Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Молибден Получение и обработка

Для пайки молибдена применяют припои системы золото—никель, обеспечивающие получение надежных паяных соединений в массовом производстве из-за дефицитности золотые припои применяют редко. Для пайки, например, меди с молибденом используют припой пер 72 или чистое серебро. Для улучшения растекаемости серебряных припоев молибден покрывают никелем и медью. Толщина никелевого слоя не должна быть больше 3 мкм, медного — 3—4 мкм при большей толщине возможно отслаивание покрытия. Дли улучшения сцепления никелевого покрытия с молибденом производят термическую обработку в вакууме при 950—1000 °С. Кроме того, детали из молибдена перед никелированием отжигают в вакууме при 950—1000 С с выдержкой 10—15 мин.  [c.257]


Впервые метод изготовления металлов и сплавов из порошков путем их прессования и спекания был разработан русскими инженерами П. Г. Соболевским, В. В. Любарским и в Англии Волластоном. В настоящее время этот метод находит все большее применение. Он до сих пор является единственным методом получения металлов, имеющих высокие температуры плавления, например таких, как вольфрам, титан, молибден, ниобий и др., а также особо чистых металлов. При помощи порошковой металлургии изготовляют контактные и магнитные сплавы для электротехнической и радиотехнической промышленности, антифрикционные, фрикционные и твердые сплавы для машиностроительной промыш ленности, различные детали машин. Методом порошковой металлургии можно получить как заготовки, так и изделия, имеющие точные размеры и сложную форму. Применение порошковых материалов позволяет исключить из технологических процессов изготовления деталей литье и обработку резанием. Порошковая металлургия является прогрессивным методом изготовления деталей.  [c.242]

В США [84] таким методом получают слитки диаметром до 300 MiM из которых обработкой давлением изготовляют лопатки газовых турбин, а также деформированные полуфабрикаты в виде прутков, проволоки, труб и листов. Литой молибден, полученный методом дуговой плавки, имеет крупнозернистую структуру. Поэтому требуется применение высокой степени деформации, чтобы получить деформированный молибден с мелкозернистой структурой. Прочность молибдена и его сплавов зависит от величины зерна, степени деформации и характера термической обработки.  [c.292]

Рис. 3. Микроструктура диффузионного слоя на молибдене, полученного из расплава Al-)-Si+Mo-г г+W+Mg при температуре 850° и времени обработки 25 мин. Рис. 3. Микроструктура <a href="/info/145767">диффузионного слоя</a> на молибдене, полученного из расплава Al-)-Si+Mo-г г+W+Mg при температуре 850° и времени обработки 25 мин.
Каталитические свойства соединений молибдена обусловливают их широкое применение в нефтяной промышленности для удаления серы, азота и некоторых вредных металлов. Для этой цели применяется главным образом трехокись молибдена МоОз- Применение трехокиси молибдена часто имеет большое значение для процессов получения высокооктанового беН зина. Кроме того, этот катализатор применяют при обработке хвостовых фракций для улучшения качества дизельного топлива и топлива коммунального назначения. Молибден применяют в качестве катализатора в процес--сах превращения метанола, в формальдегид, бензола в малеиновый ангидрид и толуола в бензальдегид.  [c.420]


В МГТУ ИМ. Н.Э. Баумана была изобретена установка для получения покрытий из газовых сред циркуляционным методом с использованием тлеющего разряда (рис. 7.13). Экспериментальные исследования показали, что сочетание циркуляционного метода химико-термической обработки с нагревом деталей в тлеющем разряде приводит к более совершенной технологии и повышению качества жаростойких покрытий, например силицидов на молибдене.  [c.217]

