Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оценка предельного состояния по прочности

Одновременно, но независимо были выполнены работы, описывающие прочность металлов. В частности, сильно повлияла на формулировку многих последующих критериев прочности композитов идея оценки предельного состояния по октаэдрическим касательным напряжениям (так называемое условие пластичности Мизеса) [8]. Хилл [9] обобщил критерий Мизеса, распространив его на случай анизотропных тел. Для плоского напряженного состояния его критерий имеет вид  [c.142]


Так, испытания на ползучесть (рис. 1.2.1, а) дают оценку предельного состояния по критерию длительного статического разрушения. При этом, как и в ряде работ [29, 267, 285] по длительной прочности, предполагалось, что критерием разрушения является достижение предельной деформации, соответствующей разрушению при ползучести.  [c.22]

Важно располагать надежным методом пересчета данных по прочности малых образцов на большие размеры деталей, так как объем последних уже сейчас часто превышает объем испытываемых образцов Б миллион раз и больше. И, наконец, следует заметить, что в области экспериментальных исследований правильная оценка масштабного эффекта имеет значение для моделирования предельного состояния по прочности. При исследовании сопротивления хрупкому разрушению имеются существенные различия в условиях нагружения, форме и состоянии материала образцов и нат -рных деталей.  [c.332]

Учитывая отмеченную специфику деформирования нри термоусталостном нагружении, в работе [103] предлагается метод оценки термической прочности с позиций деформационно-кинетического критерия малоциклового разрушения [129, 162], экспериментально обоснованного в области повышенных и высоких температур при изотермических испытаниях материалов. Названный критерий, как отмечалось выше, описывает условия достижения предельного состояния по разрушению квазистатического и усталостного типов как для мягкого и жесткого, так и промежуточного между мягким и жестким характера нагружения, что охватывает особенности нестационарного циклического деформирования, свойственные термоусталостным испытаниям.  [c.49]

По мере усложнения задач, возникающих при проектировании в связи с обеспечением прочности машин, становится все более необходимым взаимодействие испытаний и расчета, объединяемых в определенную систему, которая обеспечивает получение исходных данных по режимам нагружения при испытаниях материалов на образцах, изучение полей напряжений и деформаций на характерных моделях, измерение или расчет граничных условий, решение краевых задач для опасных зон элементов конструкций, оценку предельных состояний и эксплуатационного ресурса исследуемой конструкции  [c.505]

Из анализа данных об условиях эксплуатационного нагружения и о номинальной и местной нагруженности следует возможность оценки предельных состояний несущих элементов конструкций и выбора критериев прочности. Назначение основных размеров сечений несущих элементов должно проводиться из условий статической прочности, т. е. размеры сечений должны быть не меньше, чем по критериям статической прочности для максимальных эксплуатационных нагрузок. В расчетах статической прочности деталей машин и элементов конструкций, выполняемых по номинальным напряжениям, как правило, не учитываются местные напряжения от концентрации и местные температурные напряжения. В расчетах статической прочности используются пределы текучести и прочности, определяемые при стандартных кратковременных статических испытаниях гладких цилиндрических или плоских образцов [1, 2].  [c.11]


Для оценки прочности и несущей способности элементов конструкций и деталей машин при циклических силовых и температурных эксплуатационных нагрузках необходим анализ их напряженных, деформированных и предельных состояний, закономерностей накопления повреждений и разрушения в процессе эксплуатации (см. гл. 1). Предельные состояния по образованию трещин  [c.252]

Таким образом, для широкого диапазона условий нагружения [15, 49] суммарное повреждение, определенное в соответствии с уравнением (2.39) или (2.41), укладывается, как правило, в полосе разброса 0,5... 1,5. Это свидетельствует о возможности использования деформационно-кинетического критерия для расчета прочности при малоцикловом и длительном малоцикловом нагружении. Однако необходимо использовать результаты только корректно поставленных экспериментов, обеспечивающих получение полной информации о параметрах процесса деформирования и характере изменения с числом циклов и -во времени нагрузок (напряжений), деформаций и температур в зоне достижения предельного состояния по условиям малоциклового разрушения, а также систему базовых данных и расчетных характеристик, необходимых для правильной оценки повреждений, накопленных в ходе повторных нагружений.  [c.101]

