Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Межкристаллитная коррозия механизм

Определение склонности к межкристаллитной коррозии. Причины, вызывающие появление у легированных сталей и некого-рых других сплавов склонности к межкристаллитной коррозии, а также механизм межкристаллитной коррозии и способы ее предотвращения рассмотрены ранее, в гл. XI. Существуют различные методы определения склонности наиболее распространенных в химическом машиностроении легированных сталей к межкристаллитной коррозии, которые можно подразделить на химические, физические и электрохимические. В Советском Союзе испытания на межкристаллитную коррозию проводятся по ГОСТу 6032—58.  [c.344]


В целом экспериментальные данные подтверждают предположение, что межкристаллитная коррозия является следствием наличия в стали специфических примесей, которые концентрируются в области границ зерен при закалке. Степень разрушения зависит от природы химической среды, в которую помещена сталь, однако механизм воздействия среды не ясен. Установлено, что в напряженном состоянии межкристаллитная коррозия сталей в различных средах усиливается, однако наличие напряжений не является обязательным условием для ее протекания. Следовательно, и в этих случаях наблюдаемые разрушения нужно охарактеризовать как межкристаллитную коррозию, а не коррозионное растрескивание под напряжением.  [c.309]

Для объяснения механизма межкристаллитной коррозии карбидного и интерметаллидного типа можно принять в качестве основной теорию обеднения приграничных областей зерен элементами, ответственными за стойкость против коррозии.  [c.151]

Отдельные виды коррозии металлов и сплавов классифицируют по ряду признаков (механизм процессов, характер коррозионных поражений, характер сред, действие отдельных факторов коррозии). К локальным видам коррозии относятся межкристаллитная коррозия, коррозионное растрескивание, контактная коррозия, и елевая коррозия, питтинговая коррозия. Наиболее характерными средами для большинства дейст-  [c.118]

Сторонники другой точки зрения считают, что действие подобных замедлителей межкристаллитной коррозии заключается в упрочении защитных плёнок, вследствие чего они приобретают необходимую плотность и свойство предупреждать щелочную хрупкость металла. По мнению других исследователей, механизм защиты металла с помощью органических замедлителей основан на способности этих веществ к разложению в процессе упаривания котловой воды с последующей закупоркой продуктами их распада неплотностей в соединениях элементов котлов. В силу этого обстоятельства ликвидируется возможность нарастания концентрации едкого натра до опасных пределов.  [c.172]

Взаимодействие жидкого металла с конструкционным материалом отлично от процессов коррозии в воде и других неметаллических жидкостях и газах своим механизмом — сложным комплексом таких явлений, как растворимость материала и его компонентов в жидком металле, перенос массы, межкристаллитная коррозия, охрупчивание, адсорбционное понижение прочности, эрозионное разрушение и др. Рассмотрению воздействия жидких металлов на конструкционные материалы посвящен ряд работ [69 и др.]. Здесь дается лишь краткая характеристика этих специфических явлений.  [c.47]


Высоколегированные аустенитные стали и сплавы наиболее часто используют как коррозионно-стойкие. Основное требование, которое в этом случае предъявляется к сварным соединениям, - стойкость к различным видам коррозии. Межкристаллитная коррозия может развиваться в металле шва и основном металле у линии сплавления (ножевая коррозия) или на некотором удалении от шва (рис. 9.4). Механизм развития этих видов коррозии одинаков. Однако причины возникновения названных видов межкристаллитной коррозии различны.  [c.357]

Хотя механизм межкристаллитной коррозии шва и основного металла одинаков, причины, вызывающие появление этого вида коррозии в том или ином участке сварного соединения, различны и зависят от множества условий. Остановимся только на важнейших из них.  [c.276]

Механизм межкристаллитной коррозии  [c.54]