Керамические материалы, полученные в СССР, имеют достаточный предел прочности при сжатии (до 500 кгс/мм ), высокую твердость HRB 89—95), теплостойкость (около 1200° С) и износостойкость, что позволяет обрабатывать металла на высоких скоростях резания (до 3700 мм/мин при чистовом обтачивании чугуна). К недостаткам керамических материалов относится большая хрупкость (предел прочности при изгибе до 45 кгс/мм ), а потому керамические материалы применяют в основном при получистовом и чистовом точении, причем жесткость системы СПИД должна быть высокой, а торец заготовки рекомендуется предварительно подрезать (во избежание резкого удара при врезании). Наиболее высокие режущие свойства имеют пластинки из керамики ЦМ-332. Пластинки из керамических материалов делают овальными, круглыми, призматическими тем или иным способом (см. стр. 141) пластинки прикрепляют к державке инструмента. При правильном использовании минералокерамических инструментов вместо твердосплавных можно сократить машинное время на обработку (за счет увеличения скорости резания) в 1,5—2 раза при обработке стали и в 3—4 раза при обработке чугуна. Керметы кроме окиси алюминия, имеют присадки металла (вольфрам, молибден, бор, титан и др.) в количестве до 10% эти присадки несколько уменьшают хрупкость, но понижают и износостойкость.  [c.15]

Несмотря на малую производительность, большие физические усилия и потребность в рабочих высокой квалификации, давильная обработка часто применяется для получения деталей сложной формы, в особенности из таких металлов, как молибден и тантал, глубокая вытяжка которых практически невозможна.  [c.41]

Блокирование перемещений дислокаций в перлитных жаропрочных сталях достигается получением равномерно распределенных в объеме мелкодисперсных карбидов и, в меньшей степени, карбонитридов. Этот механизм упрочнения позволяет достигнуть более высоких результатов в отношении жаропрочности по сравнению с укреплением межатомных связей в кристаллической решетке. Основными карбидообразующими элементами в перлитных жаропрочных сталях являются ванадий, молибден, и хром. Равномерное распределение карбидов достигается в результате оптимального легирования и соответствующей термической обработки. Для того чтобы в структуре стали образовались мелкодисперсные карбиды, необходимо, чтобы концентрация легирующего элемента или их комбинации превысили предел растворимости их в феррите.  [c.68]

Газонасыщенность металла может быть снижена путем подбора наиболее эффективных раскислителей (углерода, титана, алюминия, циркония и др.) при выплавке молибдена в вакуумных печах [85]. Поэтому на практике часто образование трещин при обработке давлением наблюдается в недостаточно раскисленном молибдене и его сплавах. Присутствие кислорода уменьшает силу сцепления между отдельными кристаллитами. Излом слабо раскисленного молибдена происходит, как правило, по границам зерен, в то время как при разрушении хорошо раскисленного молибдена обычно транскристаллический. Более поздними работами [86] было установлено, что содержание кислорода даже в пределах 0,0001 — 0,0005% влияет на пластичность и свойства молибдена, причем при содержании кислорода 0,0005% вид излома всегда транскристаллический [86]. Причиной хрупкости молибдена в этом случае является присутствие субмикроскопических пленок окислов на границах отдельных зерен. В этой работе указывается, что горячая обработка давлением молибденовых сплавов, полученных дуговой выплавкой, производится в интервале температур 1800—1850°.  [c.293]

Это относится к вольфраму, молибдену, рению, танталу. Даже, если затем такие металлы подвергают плавке, предварительно их переводят в компактное состояние путем прессования и спекания порошков. Получаемые заготовки имеют сечение от 5x5 мм до ЗОХ ХЗО мм и более и длину 300—600 мм и называются штабиками. Большая часть этих штабиков подвергается непосредственно обработке давлением (ковке, прокатке, волочению) с получением листов, ленты, фольги, прутков, проволоки.  [c.138]


Вводя в углеродистую сталь специальные легирующие элементы и производя термическую обработку, можно получить весьма высокие характеристики прочности и пластичности. К наиболее распространенным элементам, применяемым в конструкционных сталях, относятся никель, хром, молибден, вольфрам, ванадий, медь, марганец (выше 1%) и кремний (выше 0,5%). Уровень механических войств углеродистых сталей при данной величине зерна определяется полученной структурой. Структура углеродистых конструкционных сталей при комнатной температуре состоит из 95—97% феррита и 5—3% карбида. Поэтому необходимо проанализировать влияние легирующих элементов на эти структурные составляющие для выяснения возможности повышения прочности и вязкости.  [c.29]

