Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термическая обработка, дефекты металлов

Дефекты, обнаруженные до термической обработки, разделывают под сварку механическими способами, главным образом абразивным инструментом. Заварку выполняют преимущественно дуговой сваркой обычными стальными электродами с покрытием фтористо-кальциевого типа (например, УОНИ-13/45 п УОНИ-13/55 или У-340/105). В этом случае после термической обработки наплавленный металл по химическому составу будет отличаться от основного металла, по. механическим свойствам — близок к нему.  [c.300]


Повышение сопротивления движению дислокаций приводит к увеличению прочности металла. Этого достигают введением в металлы специальных примесей, термической обработкой, наклепом и т. п. В настоящее время сделаны первые шаги по созданию металлов, не имеющих дефектов кристаллической решетки. Получены бездислокационные нитевидные металлические кристаллы ( усш), обладающие очень высокой прочностью, приближающейся к теоретической.  [c.107]

Модуль упругости Е практически не зависит от химического состава и термической обработки стали. Приведенный здесь предел прочности установлен экспериментальным путем. Он во много раз (в 100 раз и более) меньше теоретических значений, подсчитанных исходя из сил межатомных связей. Это объясняется отклонением строения реальных кристаллов металла от идеального строения кристаллических решеток, т. е. несовершенством (дефектами) кристаллических решеток реальных металлов. Наибольшее влияние на снижение прочности металла оказывают  [c.37]

Упрочнение металла при наклепе объясняется увеличением числа дефектов кристаллического строения (дислокаций, вакансий, междоузельных атомов), а также торможением дислокаций в связи с измельчением блоков и зерен, искажением кристаллической решетки В результате наклепа образуется текстура, обладающая значительной анизотропией свойств В некоторых случаях наклеп является единственным способом упрочнения металлов и сплавов, которые не упрочняются термической обработкой, например, чистые металлы, однофазные сплавы твердых растворов.  [c.26]

Целью термической обработки поковок является устранение дефектов, возникших при нагреве и обработке давлением (перегрев, остаточные напряжения), улучшение обрабатываемости резанием, подготовка структуры металла к окончательной термической обработке (после обработки резанием).  [c.143]

Общая схема литья. Процесс получения отливки складывается из следующих основных операций изготовления литейной формы плавки металла заливки металла в форму затвердевания металла и охлаждения отливки выбивки отливки из формы обрубки и очистки отливки термической обработки отливки контроля качества отливки и сдачи ее на механическую обработку. Каждая из перечисленных сложных и многопереходных по характеру операций должна осуществляться таким образом, чтобы был обеспечен высокий уровень качества отливки по всем показателям, включая точность размеров и чистоту поверхности, благоприятную структуру металла, а также отсутствие наружных и внутренних литейных и металлургических дефектов.  [c.45]


Собранная форма, состоящая из скрепленных опок, с помощью специального ковша заливается через литниковую систему и остается на месте заливки до завершения кристаллизации и охлаждения тела отливки. Затем опоки раскрепляются и на специальной установке производится выбивка отливки из формы. Затем производятся обрубка и очистка, во время которых от отливки отделяется литниковая система с прибылями, удаляются остатки формовочной и стержневой смесей и осуществляется очистки поверхности отливки от различных дефектов. Проводимая после этого термическая обработка имеет целью устранить грубозернистую, дендритную структуру металла, литейные напряжения и подготовить металл отливки к механической обработке.  [c.47]

В большинстве случаев спеченные порошковые металлы даже после доводки их дополнительной механической и термической обработкой до компактного, почти беспористого состояния имеют несколько большее количество дефектов кристаллической решетки, межкристаллических включений, высокое содержание окислов и газов и более мелкозернистую структуру, большее количество пустых мест в решетке, чем соответствующие литые, обработанные давлением и отожженные металлы. В связи с этим компактные металлокерамические металлы обычно имеют при комнатной температуре несколько более высокие показатели прочности вер, °j, °пц осж) и твердости, чем соответ-  [c.571]

