Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Планетарные Конструкции водил

Многоступенчатые планетарные передачи. Планетарные передачи, как и передачи с неподвижными осями вращения, можно соединять последовательно. На рис. 10.10, а представлен двухступенчатый трехпоточный планетарный редуктор с плаваюш,ими солнечными колесами. С технологической точки зрения, оба колеса внутреннего зацепления, т. е. коронки 3 и З , удобно выполнять с одинаковыми модулем и числами зубьев. Тогда упрощаются нарезание зубьев и сборка редуктора, корпус которого должен иметь фланцевую конструкцию. В многоступенчатых планетарных передачах водило первой ступени Я1 несет на себе первое центральное колесо следующей ступени а водило второй ступени Я2 соединено с выходным тихоходным валом Т.  [c.282]


В двухступенчатом планетарном редукторе (лист 112) с передаточным числом к = 51,3 консольное центральное колесо быстроходной ступени редуктора опирается с одной стороны на два однорядных шариковых подшипника, размещенных в левой щеке водила. Каждый сателлит первой ступени установлен на однорядном шариковом подшипнике, который опирается на ось, установленную неподвижно в щеках водила. Правая щека с помощью цилиндрических штифтов соединена со шлицевой втулкой. Движение на центральное колесо второй ступени передается через шлицевое соединение втулки с валом. Опорами каждого сателлита второй ступени служат два однорядных шариковых подшипника. Водила обеих ступеней неразъемные, что значительно упрощает их конструкцию. Водило второй ступени выполнено как одно целое с тихоходным валом и опирается на два однорядных шариковых подшипника. Центральные колеса с внутренними зубьями первой и второй ступени выполнены плавающими и застопорены от вращения зубчатыми муфтами.  [c.287]

Типичная конструкция аксиально-поршневого мотора с одноступенчатым редуктором представлена на рис. 2,25. В расточках блока цилиндров 2 помещены поршни 3, связанные шатунами 4 с наклонной шайбой 5. Распределительная ось выполнена за одно целое с крышкой 1, имеющей отверстия подвода и отвода воздуха. Сжатый воздух по одному из каналов А подводится в рабочие цилиндры. Усилие от давления сжатого воздуха на поршни через шатун передается на наклонную шайбу 5. Тангенциальная составляющая этого усилия заставляет шайбу и блок поворачиваться, при этом вращается вал 8, который связан фланцем с блоком цилиндров и силовым карданом 9 с наклонной шайбой. Отработанный воздух из рабочих камер выходит через второй канал А в распределительной оси, а также через канал Б в блоке цилиндров. На конце вала 8 нарезаны зубья, находящиеся в зацеплении с зубчатыми колесами 6 планетарного редуктора. Водило 7 редуктора является выходным валом пневмомотора.  [c.56]

Применение сборных конструкций водила связано, главным образом с технологией монтажа планетарной передачи. В некоторых случаях может быть конструктивно оправдана замена цельных конструкций на сборные для упрощения технологии обработки заготовки.  [c.208]

Указанная центробежная сила воспринимается подшипниками колес 2 и 2 и передается подшипникам вала водила. Однако в реальных конструкциях планетарных механизмов вал Водила разгружается благодаря тому, что механизм имеет несколько пар сателлитов, расположенных под равными углами. В таком случае центральные подшипники водила Н теоретически оказываются разгруженными не только от центробежных сил, но и от нормальных сил, возникающих вследствие приложенной нагрузки. Однако в практике из-за неточности изготовления деталей и из-за неточности монтажа такое уравновешивание сил не наблюдается, чего мы учесть не можем. Здесь мы будем считать, что центральные подшипники водила разгружены.  [c.106]


Несколько иной принцип положен в конструкцию механизма закалочного крана, представленного на фиг. 217 [128]. Здесь при спуске груза главный мотор отключается, а спускным тормозом управляют с помощью вспомогательного электродвигателя через водило планетарной передачи. Кроме уже указанных преимуществ, отключение главного двигателя при спуске груза приводит также к уменьшению затормаживаемых маховых масс, а следовательно, и к уменьшению времени торможения и нагрева тормоза. При разработке конструкции привода были поставлены следующие задачи  [c.332]