Обе формулы применимы для оценки предельных состояний пластичных материалов, одинаково сопротивляющихся растяжению и сжатию. Универсальной и общепризнанной в настоящее время является теория прочности Мора. По этой теории для ма-310  [c.310]

В связи с этим недостатком метода расчета на прочность по допускаемым напряжениям возникла необходимость в новом подходе к оценке прочности конструкций. Был предложен метод расчета конструкций по предельному состоянию.  [c.488]

Если асимметрия цикла очень велика, то роль переменных напряжений при оценке прочности может оказаться несущественной и расчет следует проводить по предельному состоянию, как при  [c.613]

По формулам (6.18) и (6.19) представляется возможным производить оценку остаточного ресурса оборудования без дефектов по предельному состоянию с соответствующим коэффициентом запаса прочности по долговечности.  [c.380]

Таким образом, предел трещиностойкости есть непрерывная совокупность значений предельных коэффициентов интенсивности напряжений для всего диапазона длин трещин, представленная в виде функции от обратной величины коэффициента запаса по пределу прочности. Однако, использование предела прочности при оценке предела трещиностойкости приводит к определенным ограничениям, так как предел прочности не является характеристикой предельного состояния локальных объемов металла вблизи трещины.  [c.297]

Если асимметрия цикла очень велика, то роль переменных напряжений при оценке прочности может оказаться несущественной и расчет следует проводить по предельному состоянию, как при статической нагрузке. В связи с этим наряду с запасом прочности по усталости [формулы (22.25), (22.26)] следует определять запас прочности и по несущей способности при статическом нагружении.  [c.678]

Расчет на прочность магистральных трубопроводов в настоящее время производится по методу предельного состояния, которое определяется прочностью труб на разрыв от действия статического внутреннего давления [206]. В качестве основной расчетной схемы при оценке прочности труб принята тонкостенная оболочка, находящаяся под внутренним давлением. Рассматриваемый расчет не учитывает возможной неоднородности распределения напряжений в стенке трубы, вызываемой отклонениями сечений труб от правильной геометрической формы за счет наличия валика сварного шва, смещения кромок в нем и овальности сечения в целом. Оценка  [c.136]


Определение запасов прочности и долговечности осуществляется на основе количественной оценки перехода к предельным состояниям с ростом уровня термомеханической нагружен-ности или ростом выработанного ресурса по критериям накопленного повреждения или накопленного формоизменения.  [c.35]

В нагретом диске выравнивание напряжений происходит также вследствие ползучести. На этом основании И. А. Биргер применил представление о предельном состоянии к расчету диска на длительную прочность [6]. Именно в такой интерпретации этот метод получил широкое распространение в практике конструирования газотурбинных двигателей и вошел в соответствующие нормы прочности. Экспериментальные исследования, проведенные в ЦНИИТМАШе, показали, что отклонения наблюдавшейся разрушающей скорости вращения (при длительных испытаниях нагретых дисков) от расчетной обычно не превышают 2—10%. Большие отклонения возможны для дисков из малопластичных сталей или сплавов например, для стали РЗ в охрупченном состоянии оно достигало 15% [135]. При этом расчет по предельному состоянию дает верхнюю оценку для разрушающих оборотов (результат с завышением).  [c.137]

В соответствии с нормами оценка прочности корпусных конструкций проводится, в частности, по такому предельному состоянию, как пластическая деформация или деформация ползучести по всему сечению. При проведении поверочного расчета (см. гл. 2), позволяющего уточнить геометрическую форму конструкции, напряжения рассчитываются, кж правило, в предположении упругого поведения материалов и в том случае, если они по расчету превышают предел текучести материала. Местные напряжения и деформации в зонах концентрации в упругопластической области определяются через номинальные и местные в упругой области.  [c.129]