В плане отражены проблемные вопросы совершенствования производства стали, цветных металлов и полупроводниковых материалов, порошковой металлургии, защиты металлов и сплавов от коррозии Применение пульсирующего дутья при производстве стали , Проблемы совмещения горячей деформации и термической обработки стали , Процессы жидкостной экстракции в цветной металлургии , Безокислительный нагрев редких металлов и сплавов в вакууме , Структурные дефекты в эпитаксиальных слоях полупроводников , Феноменология спекания , Коррозионная усталость металлов , Защита от коррозии силикатами .  [c.3]

При термической и химико-термической обработке металлов и сплавов происходят сложные физико-химические процессы и появляется возможность возникновения как явных дефектов (закалочные трещины, окисление), так и отклонений от требуемых параметров (структуры, твердости). Кроме того, в кристаллической решетке при кристаллизации и структурных изменениях возни-  [c.468]

В. Н. Гриднев и другие исследовали влияние степени деформации на прирост объема при холодном волочении проволоки из стали У8 после различных видов термической обработки, чистого железа, электротехнической меди и алюминия [12]. При волочении стали и железа происходит заметное нарастание удельного объема приблизительно пропорционально истинной деформации. Объемный эффект при холодной деформации (90% и выше) железа и стали составляет 0,5—1,0%, что нельзя объяснить избыточным объемом, вносимым дислокациями и вакансиями в наклепанный металл. Авторы связывают его с возникновением в наклепанном материале большого числа дефектов типа пор и микротрещин.  [c.28]

За исключением упоминавшихся выше нитевидных металлических кристаллов со структурой высокого совершенства, еще не удалось попасть в область левой ветви кривой (рис. 4.58). Применяемые в технике методы упрочнения поликристаллических металлов основаны на искусственном увеличении удельного числа дефектов, достигаемом различными методами. К числу наиболее распространенных и пока наиболее эффективных средств повышения прочности металлов относятся легирование металлов при помощи тех или иных добавок, т. е. получение металлических сплавов, и термическая обработка их. Оба этих направления тесно связаны с изучением свойств сплавов при помощи диаграмм состояния.  [c.296]

Наплавка изношенных поверхностей шпинделей, штоков, плунжеров и других деталей производится в случае технической необходимости и экономической целесообразности выполнения этих операций с условием обеспечения всех необходимых механических характеристик наплавленного металла. Восстановление мест с трещинами, коррозией и другими подобными дефектами следует выполнять после вырубки дефекта до основного здорового металла. После механической и термической обработки восстановленной детали ее размеры, твердость и шероховатость поверхности должны соответствовать требованиям, предъявляемым к новой детали.  [c.290]


Основные дефекты металлов и их классификация. Дефекты в металле могут быть различного происхождения. Одни из них зарождаются в процессе начальной стадии формирования детали (литье, поковки, штамповки) другие — при последующих операциях технологического процесса (сварка, термическая обработка, механическая обработка), причем некоторые дефекты по ходу технологического процесса уничтожаются (несоответствие структуры и др.), и наоборот, при дальнейшей обработке к первоначальным дефектам металла могут прибавляться новые (например, трещины при термической обработке).  [c.252]

Установлено, что качество электрошлаковой сварки можно проверять при помощи импульсных ультразвуковых дефектоскопов, так как микроструктура наплавленного металла таких швов в большинстве случаев получается однородной, мелкозернистой, в особенности после термической обработки. Для контроля качества толстостенных швов в ЦНИИТМАШе разработан специальный импульсный ультразвуковой дефектоскоп. Дефектоскоп имеет электронный глубиномер для точного определения глубины залегания дефектов и ряд других усовершенствований.  [c.265]

Назначение. Изучение физических свойств металлов и сплавов. Выполнение исследовательских работ по совершенствованию металлургических процессов исследование при помощи меченых атомов процессов диффузии при плавке металлов и их химико-термической обработке, износа трущихся поверхностей, стойкости инструментов, структурный анализ сплавов с помощью рентгеновских лучей при отсутствии специальной рентгеновской лаборатории организация и выполнение контроля качества сварных швов, диффузионных процессов, различных технологических процессов и определение внутренних дефектов и  [c.176]