Следует отметить, что при пуске экскаваторов ЭКГ-5 произошло заклинивание планетарных редукторов. Они были возвращены на завод и подвергнуты стендовым испытаниям. Выявилось, что конструкция эксцентрикового водила на подшипниках скольжения не обеспечивает постоянного и достаточно высокого зна-  [c.15]

ВТИ были проработаны конструкции насоса-дозатора известкового молока с эксцентриковым механизмом и шнека-дозатора сухого каустического магнезита с механическим вариатором, а также системы автоматического управления ими (рис. 4-32), Каждым дозатором управляет электронный регулятор, поддерживающий заданное соотношение между расходами обрабатываемой воды и дозируемого реагента. Шнековый дозатор сухого каустического магнезита приводится в движение кулисно-планетарным механизмом и обгонными муфтами, а плунжерный насос известкового молока — эксцентриковым механизмом. Эти устройства позволяют изменять скорость  [c.157]

На листе 123 показана конструкция редуктора с двумя потоками мощности. Привод осуществляется от двух электродвигателей, которые передают движение и момент на. центральные шестерни планетарных передач, выполненных по с еме 2К- г. Водила неподвижно насажены на концы валов шевронных шестерен. Две шевронные шестерни передают момент с двух сторон на цилиндрическое колесо, которое неподвижно насажено на тихоходный вал. Валы шевронных шестерен и колес установлены на двухрядных роликовых 1 он ческих подшипниках. Валы сателлитов опираются на двухрядные сферические роликоподшипники, размещенные в щеках водила. Смазывание зубчатых зацеплений и подшипников - циркуляционное От смазочной станции, с фильтрацией и охлаждением масла. Зубья центральных шестерен и сателлитов цементованные каленые и шлифованные. Литой корпус стальной, обеспечивающий жесткость и устойчивость на фундаменте.  [c.300]

Планетарный механизм поворота П-3 (рис. 55, а—в) имеет вертикально расположенный редуктор 5. В нем размещены три одинаковые по конструкции передачи (три ступени). В планетарном редукторе вращение передается от центральной верхней солнечной шестерни 4 к нескольким (обычно трем) шестерням-сателлитам 9 одинакового диаметра, располагаемым под углом 120 в плане. С наружной стороны сателлиты находятся в зацеплении с неподвижным зубчатым венцом 3. Сателлиты сидят на осях, закрепленных в общей крестовине-водиле < . При вращении сателлиты катятся по зубчатому венцу 3. При этом их оси вместе с водилом совершают вращательное (планетарное) движение относительно оси солнечной шестерни. На нижнем конце первого водила сидит солнечная шестерня второй планетарной передачи (ступени) и т. д. Планетарная передача позволяет обеспечить высокое передаточное число и сравнительно высокий коэффициент полезного действия передачи при малых габаритах и небольшой массе редуктора.  [c.85]

Необходимым условием для рационального использования возможностей планетарной передачи в отношении массы и габаритных размеров является обеспечение удовлетворительного распределения нагрузки между сателлитами, оцениваемого величиной коэффициента П (см. с. 113). Следует стремиться к выполнению условия П < 1,1 4- 1,3. Конструкция передачи в значительной степени определяется способом достижения указанных значений П. Одним из наиболее распространенных способов является использование плавающих основных Звеньев (см. рис. 6.5 —6.7 и рис. 14.13—14.15). Плавающим может быть центральное колесо или водило либо одновременно два основных звена. Этот конструктивный прием обеспечивает удовлетворительное распределение нагрузки между сателлитами без предъявления особых требований к точности и жесткости элементов передачи и ее загруженности, но только при числе сателлитов п = 3. В передачах с > 3 конечные результаты использования указанного приема в большой степени зависят от точности изготовления параметров, характеризующих жесткость конструкции, а также от степени загруженности передачи.  [c.251]


