные блуждающие токи на близлежащие сооружения, на которых также появляются опасные коррозионные участки. Таким образом, создается ситуация, при которой все подземные сооружения города требуют защиты либо от почвенной коррозии, либо от блуждающих токов. На защиту такой системы коммуникаций (цепочки) расходуется огромное количество металла, электроэнергии и других средств.  [c.60]


Различают следующие основные виды коррозии подземных металлических сооружений почвенную (электрохимическую), блуждающими токами и межкристаллитную. В условиях эксплуатации могут действовать одновременно все три вида.  [c.4]

Основные факторы, определяющие интенсивность почвенной коррозии тип грунта состав и концентрация веществ, растворимых в грунте влажность грунта характер проникновения воздуха в грунт структура грунта наличие в грунте бактерий, активизирующих развитие процессов коррозии температура и удельное сопротивление грунта.  [c.7]

Защита от почвенной коррозии  [c.44]

Стационарный (естественный) потенциал подземного металлического сооружения независимо от его значения не является показателем опасности или защищенности сооружения от почвенной коррозии. Катодная поляризация сооружений должна осуществляться таким образом, чтобы создаваемые на всей их поверхности поляризационные потенциалы были не менее значений, указанных в табл. 32, и не более значений, указанных в табл. 33.  [c.44]

Средства защиты подземного металлического сооружения от почвенной коррозии выбираются исходя из условий его прокладки и данных о коррозионной активности среды (грунта, грунтовых вод и т. д.) по отношению к металлу защищаемого сооружения с учетом результатов технико-экономических расчетов.  [c.46]

Муса и от 9 до 11 ккал/моль для остальных грунтов) значительно превосходят значения энергии активации вязкости воды (от 3 до 6 ккал/моль) и подвижности водородных ионов (от 1 до 3 ккал/г-ион), что указывает на существенное различие процессов диффузии в жидкой фазе грунтов и igff почв и в растворах электролитов. gg Возможны и отступления от экспоненциальной зависимости скорости грунтовой и почвенной коррозии металлов от температуры, связанные с более быстрым высыханием или с меньшей аэрацией грунта или почвы при повышении температуры.  [c.389]

Неравномерное наложение внешнего электрического поля. Участки, где положительные заряды (катиошя) выходят из металла в электролит, — аноды Образование катодных и. анодных участков под влиянием блуждающих токов при почвенной коррозии  [c.22]

Коррозионные проблемы в большинстве случаев рассматриваются не в общем виде, а применительно к металлам, для которых они наиболее характерны или технически важны. Так, атмосферная, биогенная и почвенная коррозия разбираются на примере углеродистых сталей, закономерности питтинговой и межкристал-литной коррозии, а также коррозионного растрескивания — на примере нержавеющих сталей. Описание каждого вида коррозии во всех случаях завершается изложением соответствующих практических мер,антикоррозионной защиты.  [c.15]

Атмосферная коррозия на стали с 0,3 % Си изучалась при 7,5-летней выдержке [20 J, для цинка н медн выдержка составляла 10 лет. Данные о морской коррозии взяты из orrosion Handbook. Данные о почвенной коррозии для стали усреднены результаты исследования в 44 видах почв при 12-летней выдержке для цинка — в 12 видах почв при 11-летней выдержке для медн — в 29 видах почв при 8-летией выдержке — на [20а].  [c.174]

Основным методом электрохимической защиты от подземной (почвенной) коррозии металлических сооружений из углеродистых сталей является катодная зашита магистральных и промысловых нефтегазопроВ уктопроводов, городских подземных трубопроводов и коммуникаций, нефтехранилищ и нефтебаз, компрессорных станций, обсадных колон и скважинного оборудования и т.п.  [c.4]

В связи с этим можно вьщелить следующие виды коррозионного процесса газонефтепромыслового оборудования атмосферная коррозия, коррозия в двухфазных средах, морская, почвенная.  [c.4]

Основная причина почвенной коррозии — наличие воды. Даже при минимальной влажности почва становится ионным проводником электрического тока, т.е. представляет собой электролит. К почвенной коррозии применимы основные закономерности электрохимической коррозии, справедливые для жидких электролитов. Однако электрохимический характер почвенной коррозии имеет особенности, отличающие ее от коррозии при погружении металла в электролит или от коррозии под пленкой влаги. Это связано с тем, что почва имеет сложное строение и представляет собой гетерогенную капиллярно-пористую систему. Почвы обладают водопроницаемостью и капиллярным водоперемещением, они накапливают и удерживают тепло и вместе с тем снижают испаряемость влаги. Если вода находится в порах или в виде поверхностных пленок на стенках пор, то ее связь с почвой имеет физико-механический характер. При этом влага удерживается в почве в неопределенных соотношениях. Другой вид связи — физико-химическая, при которой возникают коллоидные образования почвы. Возможна также химическая связь, которая характеризуется строго определенным молекулярным соотношением компонентов, например при образовании гидратированных химических соединений.  [c.41]

