Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механизм коррозии гетерогенно электрохимически

Методы защиты от коррозии, классификация 46, 47 Механизм коррозии гомогенно электрохимический 27 гетерогенно электрохимический 24  [c.357]

В настоящее время существуют две теории, объясняющие электрохимический механизм коррозии гетерогенная и гомогенная.  [c.16]

Гетерогенно-электрохимический и гомогенно-электрохимический механизмы коррозии обычно накладываются один на другой, реализуясь одновременно. Соотнощение скоростей процессов, протекающих ио одному и другому механизму, в зависимости от конкретных условий может изменяться в широком диапазоне, но  [c.18]


Коррозия металлов — самопроизвольный переход металлов в ионное состояние вследствие взаимодействие их с окружающей средой. В результате коррозии образуются оксиды металлов, их соли, гидроксиды и другие соединения. По механизму протекания коррозия делится на химическую и электрохимическую, Чисто химическая коррозия протекает в неэлектролитах и сухих газах по механизму химических гетерогенных реакции. Электрохимическая коррозия возникает при контакте металлов с электропроводящими средами (электролитами). Этот вид коррозии наиболее распространен [83,89].  [c.16]

Процесс коррозии может протекать по гомогенно-электрохимическому и гетерогенно-электрохимическому механизмам. Для жидких металлов, амальгам и чистых твердых металлов, поверхность которых эквипотенциальна, в любой точке поверхности могут происходить катодный или анодный процессы, скорости которых равны. При наличии на поверхности металла фаз с разными термодинамическими свойствами происходит пространственное разделение катодного и анодного процесса (гетерогенный механизм), возникают так называемые локальные элементы. Как правило, анодный процесс локализуется на менее благородной фазе. Причины возникновения электрохимической неоднородности и типы коррозионных гальванических элементов приведены в табл. 2.3.  [c.17]

Гомогенно- и гетерогенно-электрохимические механизмы коррозии  [c.23]

В тех случаях, когда характер распределения коррозионного разрушения по поверхности можно не принимать во внимание, для трактовки и расчета общей величины коррозии весь коррозионный процесс можно отнести за счет протекания гомогенно-электрохимического механизма, даже если происходит явная дифференциация поверхности на катодные и анодные участки как, например, при структурной коррозии. Наоборот, если важно определение не только величины общего коррозионного эффекта, но и расчет распределения коррозионного поражения по поверхности, т. е. установления топографии коррозионного разрушения, то единственно правильным будет рассмотрение процесса коррозии с привлечением гетерогенно-электрохимического механизма, хотя количественные расчеты в этом случае осложняются вследствие затруднений в определении соотношений поверхностей анодных и катодных участков в различные периоды коррозионного процесса.  [c.28]

Из теории микроэлементов вытекает, что при отсутствии на поверхности металла разнородных участков процесс коррозии не будет иметь места. Опыты с чистыми металлами (дистиллированным цинком) показывают, что их скорость коррозии значительно меньше, чем технического металла. Однако имеются гомогенные сплавы (амальгамы), которые в то же время разрушаются очень быстро. Гипотеза невозможности растворения гомогенных металлов оказывается в противоречии с опытом и термодинамикой. Для объяснения электрохимического механизма растворения амальгам А. Н. Фрумкиным была выдвинута теория гомогенно-электрохимического растворения металлов, не исключающая, а дополняющая теорию микроэлементов — теорию гетерогенно-электрохимического процесса растворения металлов.  [c.40]


В большинстве случаев коррозия протекает по гетерогенно-электрохимическому механизму, т. е. с дифференциацией катодных и анодных процессов на раздельных относительно постоянных участках металла. Однако при некоторых условиях анодные и катодные процессы могут протекать на одном и том же участке, чередуясь во. времени, т. е. по гомогенно-электрохимическому механизму.  [c.70]

Скорость коррозии (плотность коррозионного тока) можно рассчитать по реальным поляризационным кривым (см. 18). Данные по скорости саморастворения, полученные из электрохимических данных и фактически определяемые по потере массы величины, оказываются довольно близкими для условий, когда не наблюдается концентрационная поляризация. Тем самым подтверждается теория сопряженных электрохимических реакций, объединяющая гомогенный и гетерогенный механизм коррозии металлов.  [c.72]