В современных представлениях о механизме межкристаллитной коррозии решающее значение придается возрастанию локальных диффузионных сопротивлений в решетке твердого раствора замещения АВ при повышении концентрации атомов А или В. Предполагается, что свободная энергия на границах зерен может понижаться при внедрении дислокаций уже в процессе затвердевания металла из сплава. При движении от границ зерен к прилегающим зонам соседних зерен эти дислокации оставляют за собой на поверхности границ зерен ступеньки скольжения, с которых атомы металла могут легко переходить в раствор при коррозии. Поэтому межкристаллитная коррозия рассматривается как процесс, при котором растворяются покрытые ступеньками скольжения области границ зерен. С повышением концентрации твердого раствора вначале  [c.61]

Известно, например, что успешная борьба с межкристаллитной коррозией нержавеющих и алюминиевых сплавов стала возможной лишь после раскрытия механизма процесса. В то же время скромные успехи, которые достигнуты в борьбе с коррозионным растрескиванием сплавов, в значительной степени объясняются недостаточным знанием механизма этого явления.  [c.5]

Авторы проанализировали механизм межкристаллитной хрупкости и сравнили его последовательное развитие с последовательным изменением чувствительности к межкристаллитной коррозии в зависимости от продолжительности иагрева при температуре отжига.  [c.273]

Теория многоэлектродных электрохимических систем имеет общий характер и позволяет объяснять явления, наблюдаемые в микромасштабах (межкристаллитная коррозия) и макромасштабах (механизм электрохимической защиты).  [c.32]

Теория многоэлектродных элементов имеет общий характер и позволила объяснить явления межкристаллитной коррозии и механизм электрохимической защиты.  [c.40]

Механизм межкристаллитной коррозии нержавеющих сталей и основные принципы выбора электролита для ускоренных испытаний  [c.240]

Механизм межкристаллитной коррозии алюминиевых сплавов и принципы выбора электролитов для ускоренных испытаний  [c.258]

Исходя из электрохимического механизма межкристаллитной коррозии алюминиевых сплавов, выбор электролита для ускоренных испытаний должен основываться на принципе создания таких условий, при которых тело зерна находилось бы в пассивном состоянии или растворялось бы с малой скоростью, а границы зерна — в активном состоянии.  [c.264]

В первой статье сборника рассматривается целесообразность использования понятия контролирующего фактора для характеристики механизма защитного действия и систематизации различных видов антикоррозионной защиты. Остальные работы сборника посвящены конкретным вопросам экспериментального исследования процессов коррозии и защиты металлических систем. В сборнике нашли отражение такие важные разделы, как исследование газовой коррозии при термообработке сплавов, коррозии и защиты металлов при травлении в кислотах, кислотостойкости металлов при повышенных температурах, коррозии нового металлического конструкционного материала — титана, его сплавов, сплавов ниобия с танталом и новые исследования по межкристаллитной коррозии нержавеющих сталей. В сборнике помещены последние работы по исследованию коррозионной усталости сталей и по коррозии и защите в некоторых производствах химической промышленности. Цель сборника — на основе современных методов исследования и имеющихся научных достижений указать некоторые новые пути и дать вполне определенные рекомендации нашей промышленности по борьбе с коррозионным разрушением.  [c.3]


Железо, углеродистые, а также многие низколегированные стали разрушаются по границам зерен по такому механизму во многих средах щелочных, нитратных, фосфатных, карбонатных и кислотных водных растворах. В большинстве случаев в этих системах происходит и межкристаллитная коррозия [ 197, 198].  [c.165]

Фиг. 1. Прибор для изучения механизма межкристаллитной коррозии Фиг. 1. Прибор для изучения механизма межкристаллитной коррозии
Расчет частично поляризованной системы более сложен. Однако в связи с тем, что поляризационное и омическое сопротивление имеют одинаковую размерность, можно построить поляризационную кривую для данного электрода с учетом омического сопротивления в его цепи путем суммирования потенциала с омическим падением напряжения при данной силе тот (суммирование по вертикали). Теория многоэлектродных электрохимических систем имеет общий характер и позволяет объяснить явления, наблюдаемые в микромасштабах (межкристаллитная коррозия) и макромасштабах (механизм электрохимической защиты).  [c.70]