Для расчетной оценки малоцикловой прочности элементов конструкций необходимо обоснование условий формирования и достижения предельного состояния материала по разрушению в зависимости от параметров режимов термомеханического нагружения.  [c.81]

Оценку предельного по прочности состояния материала производят по накоплению повреждений на разных режимах нагружения, а в случае нестационарного малоциклового нагружения — по правилу линейного суммирования усталостных повреждений  [c.191]

Корпуса современных энергетических установок [1—3] представляют собой ответственные и сложные конструкции, к надежной работе которых предъявляются специальные требования. В соответствии с нормами [4] оценка их прочности проводится по таким предельным состояниям, как пластическая деформация или деформация ползучести по всему сечению, появление макротрещин при циклическом нагружении, разрушение (вязкое и хрупкое) и др. При проведении поверочного расчета, позволяющего уточнить геометрическую форму конструкции и определить допускаемое число циклов нагружения и ресурс эксплуатации. Напряжения рассчитываются, как правило, в предположении упругого поведения материалов и в том случае, если они по расчету превышают предел текучести материала местные напряжения и деформации в зонах концентрации в упругопластической области определяются через номинальные и местные в упругой области. При этом для удобства выполнения расчетов, принятых в инженерной практике, вместо упруго-пластических деформаций рассматриваются условные упругие напряжения, равные произведению этих деформаций на модуль упругости [4].  [c.75]

В табл. 7.1 приведены табличные значения кривых деформирования и изохронных кривых ползучести, соответствующие длительности работы диска на наиболее тяжелом режиме 300 ч. Запасы прочности проекта диска на этом режиме должны удовлетворять следующим требованиям- запас по радиальным напряжениям k r N ЬЗ запас по окружным напряжениям д[ = 1,2 запасы по разрушающей частоте вращения при оценке по предельному состоянию с учетом возможного разрушения при исчерпании длительной прочности biN— Ь2, 1>3.  [c.206]

Нормативные методы расчета на прочность сосудов высокого давления, которые работают при температурах, не вызывающих ползучести материала, основаны на принципах оценки по предельным состояниям (вязкому разрушению, охвату всего сечения элемента сосуда пластической деформацией, возникновению макротрещин при циклическом нагружении). Толщины элементов рассчитывают по предельным нагрузкам, соответствующим предельным состояниям вязкому разрушению или пластической деформации по сечению элемента (ОСТ 26 104 87). При расчете по методу предельных нагрузок расчетное давление р принимают в щ или раз меньше значений р., или р (где р , Рв - давление, при котором вся стенка элемента соответственно переходит в пластическое состояние или разрушается tij, п - коэффициент запаса статической прочности соответственно по р-, или р ).  [c.779]

Прежде чем перейти к изложению методов оценки прочности конструкций в вероятностной постановке, напомним традиционные расчеты в детерминированной постановке. К таким методам относятся метод расчета по предельным состояниям (появление пластических деформаций, устойчивость) и метод расчета по допускаемым нагрузкам.  [c.369]

Наибольшее значение имеет правильная оценка предельных состояний по кригериям вязкого, хрупкого, малоциклового и многоциклового усталостных разрушений на стадиях образования и развития трещин. Рассматриваемые в гл. I силовые, энергетические и деформационные критерии вязкого, квазнхрупкого и хрупкого разрушений являются основными для расчетов на прочность и ресурса вы-соконагружеиных несущих элементов машин й конструкций.. Используя эти критерии, можно определить  [c.6]


В каждом из слоев многонаправленного слоистого композита возникает сложное напряженное состояние, даже если композит в целом находится под действием одноосного напряжения. Следовательно, и в простейшем случае нагружения композита начало разрушения слоя должно определяться при помощи соответствующего критерия предельного состояния. Предложено много разновидностей критериев прочности однонаправленных композитов, рассматриваемых как однородные анизотропные материалы (см., например, [10] ), в форме, удобной для описания экспериментальных данных. В основу этих критериев положена гипотеза, согласно которой однонаправленный волокнистый композит считается однородным анизотропным материалом. Можно ожидать, однако, что для оценки предельного состояния композита потребуется рассмотрение таких деталей механизма разрушения, которые определяются неоднородностью материала на уровне армирующего элемента. Дело в том, что виды разрушения, вызванные разными по направлению действия напряжениями, имеют принципиально различающиеся особенности.  [c.44]