Крупногабаритные зубчатые колеса й > 600 мм) выполняют составными (бандажированными), т. е. зубчатый венец (обод) — из высококачественной стали, а ступицу и диск — из стали обыкновенного качества. Такую же конструкцию имеют вагонные и локомотивные колеса подвижного состава. Червячные колеса также изготовляют из двух материалов, отличающихся и свойствами и стоимостью зубчатый венец — из бронзы, а остальную часть — из чугуна или стали. Составными из разных материалов делают шкивы ременных передач, звездочки цепных передач, водила планетарных передач, гибкие колеса волновых передач, вкладыши и корпусные детали подшипников скольжения и т. д.  [c.38]

Следовательно, действительно внешнее передаточное число рассмотренного двухпоточного колесного редуктора весьма значительное(знак минус показывает, что колесо вращается в сторону обратную вращению входного вала редуктора). Наличие относительного потока (вращается водило 0) в планетарном механизме а полезно это приводит к снижению потерь мощности в электромотор-колесе и повышению к. п. д. Это является вторым достоинством рассмотренной конструкции колесного редуктора.  [c.208]

Планетарные редукторы. По конструкции планетарные редукторы сложнее редукторов, описанных ранее. Основные затруднения при разработке конструкции возникают в связи с необходимостью размещения в небольших габаритах соосно расположенных вращающихся колес и водила. Для обеспечения требуемой долговечности подшипники должны иметь соответствующие размеры, поэтому часто оказывается, что габариты подшипников определяют конструкцию других деталей редуктора, компоновку и габариты редуктора. Особое внимание следует обращать на конструирование узлов сателлитов, подбор к ним подшипников, так как малейшие перекосы сателлитов резко ухудшают работу редуктора. Кроме того, несущая способность (грузоподъемность) подшипников сателлитов иногда сильно ограничивает нагрузочную способность всего редуктора. Поэтому расчету этих подшипников уделяется серьезное внимание.  [c.334]

Конструкция редуктора представлена на рис. 10.9. От вала I через зубчатое колесо е и два других колеса (на рисунке не показаны) движение передается колесу й. водила. Зубчатое колесо / служит для передачи движения от вала 1 другим механизмам. Колесо g закреплено на валу водила и служит для передачи движения другой кинематической цепи прибора. В рассматриваемом планетарном редукторе  [c.349]

Известны две конструкции, составленные из однорядных механизмов (рис. 5.39 и 5.40) [7, 27]. Кинематическая схема обеих конструкций одинакова. Первая ступень — планетарная. Солнечное колесо — ведущее. Ведомые звенья водило, соединенное с солнечным колесом второй ступени, и венец, соединенный с колесом автомашины. Вторая ступень — рядовая с тремя промежуточными колесами. В обеих схемах солнечные колеса обеих ступеней - плавающие. Поэтому обеспечено равномерное распределение нагрузки между сателлитами и между паразитными колесами.  [c.267]

Рис. 5.16. Конструкция планетарного редуктора с плавающим солнечным колесом 1 2 — сателлит 3 — корончатое колесо Я - водило Рис. 5.16. <a href="/info/566186">Конструкция планетарного редуктора</a> с плавающим <a href="/info/29543">солнечным колесом</a> 1 2 — сателлит 3 — <a href="/info/304470">корончатое колесо</a> Я - водило
Характерные недостатки планетарных исполнительных орга-в сложная конструкция редуктора привода, особенно для ого режимных органов разрушения большой рабочий путь струмента за один оборот водила в плоских и сферических ор-нах разрушения сложность кинематических расчетов и пра-льного выбора параметров траекторий движения инструмен-в.  [c.161]

Конструкцию корпуса определяют расположенные в нем детали в планетарном редукторе - центральные колеса, водило, сателлиты в волновом - генератор, гибкое и жесткое колеса. Поэтому в поперечном сечении корпус очерчен рядом окружностей.  [c.253]