Такие элементы, как хром, молибден и кремний способствуют выделению а-фазы при отпуске, с минимальным временем ее выпадения при температурах 800—850° С. Образование о-фазы по границам зерен усложняет механизм межкристаллитной коррозии и обедняет граничные зоны элементами, входящими в ее состав — в первую очередь хромом.  [c.128]

Коррозионное растрескивание и коррозионно-усталостное разрушение металлов следует отличать от межкристаллитной коррозии металлов, протекающей без наличия механических напряжений в металле. Разрушения металлов типа коррозионного растрескивания и коррозионной усталости имеют много общего, поскольку характерным для обоих явлений является образование в металле трещин и отсутетвие на его поверхности значительных раз.ъеданий. Только изредка наблюдаются небольшие местные разъедания. Несмотря па большое количество исследований, механизм трещинообразования и развития трещин еще недостаточно ясен. Однако в большинстве исследований (Ю. Р. Эванс, Г. В. Акимов, Н. Д. Ромашов, А. В. Рябченков, Е. М. Зарецкий, В. В. Герасимов и др.) подтверждается электрохимический характер коррозии. Наряду с электрохимическим фактором на коррозионный процесс оказывают влияние и факторы механического и адсорбционного снижения прочности металла. В зависимости от преобладающего действия того или иного фактора характер коррозионного разрушения может изменяться.  [c.107]

Существует ряд теорий, объясняющих появление в этих сталях склонности к межкристаллитной коррозии. Наиболее общепринятой и достаточно хорошо обоснованной теорией, объясняющей механизм межкристаллитной коррозии, является теория обеднения твердого раствора по границам зерен хромом из-за тлдслеиия в этой зоне карбидов хрома. Хром — элемент, более склонный к карбидообразованию, чем железо, а никель не обладает способностью образовывать карбиды. Однако сам факт выделения карбидов хрома по границам зерен не мог бы вызвать обедненне сплава хромом, если бы скорости диффузии углерода н хрома б лли одинаковы. Причиной обеднения границ зерен хромом является высокая скорость диффузии углерода и низкая скорость диффузии хрома, вследствие чего в образовании карбидов участвует почти весь углерод сплава, а хром — только пограничной зоны, где и идет образование карбидов.  [c.163]

Успехи, достигнутые в коррозионной науке и технике машиностроения с момента выхода первого издания, требуют обновления большинства глав настояш,ей книги. Детально рассмотрены введенное недавно понятие критического потенциала ииттингообразования и его применение на практике. Соответствующее место отводится также критическому потенциалу коррозионного растрескивания под напряжением и более подробному обзору различных подходов к изучению механизма этого вида коррозии. Раздел по коррозионной усталости написан о учетом новых данных и их интерпретации. В главу по пассивности включены результаты новых интересных экспериментов, проведенных в ряде лабораторий. Освещение вопросов межкристаллитной коррозии несенсибилизированных нержавеющих сталей и сплавов представляет интерес для ядерной энергетики. Книга включает лишь краткое описание диаграмм Пурбе в связи с тем, что подробный атлас таких диаграмм был опубликован профессором Пурбе в 1966 г.  [c.13]

Предлагались и другие гипотезы для объяснения межкристаллитной коррозии, однако механизм, связанный с обеднением хромом, более всего отвечает экспериментальньпл данным, и, по-видимому, соответствует истине. Например, в карбидах, выделившихся на границах зерен после сенсибилизации нержавеющих сталей, как и ожидалось, обнаружено Повышенное содержание хрома. В продуктах коррозии на границе зерна, полученных в условиях, когда исключалось разрушение карбидов, содержание хрома оказалось ниже, чем в целом в сплаве. Так, Шафмейстер[17] подвергал воздействию холодных концентрированных растворов серной кислоты нержавеющую сенсибилизированную сталь, содержащую 18 % Сг, 8,8 % Ni, 0,22 % С. После 10-дневных испытаний в продуктах коррозии сплава на границе зерен он обнаружил только 8,7 % Сг. Содержание N1 и Fe в продуктах коррозии составляло, соответственно, 8,4 и 83,0 %. А это означает, что по границам зерен не происходит обеднения сплава никелем, но увеличивается содержание железа. Исследования сенсибилизированных нержавеющих сталей с помощью сканирующего микроскопа показали обеднение границ зерен хромом и  [c.306]