Под химической коррозией подразумевают процессы взаимодействия металлической поверхности с окружающей средой, протекающие по механизму химических гетерогенных реакций, т. е. когда переход металла в ионное состояние и восстановление окислительного компонента не являются независимыми сопряженными стадиями, разделенными во времени или пространстве (как при электрохимической коррозии), а происходят в одном акте. Важнейшим примером химической коррозии является взаимодействие металла с жидкими неэлектропроводными средами (неэлектролитами) или сухими газами.  [c.34]

Диаграмма нри гетерогенно-электрохимическом механизме коррозии  [c.22]

Следует отметить, что химический, гомогенно-электрохимический и гетерогенно-электрохимический механизмы не противоречат и не исключают, а, наоборот, дополняют друг друга. Существует вероятность, что коррозионный эффект будет определяться как общий результат реализации всех трех возможных путей развития коррозионного процесса. Однако, несмотря на то, что указанные три механизма коррозионного процесса могут протекать параллельно как в значительной мере независимые, для целей обсуждения и расчета часто вполне допустимо выделение основного превалирующего механизма и условное отнесение всего эффекта коррозии к одному механизму.  [c.149]

Коррозия металлов в электролитах наиболее обосновано может быть истолкована на базе гомогенно- или гетерогенно-электрохимического механизма. Какой путь электрохимической коррозии — с дифференциацией катодных и анодных процессов на раздельных, более или менее постоянных участках (гетерогенно-электрохимический механизм), или с перемежающимся протеканием анодного и катодного процессов по всей поверхности (гомогенно-электрохимический) — будет превалировать в данном случае — зависит от условий коррозии и в первую очередь от чистоты металла.  [c.149]

Можно привести следующие доводы в пользу предположения о преимущественном протекании коррозионных процессов в большинстве практических случаев по гетерогенно-электрохимическому механизму. В большинстве случаев коррозии в нейтральных средах образуются нерастворимые продукты коррозии. Если бы в этих условиях катодные и анодные процессы происходили в одном и том же месте, то это приводило бы к осаждению продуктов коррозии на всей поверхности металла и к быстрому торможению процесса коррозии, чего по большей части, однако, не наблюдается. Например, известно, что железо, сталь и чугун в морской воде и в растворах хлоридов корродируют почти с постоянной скоростью во времени.  [c.149]

Непосредственное изучение работы коррозионных микропар, проведенное Акимовым и Голубевым [20, 27], впервые позволило на основе прецизионной методики измерять потенциалы катодной и анодной составляющих сплава в процессе коррозии. На основании этих данных и известных поляризационных кривых для структурных составляющих сплава были построены кривые распределения плотности тока по корродирующей поверхности и рассчитана общая величина тока, воспроизводимого коррозионным микроэлементом. Для всех исследованных этими авторами случаев коррозии гетерогенных сплавов было доказано близкое совпадение величин коррозии, рассчитанной по величине тока и наблюдаемой непосредственно по убыли веса образца. Это было прямым доказательством основной роли локально-электрохимического механизма коррозии для обследованных случаев.  [c.150]


Исходя из необходимости трактовки местных коррозионных разрушений, в данной книге в большинстве случаев проводится разбор явлений электрохимической коррозии на базе гетерогенно-электрохимического механизма.  [c.151]

Первое направление — создание путем подходящего легирования более совершенного экранирующего слоя продуктов коррозии, дающего общее повышение коррозионной устойчивости сплава,— имеет сравнительно ограниченные возможности для повышения устойчивости против электрохимической коррозии. Причина этого, по-видимому, заключается в том, что достаточно полного экранирования при электрохимической коррозии в электролитах продукты коррозии, как правило, дать не могут, так как образование этих продуктов (при гетерогенно-электрохимическом механизме коррозии) будет происходить не непосредственно на анодных поверхностях, а в растворе между анодными и катодными участками. Можно ожидать заметно большей зашиты в результате уплотнения вторичных продуктов коррозии и образования защитных слоев в условиях протекания коррозионного процесса в атмосферных условиях. В качестве конкретного примера можно указать на повышение коррозионной устой чивости меди при ее легировании цинком или алюминием, т. е. на повышенную коррозионную устойчивость латуней и алюминиевых бронз по сравнению с чистой медью. Повышенная устойчивость медистых сталей по сравнению с обычными конструкционными сталями должна в некоторой мере объясняться также уплотнением продуктов коррозии, хотя в данном случае, помимо этого фактора, как будет разобрано ниже, значительную роль играет анодное торможение. Однако для повышения устойчивости сплава по отношению к химической коррозии и, в частности, к имеющей такое большое значение в технике газовой высокотемпературной коррозии этот путь будет являться основным.  [c.438]