В монографии систематически изложены вопросы сопротивления деформированию и разрушению при малоцикловом высокотемпературном нагружении. Разработаны способы интерпретации связи циклических напряжений и деформаций на основе изоциклических и изохронных диаграмм циклической ползучести и свойств подобия. Для определения предельных состояний по моменту образования разрушения используется деформационно-кинетический критерий длительной малоцикловой прочности. Закономерности деформирования и разрушения использованы для разработки основ методов оценки малоцикловой прочности элементов конструкций при нормальной и высоких температурах.  [c.2]

Сформулированные выше основные закономерности малоциклового деформирования и разрушения необходимы в связи с разработкой методов оценки прочности элементов конструкций. Для обоснования расчетной процедуры и уточнения запасов прочности в инженерной практике проводятся мснытанвя моделей и натурных элементов. Основными задачами, которые решаются в таких испытаниях, являются сопоставление расчетного и экспериментального распределения деформаций и напряжений (особенно в зонах концентрации с учетом поциклового перераспределения), а также изучение условий достижения предельного состояния по разрушению (образованию трещины). При этом для оценки прочности в условиях циклического упругопластического деформирования необходимы данные о кинетике деформированного состояния конструкции, а также кривые малоцикловой усталости материала при однородном напряженном состоянии.  [c.135]

За паследние годы в СССР большое развитие получил новый подход к оценке надежности конструкций путем расчета ). Он уже упоминался в предыдущем параграфе, где назывался методом расчета по предельным состояниям. Этот метод во многом близок к методу расчета по допускаемым нагрузкам, но отличается от последнего в части, относящейся к коэффициенту запаса. Метод расчета по предельным состояниям узаконен нормами и официально принят в СССР как основной метод расчета строительных конструкций, мостов и других сооружений. Понятие расчета по предельным состояниям включает в себя большее содержание, нежели расчет на прочность. В этом методе рассматриваются три предельных состояния по несущей способности, по жесткости и по тре-щинообразеванию. Коснемся лишь первого.  [c.209]

Применительно к тонкостенным конструкциям (сосуды давления, компенсирующие устройства, листовые и оболочечные конструкции, торовые уплотнения) для оценки их малоцикловой прочности необходимы расчетный и экспериментальный анализ напряженно-деформированных состояний в кинетической постановке, особенностей возникновения предельных состояний по обра-  [c.4]

В книге рассматриваются современные модели расчета и методы параметрической оптимизации несущей способности оболочек вращения из композитов двумерной и пространственной структур армирования. Основное внимание при этом уделено оболочкам, работающим на статическую устойчивость или в режиме колебаний, эффективные деформативные характеристики которых определяются методами теории структурного моделирования композита. В задачах, содержащих оценки предельных состояний оболочек по прочности, используется феноменологическая структурная модель прочностных характеристик слоистого композита, параметры которой получены экспериментально. Подробно анализируются особенности постановки задач пара.метрической оптимизации оболочек из композитов. Показана взаимосвязь векторной и скалярной моделей задач оптимизации в случае формализуемых локальных критериев качества проекта. Значительное место отведено изложению и примерам приложения нового метода решения задач оптимизации оболочек из. многослойных композитов — метода обобщенных структурных параметров, применение которого позволяет получить наиболее полную информацию об опти.чальных проектах широкого класса практически важных задач оптимизации. Содержащиеся в книге результаты могут быть использованы для инженерного проектирования оболочек из волокнистых композитов. Табл. 23, ил. 58, библиогр. 181 назв.  [c.4]