Таким образом, коррекция зацеплений может за счет применения общего сателлита упростить конструкцию планетарной передачи, ее изготовление и сборку. В такой передаче водило может отсутствовать.  [c.84]

Повышение несущей способности планетарных передач достигается конструктивными и технологическими мероприятиями как общими для всех зубчатых передач, так и специальными. К общим мероприятиям относятся применение легированных сталей с более высокими механическими показателями фланкирование зубьев и бочкообразная форма их угловая и высотная коррекция поверхностное упрочнение, обеспечивающее высокую твердость рабочих поверхностей, сохранение вязкой сердцевины и снижение концентрации напряжений на переходных участках применение зубьев с большей высотой, что увеличивает деформацию, равномерность распределения нагрузки и коэффициент перекрытия применение лучших материалов для наиболее нагруженных колес. К специальным мероприятиям относятся высокая жесткость водила и его балансировка в сборе с сателлитами конструкция сдвоенных сателлитов, допускающая шлифование зубьев центрирование центральных колес с высокой степенью точности применение надежно работающих подшипников.  [c.122]

Расчетная схема оси сателлита зависит от жесткости связи ее обеих опор. Если эти опоры жестко связаны между собой в цельном или составном водиле, то ось сателлита рассчитывается на изгиб, как балка, лежащая на двух опорах. Если же связь двух опор оси между собой недостаточно жесткая, например вторая опора концов осей является общим кольцом, не имеющим жесткой связи с водилом, то ось сателлита рассчитывается на изгиб, как консоль, а заделка ее второго конца в водиле должна быть достаточно надежной. В подавляющем большинстве конструкций планетарных передач применяются жесткие цельные или составные водила.  [c.140]


Волновая зубчатая передача является конструктивной разновидностью планетарной передачи с одним центральным колесом и внутренним зацеплением, у которой сателлит выполнен тонкостенным с гибким зубчатым ободом, деформируемым во аремя работы передачи. Особенность конструкции водила такой передачи заключается в том, что шип, на котором врашается сателлит, преобразован в центральный. кулачок или в какое-либо устройство (в дальнейшем называемое генератором й), деформирующее гибкий сателлит таким образом, что он входит в зацепление с жестким центральным колесом С в нескольких зонах зацепления. При вращении генератора к зоны деформации и зацепления перемещаются по окружности, вызывая вращение гибкого сателлита (называемого гибким колесом Р) относительно жесткого колеСа С. Так как вращение генератора сопровождается гармоническим Деформированием гибкого колеса, передача получила название волновой. При двух зонах зацепления колес С и F ( = 2) передача называется двухволновой, а при трех зонах (п = 3) — трехволновой. Наибольшее применение имеют двухволновые передачи. Для снятия вращения с гибкого колеса его выполняют в виде тонкостенного стакана, переходящего в вал, или в виде трубы, связанной с валом зубчатой муфтой (рис. 7.1).  [c.139]

В конструкЕтиях водил, приведенных ЕЕа рис. 9.3, 9.8 и 9.9, оси сателлитов имеюз по две опоры. В последнее время все чаще водила конструирую с одной консольной опорой для осей сателлитов. На рис. 9.10 приведена конструкция планетарного редуктора с коетсольными осями сателлитов.  [c.155]

В конструкциях, приведенных на рис. 14.4, 14.9 и 14.10, водила установлены в корпусе на двух опорах и оси сателлитов входят в отверстия в двух стенках водила. В последнее время все чаще водила конструируют с одной стенкой, в которой оси сателлитов располагают консольно. На рис. 14.11 приведена конструкция планетарного редуктора с консольными осями сателлитов. На рис. 14.11, а входной вал соединен с валом электродвигателя соединительной муфтой, а на рис. 14.11, б привод осуществляют непосредственно от вала фланцевого электродвигателя. Водила выполняют чаще всего трехрожковыми (рис. 14.12).  [c.227]