Межкристаллитной коррозии могут подвергаться некоторые типы нержавеющей стали, имеющие высокое содержание углерода (0,05-3,15 % С). Она может иметь место, если нержавеющая сталь подвергалась термообработке, так что на границах зерен выпали карбиды хрома, а затем материал оказался подвержен воздействию кислого раствора или морской воды. Механизм реакции показан на рис. 105. Выпадение карбидов хрома имеет место только при определеных условиях для аустенитной стали преимущественно при 550-850 С. В этом случае говорят, что сталь сенсибилизирована. В результате выпадения карбида тонкий слой вблизи границы зерна настолько обедняется хромом, что сталь теряет свой нержавеющий характер. Сенсибилизация может оказаться результатом не только термообработки, но и сварки (см. 8.2) (рис. 106). При воздействии коррозивной среды зоны, обедненные хромом, совместно с остальной  [c.115]

Межкристаллитная коррозия развивается даже в тех случаях, когда отсутствуют напряжения. Коррозия этого вида заключается в предпочтительном растворении узкой зоны, расположенной вдоль границ зерен металла. Механизм этого вида коррозии электрохи-  [c.164]

Латуни при эксплуатации конденсаторов турбин склонны к специфическому разрушению, получившему название коррозионного растрескивания. Этот вид разрушений всегда связан. с наличием в сплаве растягивающих напряжений, обусловленных внутренними напряжениями или приложенными извне нагрузками. Растрескивание может протекать как межкристаллитно, так и транскри-сталлитно. Но даже когда коррозионное растрескивание протекает преимущественно межкристаллитно, оно отличается 1П0 свому механизму от межкристаллитной коррозии нержавеющих сталей, так как непременным условием его является наличие растягивающих напряжений.  [c.67]

Механизм межкристаллитной коррозии алюминиевых сплавов при низких температурах достаточно подробно изучен А. И. Голубевым [111,205]. Рассматривая причины межкристаллитной коррозии сплавов алюминия высокой чистоты при температурах выше 160° С, можно предположить следующее. На границах зерен, даже в очень чистом алюминии, различные примеси содержатся в боль-щем количестве, чем в центре зерна. Скорость катодного процесса на этих примесях возрастает, что приводит к смещению потенциала участков зерна, прилегающих к границе, в положительную сторону. Поскольку при высоких температурах чистый алюминий (при стационарном потенциале) подвержен коррозии в активной области, смещение потенциала в положительную сторону приводит к увеличению скорости коррозии на участках по границам зерен. При более значительном смещении потенциала в положительную сторону вследствие анодной поляризации либо при легировании элементами с малым перенапряжением водорода до значений потенциала, отвечающих области пассивации, межкристаллитная коррозия не развивается, что и подтвердилось при испытаниях. Из этого предположения следует, что монокристаллы чистого алюминия не должны подвергаться межкристаллитной коррозии в воде при высоких температурах. И, действительно, в воде с pH 5—6 при температуре 220° С монокристаллы алюминия в отличие от поликристаллов межкристаллитной коррозии не подвергались [111,206]. Попытка объяснить возникновение межкристаллитной коррозии алюминия в воде при высоких температурах растворением неустойчивых интерметал- лидов, выпадающих по границам зерен, связана с затруднениями. Дело в том, что легирование алюминия никелем, железом, кремнием и медью повышает стойкость сплавов по отношению к межкристаллитной коррозии, ВТО время как растворение неустойчивых интерметал-лидов, образованных этими легирующими компонентами (особенно последним), должно способствовать развитию межкристаллитной коррозии. Алюминий чистоты 99,0% при температуре свыше 200° С подвергается межкристаллитной коррозии не только в воде, но и в насыщенном водяном паре. Если же алюминий легировать никелем (до 1 %) и железом (0,1—0,3), межкристаллитная коррозия не развивается и в этом случае [111,172]. В результате коррозионного процесса размеры плоских образцов иногда увеличиваются на 15—20% [111,206].  [c.205]