Режим термической обработки определяет длительную прочность практически всех марок легированных и высоколегированных трубных сталей, а также существенно влияет на величину длительной пластичности труб (удлинение при длительном разрушении), имеющей весьма существенное значение для обеспечения надежной работы трубных элементов котло-агрегата. Высокая длительная пластичность обеспечивает надежную работу трубных элементов при наличии отклонений от правильной геометрической формы (овальность, разностен-ность) или некоторых производственных дефектов (риски на поверхности, мелкие загрязнения и т. п.). Наоборот, низкая длительная пластичность приводит к преждевременному разрушению металла в наиболее напряженных участках, так как при этом не используется ресурс его прочности.  [c.190]

При применении в связи с эксплуатационной необходимостью металлов с пониженной свариваемостью проектировать конструкции следует с учетом этого свойства. Для сведения к минимуму неблагоприятных изменений свойств металла сварного соединения и исключения в нем дефектов необходимо применять виды и режимы сварки, оказывающие минимальное термическое и другие воздействия на металл, и проводить технологические мероприятия (подогрев, искусственное охлаждение и др.), снижающие влияние на него сварочных воздействий. Термическая обработка после сварки (нормализация, закалка с отпуском и др.) может в значительной степени устранять неоднородность свойств в сварных заготовках. Прочность зоны сварного соединения может быть повышена механической обработкой после сварки прокаткой, проковкой и др.  [c.288]

Кинетика образования полигонизованной структуры и ее устойчивость зависят от ряда факторов и прежде всего от исходной дислокационной структуры, возникающей в результате пластической деформации [152] или после термической обработки и других процессов. Скольжение по разным системам во время сильной пластической деформации приводит к неравномерному распределению дислокаций, что затрудняет перераспределение их при нагреве и образование малоугловых границ. Существенное влияние на формирование полигонизованной структуры оказывает величина энергии дефектов упаковки у. Предполагалось, что полигонизация невозможна в металлах с низким значением энергии дефектов упаковки, например в чистой меди. Однако показано, что полигонизация происходит даже в меди зонной плавки и в электролитической меди (99,999%).  [c.190]

Увеличить количество структурных дефектов можно за счет легирования металла, т. е. растворения в его кристаллической решетке других элементов, а также путем термической обработки. В настоящее время широкое распространение получил новый способ обработки металлов — термомеханическая обработка, при которой значительно возрастает количество структурных дефектов и обеспечивается упрочнение металла в результате прекраш ения движения дислокаций. Из сказанного следует, что плотность расположения атомов неодинакова по различным плоскостям и направлениям кристаллической решетки. Свойства каждого кристалла (химические, физические, механические) зависят от направления кристаллической решетки.  [c.10]

Термаллой — см. Термомагнитные сплавы Терменол — см. Магнитномягкий сплав высоко-проницаемый Термическая анизотропия 1—88 Термическая обработка, дефекты металлов 1 — 261, 262  [c.522]

Хастелой, коррозия 2—28, 34 Хастофеи 3—31 Хемигум 1—346 Хея диаграмма 3—410 Химико-лабораторное стекло 3—261 Химико-термическая обработка, дефекты металлов 1—261, 262 Химическая коррозия титановых сплавов 2—35 Химически стойкие лакокрасочные покрытия  [c.525]

Некачественная термическая и химико-термическая обработка поверхности зубьев иногда приводит к отслаивамию поверхностных частиц металла. Отслаивание возможно из-за дефектов поверхностного слоя азотированных или цементованных с последующей поверхностной закалкой зубьев или из-за недостаточной прочности сердцевины, вследствие чего при больших нагрузках происходит продавливаиие хрупкой кромки. Наличие перегрузок способствует отслаиванию.  [c.287]


Исследование микроструктуры. Исследование микроструктуры дает возможность более глубоко изучить структуру основного металла и характерных зон сварного соединения, чем исследование макроструктуры. По микроструктуре обследуемого объекта можно установить 1) характер изменения структуры металлов и сплавов после деформации, различных видов термической обработки и других технологических операций, а также коррозионных или эрозионных воздействий на материал рабочей среды в аппарате 2) установить форму и размер структурных составляющих, микроскопических трещин и т.п. повреждений металла 3) структуру наплавленного металла, структуру, образовавшуюся в зоне термического влияния 4) примерное содержание углерода в основном и наплавленном металле и в различных участках шва 5) приблизительный режим сварки и скорость ох.1тажде-ния металла шва и зоны термического влияния 6) количество слоев сварного шва и дефекты шва и структуры.  [c.308]