Посадки па конусах не обеспечивают точной продольной фиксации. Взаимное положение деталей сильно зависит от точности изготовления конусов на валу и детали, от усилия затяжки и меняется при переборках в результате смятия и износа сопрягающихся поверхностей. По этой причине соединения на конусах нельзя применять в случаях, когда требуется строго выдержать осевое положение соединяехшх деталей. В качестве примера приведем узел водила планетарной передачи, диск которого прикреплен к корпусу на осях сателлитов. В конструкции д выдержать точное расстояние I по всем точкам крепления практически невозможно. Из-за неизбежных погрешностей диаметральных размеров конусов и осевых расстояний между ними продольные перемещения диска при затяжке будут различными для различных пальцев. Результатом явятся перекос II волнистая деформация диска, сопровождающиеся перенапряжением последнего. Затруднено также соблюдение межцентровых расстояний между конусами. Обеспечить совпадение центров отверстий в соединяемых деталях совместной обработкой (как это часто делается при цилиндрических отверстиях) невозможно. Практически соединение является несо-бираемым.  [c.602]

Однако и в серийном производсгве выгодно применять составные конструкции как средство упрощения поковок. Примером может служить вал планетарного редуктора е с водило.м сателлитных зубчатых колес. Ковка водила заодно с валом вызывает большие трудности. В сборной  [c.608]

Зубчато-рычажный преобразователь движения. В исиолни-тельные механические устройства для изменения их передаточной функции могут быть включены преобразователи движения различных типов и различной конструкции. Предлагаемое в настоящей работе исполнительные устройство (см. рис. 1) снабжено зубчаторычажным преобразователем движения, представляющим собой соединение двух механизмов планетарного из звеньев 1, 2, 5 я 6 и шарнирного — из звеньев 1,2,3, 4. Два звена у этих механизмов общие звено 1 одновременно водило планетарного и кривошип шарнирного, а звено 2 — сателлит планетарного и шатун ВС шарнирного четырехзвенного механизма AB D.  [c.218]

В отличие от первой машины во второй было использовано конструктивное решение механизмов создания рабочего усилия и передачи крутящего момента, объединенных в виде одной силовой головки. Успешное применение в теченпе трех лет и высокая надежность сварных деталей в эксплуатации позволили заложить в конструкции трактора МТЗ-50 пять ответственных деталей с применением сварки трением коронная шестерня планетарного редуктора вала отбора мощности водило планетарного редуктора вала отбора мощности наконечник шарового пальца рулевой трапеции вилка навески гидромеханизма валик рычага механизма включения планетарного редуктора. Специфические условия (различие размеров и форм свариваемых деталей закрепление их за различными цехами поточно-массовый характер производства) исключили возможность использования одной машины для сварки различных деталей. Для сварки каждой из названных деталей необходимо было применять свою специальную машину.  [c.196]

Конструкция планетарной муфты показана на рис. 120, б. Водило 12 укреплено на валу ротора основного двигателя. На двух осях Ц водила закреплены сателлиты 16, находящиеся в зацеплении с центральным колесом 17 и зубчатым венцом 15, неподвижно закрепленным на корпусе 13. Корпус соединен винтами с тормозным шкивом 18. Вал центрального колеса 17 соединен с выходным валом цилиндрического редуктора 8 (см. рис. 120, а), быстроходный вал которого соединен с валом вспомогательного двигателя. При включении вспомогательного двигателя вращение передается через центральное колесо и сателлиты на водило, которое через вал основного двигателя и редуктор приводит барабан во вращение. При этом тормоз 7 замкнут и зубчатый венец 15 планетарной муфты неподвижен. При работе только основного двигателя 5 вращение передается водилу 12, а от него сателлитам. Центральное колесо 17остается неподвижным, так как тормоз Р вспомогательного двигателя замкнут. Сателлиты, катясь по центральному колесу, приводят во вращение зубчатый венец 15. Тормоз 7 планетарной муфты разомкнут и обод ее вращается свободно. Описанная система обеспечивает получение посадочных скоростей в 10... 12 раз меньше основной скорости. Использование планетарных передач позволяет создать механизмы, отличающиеся особой компактностью.  [c.314]