Химический, гомогенно-электрохимический и гетерогенно-электрохимиче ский механизмы коррозии. ..........  [c.588]

Коррозия является процессом химического или электрохимического взаимодействия металлов с коррозионной средой. Для установления механизма и общих закономерностей этого взаимодействия и разработки методов борьбы с ним необходимо знание свойств металлов и коррозионных сред, а также основных закономерностей химических и электрохимических процессов. Поэтому научной базой для учения о коррозии и защите металлов являются металловедение и физическая химия, в первую очередь такие ее разделы, как термодинамика и кинетика гетерогенных химических и электрохимических процессов.  [c.10]

Наука о коррозии и защите металлов изучает взаимодействие металлов и сплавов на их основе с коррозионно-активной средой, раскрывая механизм этого взаимодействия, его общие закономерности. Являясь процессом химического или электрохимического взаимодействия металла с коррозионной средой, она базируется на материаловедении и физической химии, в первую очередь на таких ее разделах, как термодинамика и кинетика гетерогенных химических и электрохимических процессов. Конечной ее целью является разработка практических мероприятий, обеспечивающих долговечную и надежную работу различного вида технологического оборудования и конструкций в самых разнообразных условиях эксплуатации.  [c.4]

По-видимому, торможение коррозионного растрескивания деформированных магниевых сплавов, вызываемое отжигом, может быть связано с увеличением равномерности общей коррозии, обусловленным повышением гетерогенности сплава в большей степени, чем с нарушением непрерывности выделений каких-либо металлических фаз, с которыми связывается электрохимический механизм коррозионного растрескивания данных сплавов.  [c.145]

Аналогичные представления применимы не только к разбору механизма торможения электрохимической коррозии металлов, но н к более общим случаям протекания химических гетерогенных реакций.  [c.6]

В руководстве даны 33 работы, экспериментально иллюстрирующие такие важные разделы курса, как газовая коррозия и жаростойкость металлов, механизм процессов электрохимической коррозии (электродные потенциалы, электрохимическая гетерогенность, поляризация и деполяризация, явление пассивности), наиболее интересные и важные случаи электрохимической коррозии (контактная коррозия, устойчивость в кислотах, подземная и атмосферная коррозия, межкристаллитная и точечная коррозия, коррозия сварных соединений, коррозионное растрескивание и усталость), различные методы защиты металлов  [c.5]

Такие вопросы теории и механизма электрохимической коррозии, как равновесные и стационарные электродные потенциалы, электрохимическая гетерогенность поверхности металла, кинетика катодного и анодного процесса, работа коррозионного элемента и пассивность рассмотрены в работах № 4—11. Особенности коррозии металлов в различных условиях службы, например кислотостойкость, подземная коррозия металлов, межкристаллитная и точечная коррозия сталей, коррозия сварных соединений, коррозионное растрескивание и усталость, иллюстрируются работами № 12—19. Современные методы коррозионных исследований даны в работе № 20, а также в работах № 5, 12, 14—19 при выполнении частных задач.  [c.51]

Влияние электрохимической гетерогенности поверхности ме-галла на скорость коррозии зависит от характера включений (являются ли они анодами или катодами по отношению к основному металлу) и от механизма коррозионного процесса.  [c.58]


Известно, что питтинговая коррозия — это типичный пример электрохимического коррозионного процесса, протекающего по гетерогенному механизму растворения [1—9]. Довольно быстрая дифференциация поверхности на анодные и катодные участки приводит к особому распределению плотности тока и потенциалов по поверхности. Исследование электрохимии таких систем сопряжено с большими трудностями, поскольку мы по существу имеем дело с многоэлектродной системой, включающей несколько мельчайших анодов (питтингов) и один большой катод. Положение осложняется еще тем, что скорость процесса в питтингах сильно меняется во времени [10,  [c.193]

Существование гетерогенности доведено до уровня размеров отдельных атомов [31]. Пространственное разделение анодных и катодных процессов энергетически более выгодно, так как они локализованы на тех участках, где их прохождение облегчено. Гетерогенный механизм наблюдается при коррозии различных сплавов, для которых характерна электрохимическая неоднородность поверхности.  [c.14]