Дефекты жаропрочных отливок, такие, как горячие трещины, шлаковые включения, газовые раковины, неспаи, усадочные раковины, образуются при металлургических процессах (при плавке и заливке металла, кристаллизации отливок, термической обработке и других мет шлургических операциях).  [c.368]

Если выборка, необходимая для полного устранения дефекта, выводит деталь за минусовой технологический допуск, необходима ремонтная заварка. Она производится с предварительным подогревом теми же электродами, которыми сваривается литье (УОНИ 13/45 для стали 25Л и ЦЛ-20М для сталей 12Х1МФЛ и 15Х1М1ФЛ). Если объем наплавленного металла превысил 100 см , в дальнейшем обязательна термическая обработка для снятия остаточных напряжений и для отпуска под-калившегося металла в зоне термического влияния сварки.  [c.164]

Отливки из хромистой нержавеюи1ей стали склонны к образованию подповерхностных тре цип в процессе термической обработки. Эти трещины. чалегают на глубине около 5 мм п не выходят на поверхность. Поверхность отливок получается неровной вследствие образования на ней окислов хрома. Отливки подвергаются механической обработке по всей поверхности. Обнаруженные трещины ремонтируют путем выборки металла на всю глубину дефекта и заварки.  [c.167]

Как показали исследования, остаточные напряжения в сварных соединениях паропроводов из перлитных сталей непосредственно после сварки могут достигать предела текучести металла шва. Однако они редко приводят к повреждениям сварных стыков, если им не сопутствуют дефекты сварки или грубые нарушения установленных режимов сварки. Остаточные напряжения в стыках перлитных трубопроводов снижаются при высоком отпуске, проводимом после сварки. В процессе эксплуатации при высоких температурах они относительно быстро релаксируют. Так, сразу после сварки электродами ЦЛ-14 в сварных стыках паропровода из стали 12МХ одного из котлов ТП-230, на котором в порядке эксперимента не производился отпуск сварных соединений, среднеквадратичные напряжения на внутренней поверхности стыка достигали 16,3 /сГ/жж . После 5 500 ч эксплуатации сварных стыков, не проходивших термической обработки, величина среднеквадратичных напряжений снизилась до 4,4 кГ1мм .  [c.201]

Гораздо лучше использовать листы наибольшего размера (массой до 50 т), что позволяет избежать нахлестовых или крестообразных швов. Все листы необходимо контролировать неразрушающими методами, чтобы выявить продольные дефекты и избежать проведения испытаний образцов, вырезаемых из толщи листа. Сварка является наиболее ответственной операцией и выполняется или ручным дуговым способом, или с помощью автоматов с применением соответствующих электродов и основных без-водородистых флюсов. Не рекомендуется делать сразу корневые швы. Например, когда кромки сферической крышки сваривают вручную, может наблюдаться коробление и смещение кромок, в результате чего образуются выступы. В этом случае сварщик вынужден заполнять появившиеся полости серией швов как с одной, так и с другой стороны листа. Поэтому отдельные листы собирают и прихватывают вместе сваркой с использованием специальных прокладок процесс начинают с этих подготовленных участков с наружной стороны, а затем переходят на внутреннюю. Избыточный металл сварного шва позднее удаляют механическим стюсобом. Сложные, на всю толщину корпуса, сварные шйы делают для приварки патрубков, которые изготавливают из отдельных поковок. В настоящее время используют заранее подготовленные секции с вваренными патрубками. В этом случае сварные швы легче подвергнуть термической обработке для снятия внутренних напряжений. Все сварные швы накладывают параллельно кромке, что позволяет обеспечивать достаточное пространство для передвижения электрода. Неразрушающему контролю подвергают все сварные швы (100%) до и посл снятия остаточных напряжений. Вся внутренняя поверхность корпуса реактора PWR и нижние части реактора BWR, которые подвергаются воздействию воды, имеют покрытие из аустенитной стали. Внутренняя поверхность патрубков также имеет аустенитное покрытие, которое выходит на наружную поверхность патрубков, чтобы обеспечить соединение их с трубами из аустенитных сталей.  [c.165]