Механизм развития межкристаллитной коррозии в никель-хроммолибденовых сплавах определяется не только фазовым составом и структурой, но и окислительно-восстановительным потенциалом среды (рис. 3.15) [3.9, 3.10].  [c.178]

В табл. 3 на рисунках показаны основные типы электрохимической гетерогенности, от которых в первую очередь зависят различные виды коррозионных разрущений. Факторами, определяющими вид разрушения, являются характер электрохимической гетерогенности и стабильность распределения анодных и катодных участков по поверхности во времени. В некоторых случаях электрохимическая гетерогенность поверхности сплава связана с образованием стабильно работающих коррозионных пар, что приводит к ярко выраженной местной коррозии, например, контактная коррозия разнородных металлов, коррозия вследствие неравномерной аэрации, межкристаллитная коррозия и коррозионное растрескивание. Подобные виды коррозии надо относить к явно гетерогенно-электрохимическому механизму коррозии. В других случаях, например, при структурноизбирательной коррозии, вследствие вытравливания отдельных кристаллитов, расположение катодов и анодов коррозионных пар не жестко фиксировано на поверхности. Это также приведет к местной коррозии, но, естественно, уже в микромасштабах. Примером может служить выявление поликристаллической структуры металла при травлении шлифа. В микромасштабе подобный вид коррозионного разрушения можно условно рассматривать и как равномерный.  [c.24]

Коррозионное растрескивание латуней [51,225]. Латуни в ряде условий эксплуатации склонны к специфическому разрушению, называемому коррозионным растрескиванием. Коррозионное растрескивание всегда связано с наличием в сплаве растягивающих напряжений вследствие наличия внутренних растягивающих напряжений или приложенных напряжений (нагрузок) извне. Подобное разрушение может протекать как меж-, так и транскристаллитно. Но даже когда коррозионное растрескивание протекает преимущественно межкристаллитно, оно отличается по своему механизму от межкристаллитной коррозии нержавеющих сталей, так как непременным условием его протекания является наличие растягивающих напряжений. Скорость развития коррозионного растрескивания латуней может стать весьма значительной, если в атмосфере содержатся аммиак или сернистый ангидрид, а также в растворах аммиака, аммониевых или ртутных солей. Преимущественно транскристаллит-ный характер коррозионного растрескивания латуней характеризует относительно большее влияние механического фактора разрушение такого вида преимущественно развивается у предварительно нагартованных латуней или при приложении относительно больших растягивающих нагрузок и в сравнительно мало активных средах. Наоборот, для латуней, предварительно отожлсенных и напряженных растяжением более умеренно, характерным для коррозионного растрескивания является преимущественное межкристал-литное разрушение.  [c.285]

Уже при рассмотрении механизма межкристаллитной коррозии мы столкнулись с тем фактом, что внутренние растягивающие напряжения на границах зерна могут служить причиной возникновения трещин межкристаллитного характера. Этот эффект будет еще более усиливаться при наложении внешних растягивающих напряжений, так как границы зерна являются наиболее слабым звеном в поликристаллите металла. Коррозия под напряжением поэтому часто сопровождается межкристаллитным разрушением. Однако коррозия под напряжением может также иметь и транс кристаллитный характер.  [c.60]


По характеру и механизму повреждения материала к разновидности межкристаллитной коррозии следует отнести и ножевую коррозию - разрушение околошовной зоны, граничаицей со сварным швом элементов конструкций из аустенитных хромоникелевых и других высоколегированных сталей. По внешнему виду контуры межкрис-таллитного разрушения напоминают надрез острым ножом. Ножевая коррозия с большой скоростью распространяется в глубь металла и существенным образом зависит от технологии сварки.  [c.336]