Для курса сопротивления материалов, отражающего развитие механики деформируемого твердого тела и усовершенствование расчета на прочность современных конструкций, все более актуальным становится освещение вопросов механики разрушения как основы оценки несущей способности по сопротивлению хрупкому и усталостному разрушению. Эти критерии несущей способности в свете закономерностей распространения макроразру-щения входят в тесную связь между собой, существенно углубляя представления о кинетике образования предельных состояний и запаса прочности в процессе исчерпания ресурса при работе изделий.  [c.3]

Как уже было показано в главе П1 и как это отмечалось и в настоящей главе, существуют два подхода к проблеме оценки прочности — расчет по допускаемым напряжениям и расчет по предельным состояниям. Материал настоящей главы непосредственно относится главным образом к первому подхс цу для второго он дает условия текучести, которые при помощи аппарата теории пластичности (см. главу X), могут позволить оценивать предельное состояние конструкции в целом. Кроме того, рассматривались элементы глобального хрупкого разрушения в результате накопления дефектов. Такая теория занимает положение, симметричное теории пластичности, но предельные состояния в локальной области, используемые в ней, это предельные состояния хрупкого разрушения материала в окрестности точки. И теория пластичности (см. главу X) и теория хрупкого глобального разрушения вследствие накопления дефектов приводят решение проблемы к краевой задаче и результат зависит от истории всего процесса нагружения.  [c.603]

Корпуса энергетического оборудования и сосуды под давлением, работающие при статическом и повторноч татическом режимах нагружения, представляют собой крупногабаритные конструкции, в которых по условию прочности и надежности не допускается развитие в большом объеме материала пластических деформаций. Нормы расчета на прочность поэтому предусматривают в качестве основы расчетных методов оценку прочности, в частности, по такому предельному состоянию, как пластическая деформация по всему сечению детали. Это выражается в назначении допускаемого коэффициента запаса прочности по пределу текучести щ = 1,5, который учитывается при выборе основных размеров элементов по общим мембранным напряжениям. Например, в цилиндрической оболочке  [c.204]


Выше показано, что для осесимметричных корпусных конструкций энергетического оборудования, сосудов давления и их узлов, в которых по условиям прочности и надежности не допускается развитие в значительном объеме материала пластическ их деформаций, может быть эффективно выполнен расчет по теории малых упругопластических деформаций. При этом учитывается, что эта теория имеет особое значение при исследовании начала процесса пластической деформации и менее эффективна в случае оценки прочности по предельному состоянию при развитых пластических деформациях в большом объеме материала конструкции [7].  [c.214]

Методика расчета резьбовых соединений на мапоцикловую прочность при долговечностях 10° — 10 регламентируется нормами [11]. В основу принятых в нормах методов расчета положены принципы оценки прочности по предельным состояниям (см. гл. 2) разрушение, пластическая деформация по всему сечению детали, потеря устойчивости, возникновение остаточных изменений формы и размеров, приводящее к невозможности эксплуатации конструкции, появление макротрещин при циклическом нагружении. При выборе основных размеров резьбовых соединений, изготовляемых из материалов с отношением предела текучести (То,2 к пределу прочности щ, не превышающим 0,6, в качестве характеристики предельного напряжения принимается предел текучести. Запас прочности по пределу текучести = 1,5. В случае изготовления соединений из сталей с в  [c.199]

Данные для предельного состояния, вычисленные по приведенной схеме, совп ь дают с результатами испытаний. Применение этой схе лы для определения разрушающих нагрузок приводит в случае преобладающей доли изгибающего момента с существенным отклонениям от опытных данных, полученных как при кратковременных испытаниях при комнатной температуре, так и длительных в условиях ползучести. Изгибающая нагрузка мало сказывается (при принятых методах расчета) на величине разрушающего давления. Чувствительными к изгибным напряжениям оказались поперечные сварные соединения, имеющие пониженную пластичность. В связи с изложенным для оценки влияния дополнительных напряжений в нормах приняты формулы, выведенные для предельного состояния. Пониженная сопротивляемость сварных стыков изгибу учтена при определении изгибных напряжений введением коэффициента прочности сварных соединений при изгибе ф . Рекомендуемые значения коэффициента приняты по опытным данным и подлежат в дальнейшем уточнению.  [c.301]