Вместе с тем некоторые котлы тех же типов работают с кратковременными кампаниями и иногда останавливаются вследствие шлакования, загрязнения (как наружного, так и внутреннего), коррозии и золового истирания поверхностей, ошибок эксплуатационного персонала или по причинам, связанным с дефектами изготовления котлов поступление в цехи котельных заводов дефектных труб, ошибочное применение металла, не предусмотренного проектом, неудовлетворительное качество сварки, применение непродуманного режима термической обработки, отсутствие должного контроля за качеством изготовления и т. д. Понятно, что длительность мпании связана и с качеством сжигаемого топлива.  [c.33]

Очень важное значение имеют испытания на удар при повышенных и рабочих температурах. Ряд сталей обладает низкой ударной вязкостью при 20° С, что связано не только со смещением порога хладноломкости металла в сторону положительных температур, но иногда и с дефектами термической обработки. В этих случаях испытания производят лри температуре 50° С, и если при этом величина ударной вязкости соответствует требования ТУ, деталь пропускают в производство естественно, что это допускается только для деталей, работающих при по-выщенных температурах. Ударную вязкость применяемого металла необходимо контролировать на всем диапазоне температур, от комнатной до максимальной рабочей, чтобы установить нечувствительность стали данной марки к тепловой хрупкости. Для определения ударной вязкости при повышенных и рабочих температурах важно совпадение температуры образца в момент его разрушения с заданной температурой испытания. Для испытания при высоких температурах используют стандартные образцы типа Менаже.  [c.437]

Повреждения трубных элементов поверхностей нагрева являются, как правило, следствием дефектов производства труб металлургического происхождения — плены, закаты, трещины и др. дефектов термической обработки — не-рекомендованной структуры перлитных сталей, мелкого зерна аустенитных сталей и др. коррозии и окалинообра-зования на наружной и внутренней поверхностях труб эрозии труб от абразивного износа, пара из обдувочных аппаратов и мазутных форсунок, ударного действия дроби (наклепа) и воздействия виброочистки тепловой усталости металла перегрева труб выше расчетной температуры ползучести металла труб нарушения условий эксплуатации, предусмотренных проектом (превышения давления, температуры, нарушения режима питания котла водой, циркуля-  [c.95]


Температура нагрева для горячей деформации зависит в первую очередь от природы деформируемого материала — сталь, медные сплавы, алюминиевые сплавы и другие его химического состава — углеродистая, низколегированная, аустенитная сталь, а также от толщины заготовки. Однако в любых случаях температура нагрева должна быть значительно ниже температуры солидуса сплава. Если металл перегрет, то могут наступить пережог , выражающийся в интенсивном окислении границ зерен, и, как следствие, охрупчивание металла. Пережог — дефект нагрева, который не может быть исправлен. Длительное пребывание металла при температуре несколько меньшей, чем температура пережога, может привести к значительному росту зерна и снижению пластических свойств заготовки — явление перегрева. В значителыюм большинстве случаев перегрев может быть исправлен дополнительной термической обработкой.  [c.399]

Таким образом, исследования, проведенные различными методами, особенно прямым методом авторадиографии, показывают, что наследственность или своеобразная память по отношению к дефектам исходной структуры существует в различных металлах и сплавах. Она зависит от характера исходной дефектности, особенно дислокационной структуры, состава и условий термической обработки деформированного сплава. Образование совершенной структуры (там, где она была дефектной) и формирование дефектной структуры (там, где ее не было), в частности образование границ новых рекристаллизованных зерен,— процесс, который требует термической активации и, следовательно, времени. Процесс этот идет неравномерно. Авторадиографический анализ показывает, что залечивание одних участков границы идет быстрее, чем других, что, возможно, связано с неравномерным распределением примесей и неоднородным строением границ. В некоторых случаях дефекты структуры, связанные с границами зерен или другими дислокационными образованиями, весьма устойчивы и не залечиваются при многократной рекристаллизации или фазовой перекристаллизации. Особенно стабилизируются дефекты примесями, взаимодействующими с ними. При правильно выбранных условиях рекристаллизации можно создать более благоприятное распределение охрупчивающих примесей и уменьшить их концентрацию на образованных после рекристаллизации границах зерна.  [c.214]