Волновая механическая передача в некоторой мере является разновидностью планетарной зубчатой передачи II отличается от нее тем, что одно из колес выполнено с тонкостенным зубчатым венцом его называют гибким колесом. Рассмотрим работу волновой передачи на примере простейшего одноступенчатого редуктора, конструкция которого представлена на рис. 5.6, а, а кинематическая схема — на рис. 5.6, б. Волновая передача состоит из трех основных звеньев жесткого колеса 4 ф) с внутренними зубьям н (в рассматриваемой конструкции жесткое колесо выполнено как единое целое с корпусом из высокопрочного чугуна) гибкого колеса 5 (д), представляющего собой упругий тонкостенный стакан с внешними зубьями. Гибкое колесо 5 соединено с ведомым валом 6. Третьим звеном является генератор волн к, включающий водило 2, на концах которого вмонтированы два шарикоподшипника 3. Водило 2 вьшолнено заодно с ведущим валом 1, имеющим общую ось с ведомым валом б.  [c.166]


Двигатель соединен с валом I — входным звеном многоскоростной перадачи К. В передаче К кинематическая цепь разветвляется (выходные звенья II и III, вращающиеся с одинаковой скоростью). В каждой ветви установлен м. поворота KI и К2. Они имеют одинаковую конструкцию и расположены симметрично относительно оси машины. Каждый м. поворота обычно обеспечивает две-три скорости вращения вала приводной звездочки /Кили V. Так как эти скорости получаются независимо в левой и правой ветвях, то ускоряется или замедляется движение одной гусеницы относительно другой или останавливается одна из гусениц при неизменной скорости другой. Каждый механизм содержит однорядную планетарную передачу, входным звеном которой является центральное колесо h, выходным — водило h, а управляемым — центральное колесо а. Между колесом а и водилом h установлена фрикционная муфта 3, блокирующая передачу при транспортном режиме движения. Остановка колеса а тормозом 2 ведет к включению в кинематическую цепь планетарной передачи с передаточным отношением Щ = I + где z и  [c.293]

Пример конструкции волновой передачи представлен на рис. 12.1. Как и планетарная передача, она состоит из трех основных звеньев- / — генератор волн, который представляет собой водило с двумя роликами 2 — гибкое колесо — упругий тонкостенный стакан, основание которого соединено с ведомым валом, а на утолщенном венце близ открытого торца нарезаны зубья 3 — неподвижное жесткое колесо с внутренними зубьями. Модули зацепления колес 2 и 3 одипаковы, но число зубьев гибкого колеса < г . Разность — 02 = характеризует число волн деформации гибкого колеса. Оптимальное значение = 2. Делительные диаметры также неодинаковы В свободном  [c.312]

Конструкция мотор-редуктора, показанная на рис. 3.22, представляет собой конструктивно объединенные планетарно-зубчатый редуктор, выполненный по схеме 2К-Н, и электродвигатель. На свободный конец вала 1 насажена зубчатая полумуфта /5, с помощью которой через двойную зубчатую муфту 14 крутящий момент передается на солнечную шестерню 8. Шестерня 8 находится в зацеплении с сателлитами//, установленными в водиле 7 на двухопорные оси 9 с помощью самоустанавливающихся подшипников 10. При работе передачи шестерня 8, плавая на зубчатой муфте 14, допускающей смещение и перекос оси шестерни 8 относительно оси вала электродвигателя, устанавливается в положение, обеспечивающее достаточно равномерное распределение нагрузки среди сателлитов //, которые в свою Очередь самоустанавливаются на опорах 10 и обеспечивают равномерное распределение нагрузки подлине зубьев. Зубчатый венец 12 запрессован в корпус 6 и закреплен штифтами. Перемещение шестерни 8 и муфты 14 в осевом направлении ограничено упором 5 и стопорными кольцами 2. Водило 7, выполненное заодно с выходным валом, вращается на двух шарикоподшипниках. Для заливания масла предусмотрено отверстие в верхней части корпуса, закрытое пробкой с отдушиной /5, для слива — отверстие, закрытое пробкой 3. В качестве уплотнений для неподвижных соединений применимы прокладки, для подвижных соединений — резиновая манжета. Уровень масла контролируется по маслдуказа-телю 4. Смазывание деталей редуктора производится из общей масляной ванны зацепления — окунанием, подшипников — разбрыз-  [c.38]