Интересные работы в этом направлении были выполнены в последнее время И. А. Левиным совместно с И. Г. Воликовой 18]. Исходя из электрохимического механизма межкристаллитной коррозии, изложенного выше, авторы полагают, что однофазную нержавеющую сталь, в которой появилась склонность к межкристаллитной коррозии, можно рассматривать как двухэлектродную систему, в которой основная часть зерен практически не корродирует, а пограничная часть зерна принимает на себя подавляющую часть анодного процесса.  [c.247]

Достоверность подобного электрохимического механизма межкристаллитной коррозии алюминиевых сплавов, содержащих медь, подтверждается тем, что на основе этой теории удается предсказать методы борьбы с этим опасным видом разрушения. Если бы удалось создать в системе электрод с более отрицательным потенциалом, зоны у границ зерен, вероятно, перестали бы разрушаться. Это можно, иапример, осуществить, ионизив потенциал тела зерна. Опыты подтвердили, что, если в такой сплав ввести небольшое количество магния, склонность сплава к межкристаллитной коррозии резко снижается. В этом случае коррозия концентрируется в основном на теле зерен, занимающих основную часть поверхности, и плотность тока у границ ничтожна. На аналогичном принципе и основана электрохимическая защита протекторами или плакирующими слоями, обладающими более отрицательным потенциалом.  [c.260]

В последнее время была выдвинута иная точка зрения на механизм межкристаллитной коррозии алюминиевых сплавов, содержащих медь [22]. По мнению автора, выпадающая на границе зерен 0 -фаза, близкая но своему составу к интерметаллическому соединению СиАЬ, растворяется избирательно, и разрушение границ в основном обусловлено преимущественным растворением из этой фазы алюминия.  [c.260]

Эти данные, вместе с представленными на рис. 71 и 73, указывают возможные пути ослабления провоцирующего влияния фосфора на коррозионное растрескивание (очистка стали, микролегирование примесями, "связывающими" фосфор, оптимальная термическая обработка, приводящая к адсорбционному вытеснению фосфора с границ зерен), которые, впрочем, совпадают с путями ослабления отпускной хрупкости. Более специфический для коррозионного растрескивания и межкристаллитной коррозии путь может состоять во введении в сплав примесей, образующих стабильные пассивирующие пленки а границах. Так, в работе [199] показано, что,действуя по такому механизму, добавка кремния в сталь Х20Н80 значительно замедляет вызванную адсорбцией фосфора на границах зе> рен межкристаллитную кЪррозию в сильноокислитепьных средах.  [c.173]

Рассмотрим возникновение межкристаллитной коррозии по механизму первого типа в аустенитных сталях. В этих сталях наиболее распространенным случаем является выделение по границам зерен карбидов хрома СгхС (СгззСб,  [c.11]

Межкристаллитная коррозия, протекающая по механизму первого типа, может быть связана не только с выделение.м карбидных и нитридных фаз. Например, в высококремнистых аустенитных сталях она возникает при обеднении границ зерен кремнием, который входит в состав выделяющейся при нагреве в интервале 650—850° С ог-фазы [20]. Высокохромистая о-фаза может быть причиной межкристаллитной коррозии в высоколегированных сплавах на основе железа типа 03ХН28МДТ, в которых она создает обеднение по хрому.  [c.14]

Присутствие углерода и азота в ферритных хромистых сталях является причиной возникновения межкристаллитной коррозии. Склонность к межкристаллитной коррозии в сталях данного типа возникает после высокотсмпературпого нагрева (выше 900— 1000° С) и быстрого охлаждения. Предположительно механизм межкристаллитной коррозии в феррптных сталях состоит в обеднении  [c.34]


Смотреть страницы где упоминается термин Межкристаллитная коррозия механизм : [c.163]    [c.169]    [c.491]    [c.302]    [c.114]    [c.166]    [c.173]    [c.13]   
Структура коррозия металлов и сплавов (1989) -- [ c.54 ]



ПОИСК



Коррозия межкристаллитная

Межкристаллитная коррози



© 2025 Mash-xxl.info Реклама на сайте