Малая разность наблюдаемых стационарных потенциалов и равномерная коррозия образцов из стали различного состава и структуры свидетельствуют о преимущественно гомогенном механизме грунтовой коррозии. Причиной могут быть небольшая разность стационарных потенциалов, возникающих по гомогенному механизму на различных участках поверхности металла (незначительная гетерогенность) или подавляющее преобладание площади анодных участков. В этом случае электрохимическая гетерогенность на результат коррозии практически не влияет.  [c.23]

При химическом типе коррозии окисление металла и восстанов-ленне окислителя протекают в одном акте. Скорость химической коррозии определяется основными закономерностями кинетики химических гетерогенных реакций. В ряде случаев установлена возможность протекания коррозии ио электрохимическому механизму с участием химических реакций.  [c.11]

II структурной микронеоднородностью (гетерогенный механизм коррозии), так и флуктуирующие субмикропары (гомогенный электрохимический механизм) [1].  [c.58]

В табл. 3 на рисунках показаны основные типы электрохимической гетерогенности, от которых в первую очередь зависят различные виды коррозионных разрущений. Факторами, определяющими вид разрушения, являются характер электрохимической гетерогенности и стабильность распределения анодных и катодных участков по поверхности во времени. В некоторых случаях электрохимическая гетерогенность поверхности сплава связана с образованием стабильно работающих коррозионных пар, что приводит к ярко выраженной местной коррозии, например, контактная коррозия разнородных металлов, коррозия вследствие неравномерной аэрации, межкристаллитная коррозия и коррозионное растрескивание. Подобные виды коррозии надо относить к явно гетерогенно-электрохимическому механизму коррозии. В других случаях, например, при структурноизбирательной коррозии, вследствие вытравливания отдельных кристаллитов, расположение катодов и анодов коррозионных пар не жестко фиксировано на поверхности. Это также приведет к местной коррозии, но, естественно, уже в микромасштабах. Примером может служить выявление поликристаллической структуры металла при травлении шлифа. В микромасштабе подобный вид коррозионного разрушения можно условно рассматривать и как равномерный.  [c.24]

Таким образом, в общем случае, термодинамически возможный коррозионный процесс способен осуществляться одновременно тремя параллельными путями (механизмами) 1) химическим 2) гомогенно-электрохимическим 3) гетерогенно-электрохимическим. Однако, в некоторых случаях для упрощения расчетов вполне допустимо условно относить общий эффект коррозии к какому-нибудь одному преобладающему механизму. В случае электропроводной коррозионной среды (электролита) как правило, значительно чаще наблюдается электрохимический механизм и, за исключением особых случаев, его можно считать доминирующим. Какой при этом вариант будет преобладать — гетерогенный или гомогенный электрохимический — зависит от условий. Повидимому, преимущественное протекание процесса коррозии по гомогенно-электрохимическому механизму следует относить только к случаю коррозии особо чистых металлов, не имеющих структурных неоднородностей на поверхности, например, к жидким. В обычных случаях коррозии конструкционных металлов и сплавов надо предполагать преимущественное развитие процесса по гетерогенно-электрохимическому механизму. На это указывает обычно наблюдаемый макро- или микронеравномерный характер коррозионных разрушений или избирательное растворение компонентов сплава.  [c.25]

Под химической коррозией подразумевают взаимодействие металлической поверхности с окружающей средой по механизму химических гетерогенных реакций, т. е. когда атом металла с находящимися в его сфере валентными электронами непосредственно взаимодействует с молекулой реагента, например кислорода, воды, кислоты. Отсюда, переход металла в ионное состояние (окисление металла) и восстановление окислительного компонента не являются независимыми сопряженными стадиями, разделенными во времени или пространстве (как при электрохимической коррозии), а происходят одновременно (в одном акте). В данном случае не предполагается переход валентного электрона атома металла к чаогице реагента восстановителя (акцептору) через компактный металл. Электронный переход совершается непосредственно от атома металла к акцептору и, следовательно, этот механизм ие требует постулиро вания существования сво бодных электронов в металле и ионов в растворе (хотя их наличие также не препятствует протеканию реакции по этому механизму).  [c.13]

По характеру протекания коррозионного процесса разрушение металла может происходить по двум механизмам — химическому и электрохимическому. Коррозия металлов по химическому люха-низму обычно протекает в сухих газах и в неэлектролитах и является гетерогенной химической реакцией. Электрохимическое разрушение металлов имеет место при воздействии на металлы и сплавы водных растворов электролитов и влажных газов и является гетерогенной электрохимической реакцией.  [c.6]