В книге рассмотрены современные представления о фазовых и структурных превращениях при нагреве стали и чугуна. Проанализировано влияние исходного состояния и условий нагрева на кинетику и морфологию образования аустенита, его строение и свойства. Рассмотрен механизм а -> -превращения с общих пози-Щ1Й о возникновении метастабильных состояний, развития релаксащюнных явлений и вторичных процессов при фазовых переходах. Особое внимание уделено роли дефектов кристаллического строения в образовании аустенита и их влиянию на формирующуюся структуру, размер зерна и свойства металла после термической обработки.  [c.2]

Оценка склонности сварных соединений к развитию трещин при термической обработке производится с помощью жестких проб и испытаний образцов, подвергнутых нагреву по имитированному термическому циклу сварки (п. 15). Пробы и испытания, а также опыт изготовления сварных конструкций показали, что образование трещин при термической обработке наиболее вероятно при высокой жесткости соединения и наличии концентраторов напряжений в районе усиления швов, а также несплавле-ний и других дефектов на границе сплавления. При исследовании с помощью жестких проб и релаксационных испытаний установлено, что вероятность появления трещин при отпуске или стабилизации заметно снижается, если перед нагревом проведена зачистка наружной поверхности швов до плавного сопряжения с основным металлом, или если испытываются гладкие образцы. Поэтому фактор концентрации является одним из основных, способствующих появлению рассматриваемого типа трещин. С позиций межзеренного разрушения такое влияние концентрации обусловлено тем, что за счет объемности напряженного состояния подавляются сдвиговые деформации и развиваются процессы, способствующие межзеренному разрушению.  [c.99]

Материалами предыдущей главы, казалось бы можно и завершить монографию по сварке аустенитных жаропрочных сталей. На самом деле, уже рассмотрены многие важные вопросы металлургии, металловедения и технологии сварки этих сталей. Уделено особое внимание причинам образования различного рода дефектов в аустенитных швах. Описаны многие средства борьбы с этими дефектами. Подчеркивается, что главнейшей задачей, возникаюш,ей при сварке аустенитных сталей и сплавов, является разработка эффективных мер борьбы с горячими треш,инами в металле шва, наплавленном металле и в околошовной зоне. Для аустенитных сталей и сплавов с особо высоким содержанием легирующих элементов (до 50—60% Сг, до 3—6% А1 и до 3—6% Ti, до 20—25% Мо, до 20—25% W, до 3% Вит. д.), а также для дисперсионно-твер-деющих сверхпрочных аустенитных сталей и сплавов большую важность приобретает проблема борьбы не только с горячими, но и холодными трещинами в швах, наплавленном металле, околошовной зоне и основном металле. Не столь общей, но очень важной для многих жаропрочных сталей и сплавов является проблема хрупких разрушений сварных соединений в процессе эксплуатации, а иногда еще во время термической обработки.  [c.361]

Техника измерений и ее особенности. Дефекты структуры твердого тела оказывают влияние на А, и Яо. Они являются причиной уменьшения Ховщ. Поэтому твердые растворы обычно характеризуются более низкой теплопроводностью, чем чистые металлы (рис. 1.368). Это имеет особое значение для технологии термической обработки.  [c.141]


Смотреть страницы где упоминается термин Термическая обработка, дефекты металлов : [c.31]    [c.81]    [c.55]    [c.81]    [c.342]    [c.260]    [c.482]    [c.92]    [c.51]    [c.628]   
Конструкционные материалы Энциклопедия (1965) -- [ c.26 , c.261 , c.261 , c.262 ]



ПОИСК



Дефекты термической обработки

Металлы дефекты

Металлы термическая обработка

Термическая Дефекты

Термическая обработка, дефекты металлов алюминиевых сплавов

Термическая обработка, дефекты металлов бериллия

Термическая обработка, дефекты металлов магниевых сплавов

Термическая обработка, дефекты металлов металлов

Термическая обработка, дефекты металлов металлов

Термическая обработка, дефекты металлов молибдена —

Термическая обработка, дефекты металлов титановых сплавов

Термическая обработка, дефекты металлов хрома —

Термическая обработка, дефекты металлов чугуна

Химико-термическая обработка, дефекты металлов



© 2025 Mash-xxl.info Реклама на сайте