Более сложно протекает коррозия на объектах большой протяженности, например на магистральных нефте-,газо-или водопроводах. В этом случае почвенная коррозия обусловлена в основном функциошфовани-ем мощных макропар, вызьшаемых чередованием по трассе заложения трубопровода почв с различными физико-химическими свойствами, и в первую очередь с различной кислородопроницаемостью.  [c.41]

Для почвенной коррозии протяженных конструкций трубопроводов вследствие чередования грунтов с различной кислородной проницаемостью повышается роль омического фактора, и коррозия протекает с катодноюмическим контролем.  [c.45]

Удельное электрическое сопротивление оказьшает большое влияние на коррозионную агрессивность почвы, которая тем больше, чем меньше ее удельное сопротивление. Однако ввиду того, что удельное сопротивление зависит от влажности, состава и концентрации солей, воздухопроницаемости почвы и др., по его значению нельзя однозначно оценить коррозионную активность почвы. Интенсивность почвенной коррозии -результат воздействия многочисленных взаимосвязанных и переменных во времени факторов, и изменение одного из них оказывает влияние на суммарное воздействие факторов. В СССР коррозионную активность почв по отношению к стали оценивают по трем показателям удельному сопротивлению, потере массы образцов и плотности поляризующего тока. Коррозионную активность грунтов устанавливают по показателю, характеризующему наибольшую коррозионную активность (табл. 9).  [c.45]


Обычно интенсивность почвенной коррозии намного меньше, чем интенсивность коррозии блуждающими токами. В анодной зоне коррозионные потери в кг/(А год) составляют 33,9 для свинца 9,1 для железа 3 для aлю шния. Ввиду того что при изолированном трубопроводе токи могут стекать лишь в тех местах, где имеются повреждения изоля-  [c.46]

Средняя ориентировочная скорость коррозии незащищенных кон-струквд1й небольшой протяженности из низколегированной стали составляет 0,2—0,4 мм/год. На протяженных объектах, например трубопроводах, в связи с воздействием макропар дифференциальной аэрации и особенно блуждающих токов скорость коррозии значительно выше. У серого чугуна скорость коррозии в 1,5—2 раза выше, чем у стали. Однако эта разница не имеет существенного значения, так как вследствие более толстых стенок чугунных труб и затухающего характера почвенной коррозии чугунные трубы работают часто дольше стальных.  [c.47]

Так как при почвенной коррозии для подземных конструкций основную опасность представляет не общая коррозия, а местные коррозионные разрушения, большое значение имеет склонность металлов к образованию эффективных макропар дифференщ1альной аэращш. Вследствие различной проницаемости кислорода в глину и песок алюминий, находящийся в глине, является анодом, и скорость его коррозии на порядок выше, чем у алюминия, находящегося в песке.  [c.48]

Если коррозионноактивная среда обладает низкой электропроводностью (разбавленные растворы, почвенная коррозия) или в связи с особенностями консфрукции, pH раствора, концентрация окислителя у разных участков поверхности будет разная, и величина стационарного потенциала может быть различной для разных участков поверхности. В этом случае выбирают на анодной кривой два значения коррозионного потенциала и по анодному току можно оценить коррозионные потери на отдельных участках конструкции.  [c.36]


Смотреть страницы где упоминается термин Коррозия почвенная : [c.7]    [c.277]    [c.146]    [c.61]    [c.41]    [c.41]    [c.32]    [c.2]    [c.7]   
Теплотехнический справочник (0) -- [ c.568 ]

Теплотехнический справочник Том 1 (1957) -- [ c.568 ]

Защита промышленных зданий и сооружений от коррозии в химических производствах (1969) -- [ c.7 ]



ПОИСК



Вамеев С. К. Покрытие Пластобит-2М для защиты нефтепроводов от почвенной коррозии

Контролирующие факторы почвенной коррозии

ОГЛАВЛЕНИЕ Основы теории почвенной коррозии металлов

Подземная (грунтовая, почвенная) коррозия металлов

Подземная (почвенная) коррозия

Почвенная коррозия металлов

Электрохимическая защита металлических сооружений от почвенной коррозии

Электрохимическая коррозия почвенная



© 2025 Mash-xxl.info Реклама на сайте