Химическая коррозия подчиняется основный законам чисто химической кинетики гетерогенных реакций и относится к случаям коррозии, не сопровождающимся электрическим током (например, коррозия в неэлектролитах или су.хих газах). Элек-фохимическая коррозия подчиняется законам электрохимической кинетики и относится обычно к случаяхм коррозии с возможностью протекания электрического тока (например, коррозия металлов в электролитах). Более глубокое различие механизмов коррозии этих двух типов будет рассмотрено ниже.  [c.14]

К решению вопроса о том, когда трактовать процесс коррозии в электролитах на основе гетерогенно-электрохимического механизма, а когда на основе гомогенно-электрохимического механизма, можно подойти также и без попыток определить истинное количественное соотношение между эффективностью работы макро- и микроэлектрохимических пар, с одной стороны, и субмикроэлектрохимических пар, с другой стороны.  [c.150]

Наоборот, если важно определение не только величины общего коррозионного эффекта, но также и конкретное знание распределения коррозионного поражения на поверхности, т. е. топография коррозионного разрушения, то единственно правильным будет рассмотрение процесса коррозии с привлечением гетерогенно-электрохимического механизма. Это утверждение остается правильным как при больших омических сопротивлениях корршионных пар, так и в тех случаях, когда омическое сопротивление е играет существенной роли, а общая скорость коррозии определяется только кинетикой катодного и анодного процессов.  [c.151]


Почти всегда при работе макрокоррозионных пар, а также довольно часто и при работе микрокоррозионных пар (как, например, при трактовке межкристаллитной, точечной или структурно-избирательный коррозии) следует учитывать топографию коррозии, так как при этих типах коррозии вследствие достаточно постоянного положения анодных участков отмечается выраженный местный (макро- или микроэлектрохимиче-ский) характер разрушения. Поэтому большинство практических вопросов коррозии могут Получить достаточно полное толкование только на основе приложения гетерогенно-электрохимического механизма коррозии.  [c.151]

Питтинговая коррозия является типичным примером электрохимического коррозионного процесса, протекающего по гетерогенному механизму растворения [43, 44]. Довольно быстрая дифференциация поверхности на анодные и катодные участки приводит к особому распределению плотностей тока и потенциалов по поверхности, а также в самом пит-тпиге.  [c.338]

Положение седьмое. В современной теории электрохимической коррозии рассматриваются два механизма коррозионного процесса гомогенный и гетерогенный. По гомогенному механизму потенциалообразующие (взаимно сопряженные анодная и катодная реакции) одновременно протекают на одном и том же участке поверхности металла,  [c.12]

В руководстве даны 34 работы, экспериментально иллюстрирующие такие важные разделы курса, как газовая коррозия и жаростойкость металлов, механизм процессов электрохимической коррозии (электродные потенциалы, электрохимическая гетерогенность, поляризация и деполяризация, явление пассивности), наиболее интересные и важные случаи электрохимической коррозии (контактная коррозия, устойчивость в кислотах, подземная и атмосферная коррозия, межкристаллитная и точечная коррозия, коррозия сварных соединений, коррозионное растрескивание и усталость), различные методы защиты металлов от коррозии (защитные покрытия, электрохимическая защита, применение замедлителей). Во введении авторы сочли необходи.мым более детально остановиться на принятых современных методах обработки и оформления результатов экспериментальных исследований (ведение отчета, оценка точности измерений и основные приемы графического анализа опытных данных). При недостаточном бюджете времени или других затруднениях требование оценки точности измерений может быть опущено. Здесь также кратко указаны сведения о работе с некоторыми наиболее часто встречающимися приборами и аппаратами коррозионной лаборатории, а также сведения о мерах безопасности при проведении лабораторных работ. В приложении собрано минимальное количество справочных данных, необходимых при выполнении работ коррозионного практикума.  [c.7]


Смотреть страницы где упоминается термин Механизм коррозии гетерогенно электрохимически : [c.55]    [c.24]    [c.34]    [c.43]    [c.19]    [c.147]    [c.169]    [c.504]   
Теория коррозии и коррозионно-стойкие конструкционные сплавы (1986) -- [ c.24 ]



ПОИСК



Гомогенно- и гетерогенно-электрохимические механизмы коррозии

Электрохимическая коррози

Электрохимическая коррозия

Электрохимический



© 2025 Mash-xxl.info Реклама на сайте