При необходимости получить передаточные отношения, превышающие по величине передаточные отношения, рекомендованные для планетарных передач (см. рис. 11.7), применяются многоступенчатые редукторы с последовательным расположением передач 2к —/г. Так, на.чример, нкзкооборотные ступени многоступенчатых редукторов вертолетных ГТД включают в свою конструкцию последовательно соединенные планетарные передачи (см. рис. 11,7, е). Приэтом водило первой планетарной передачи соединено с центральным колесом внешнего зацепления второй планетарной передачи. Таковы, например, кинематические схемы редукторов, установленных на вертолетах Хью Кобра ,  [c.500]

В зависимости от места установки дифференциалы бывают межосевые (если они распределяют мощность между ведущими мостами) и межколесные (если деление мощности производится между ведущими колесами). По конструкции основных элементов дифференциалы подразделяют на шестеренчатые, кулачковые и червячные. На троллейбусах применяются межколесные шестеренчатые дифференциалы, которые представляют собой трехзвенные планетарные механизмы с двумя степенями свободы. Тремя звеньями дифференциала являются водило (корпус дифференциала), сателлиты, полуосевые шестерни.  [c.247]

На рис. 6.21 показана конструкция цилиндрической планетарной муфты завода ПТО им. С. М. Кирова. Водило 4 насажено на вал 5 главного двигателя. Обойма 1 (см. рис. 6.21) опирается на водило через подшипники 2, 3. Подшипники 8 я 10 центрального вала-шестерни 9 закреплены в водиле 4. На обращенных один к другому торцах гайки 6 и вкладыша 7 имеются шлпцы, ксггорыми гайка 6 фиксируется от самоотвннчивания. Вал-шестерня 9 соединена с валом редуктора 3 (см. рис. 6.20) зубчатой муфтой.  [c.155]

Конструирование опор сателлитов. Сателлиты планетарных передач монтируют по двум конструктивным схемам на подшипниках, насаженных на неподвижно закрепленных в щеках водил осях (рис. 8.8, а), на осях, вращающихся вместе с сателлитами (рис. 8.8, б). Размещение подшипников непосредственно в ободе сателлита (рис. 8.8, а) обеспечивает компактность конструкций в осевом направлении, но при этом снижается долговечность подшипников качения всех типов (в связи с вращением наружного кольца), за исключением сферических подшипни-  [c.300]

В сравнительно тихоходных приводах возможно упрощение конструкции планетарной передачи за счет применения плавающего водила. Например, на рис. 9.4 представлен вариант, где в качестве соединительпой муфты испрльзуется зубчатая. В передаче, показанной на рис. 9.4, использован конструктивный прием, позволяющий увеличить длину соединительной муфты плавающего водила.  [c.208]


Смотреть страницы где упоминается термин Планетарные Конструкции водил : [c.413]    [c.280]    [c.275]    [c.91]    [c.545]    [c.550]    [c.214]    [c.404]    [c.414]   
Курсовое проектирование деталей машин Издание 2 (1988) -- [ c.89 , c.91 ]



ПОИСК



Водило — Конструкция

К п планетарных

Планетарные Конструкции



© 2025 Mash-xxl.info Реклама на сайте