Поскольку напряжения а у и х у могут иметь в опасной точке один порядок, для оценки прочности пластины необходимо использовать соответствуюидую теорию прочности. Если, например, использовать энергетическую теорию прочности, то условие прочности по методу предельных состояний можно записать в следующем виде  [c.431]

Приведенная классификация интересна, но небесспорна. Например, для расчета коэффициента запаса по статической прочности не требуется функции распределения нагрузок [8] под расчетом по предельным состояниям понимается детерминированная оценка, не требующая вариации кривых распределения [9] и т. д. Вышеука-  [c.35]

Рассмотрим структуру вероятности безотказной работы элемента первой группы P t). Все факторы, влияющие на этот показатель надежности, могут быть разделены на две категории, К первой категории относятся нормальные эксплуатационные и производственно-технологические факторы (эксплуатационные нагрузки, напряжения, скорости и т. п., возникающие при нормальной работы машины). Несущая способность деталей имеет естественный разброс, соответствующий их качественному изготовлению. В результате взаимодействия этих факторов могут возникнуть отказы из-за разового превыщения нагрузкой несущей способности детали или накопления циклических повреждений, или изнашивания. Между этими видами отказов существует определенная зависимость 1) часто рассматривается один и тот же процесс нагружения, который может вызвать отказы трех типов 2) между характеристиками статической и циклической прочности существует вероятностная связь 3) изменения в детали, вызванные циклическими повреждениями или изнашиванием, могут повлиять на статическую прочность. Попытка учета этих связей приводит к чрезмерному усложнению расчетов, что делает их малоприемлемыми для практических целей [5]. В то же время, как показывает опыт расчетов, возможна оценка надежности деталей в предположении независимости вероятности безотказной работы по этим трем предельным состояниям.  [c.132]

В данном случае величина, обратная отношению oja , выступает как коэффициент запаса прочности по временному сопротивлению. Функция ф (а к/о в) равна 1 при 1- - оо и равна О при /0. Таким образом, предел трещиностойкости представляет собой непрерывную совокупность значений предельных коэффициентов интенсивности напряжений для всего диапазона длин трещин, представленная в виде функции от обратной величины коэффициента запаса по временному сопротивлению. Однако использование временного сопротивления при оценке предела трещиностойкости приводит к определенным ограничениям, так как временное сопротивление не является характернстйкойг предельного состояния локальных объемов металла вбйИМ трещины. В данном случае более информативным физическим пара-  [c.22]

Корпуса энергетического оборудования и сосуды под давлением, работающие при статическом и повторно-статическом режимах на гружения, представляют собой крупногабаритные конструкции, в которых по условию прочности и надежности не допускается развития в большом объеме материала пластических деформаций [1]., Нормы расчета на-прочность [2] поэтому предусматривают в качестве основы расчетных методов оценку прочности, в частности, по т 1Кому предельному состоянию, как пластическая деформация по всему сечению детали. Это выражается в назначении допускаемого коэффициента запаса прочности по пределу текучести = 1,5, который учитывается при выборе основных размеров элементов по общим мембранным напряжениям. Например, в цилиндрической оболочке допускаемые расчетное давление р и давление гидроиспытаний соответственно в 1,73 и 1,38 раза меньше величины рт соответствующей началу текучести в гладкой части оболочки (по условию Мизеса).  [c.122]


Смотреть страницы где упоминается термин Оценка предельного состояния по прочности : [c.37]    [c.7]    [c.87]    [c.63]    [c.46]    [c.173]   
Смотреть главы в:

Надежность в машиностроении  -> Оценка предельного состояния по прочности



ПОИСК



Оценка прочности

Оценки предельных состояний

Предельное состояние

Прочность предельная

Статистический подход к оценке прочности структурно-неоднородных материалов. Критерий предельного состояния



© 2025 Mash-xxl.info Реклама на сайте