Интегральная излучательная способность молибдена была исследована на трех различных образцах. Образец № 1 был выточен из монокристалла молибдена. Для снятия поверхностного слоя металла, деформированного механической обработкой, перед опытом образец был подвергнут электрополировке. Образец № 2 был изготовлен из поликристаллического слитка молибдена, полученного вакуумной плавкой с последующей очисткой методом зонного проплавления в вакууме. Образец № 3 представляет собой металлокерамический молибден чистотой 99,9% (основные примеси — 0,08% 2т и 0,02% С). Таким образом, все исследованные образцы молибдена были достаточно высокой чистоты (не хуже, чем 99,9%). Средняя глубина микронеровностей поверхности образцов измерялась на микроинтерферометре МИИ-4. Для исследованных образцов молибдена она составляет соответственно 0,35, 0,21 и 0,18 мк.  [c.144]

Обрабатываемость молибдена резанием определяется способом получения заготовки молибден, получаемый плавкой, несмотря на то, что он плотнее порошкообразного молибдена, получаемого спеканием, меньше растрескивается и хорошо поддается обработке резанием.  [c.134]

Получение и обработка. В промышленных условиях компактный молибден получают методами порошковой металлургии, электродуго-вой вакуумной плавки, а также электронно-лучевой плавки.  [c.554]

Наиболее важными тугоплавкими металлами являются вольфрам, молибден, тантал и нио бий. Освоение их технологии было связано главным образом с развитием производства электровакуумных приборов. Поскольку ак излучение света, так и электронная эмиссия накаленных проволок сильно возрастают с повышением температуры, то в этой области внимание было обращено исключительно а использование -металлов с высокой температурой плавления и низкой скоростью испарения. Вследствие высокой температуры плавления способы получения и обработки металлов этой группы существенно отличаются от методов, используемых для производства других металлов, которые обычно получают восстановлением руды и плавлением в металлургическом цикле или переплавкой после выделения элек-  [c.14]

В этой книге рассматрявается производство черных металлов в последовательности современной технологической схемы производства 1) выплавка чугуна из железной руды — доменное производство 2) прямое получение желюа и металлизованного сырья 3) выплавка стали из чугуна, металлического лома 4) обработка стальных слитков и заготовок на прокатных станах и получение готовых изделий и полуфабрикатов. Обычно черными металлами называют железо и сплавы железа с различными элементами. Основным элементом, придающим железу разнообразные свойства, является углерод. Сплавы с содержанием углерода до 2,14 % называют сталями, а сплавы с более высоким содержанием углерода — чугунами. Помимо углерода, в состав стали и чугуна входят различные элементы. Легирующие элементы улучшают, а вредные примеси ухудшают свойства железных сплавов. К легирующим элементам относятся марганец, кремний, хром, никель, молибден, вольфрам и др. К вредным примесям — сера, фосфор, кислород, азот, водород, мышьяк, свинец и др. В зависимости от содержания легирующих сталь или чугун приобретают различные свойства и могут быть использованы в той или иной области промышленности. Так, например, инструментальные стали с высоким содержанием углерода используют для изготовления режущего обрабатывающего инструмента. При повышении содержания хрома и никеля стали приобретают антикоррозионные свойства (нержавеющие стали). Стали с повышенным содержанием кремния используют в электротехнике в виде трансформаторного железа и т. п. Чугун с высоким содержанием кремния используют в литейном деле. Для деталей, выдерживающих повышенные нагрузки, применяют высокопрочные чугуны, содержащие хром, никель и т.д. Металл, используемый в промыш-деииости, сельском хозяйстве, строительстве, на транспорте и т.д., имеет различную форму, размеры и физические свойства. Придание металлу требуемой формы, необходимых размеров и различных свойств достигается обработкой слитков стали давлением и последующей термической обработкой. Для получения различной формы изделий применяют свободную ковку, штамповку на молотах н прессах, листовую штамповку, прессование, волочение и прокатку. На прокатных станах обрабатывается до 80 % всей выплавляемой стали, на них производят листы, трубы, сортовые профили, рельсы, швеллеры, балки и т. п.  [c.8]

Оаль 10XI1M23T3MP, содержащая несколько болыпе никеля и добавочно легированная молибденом, имеет лучшую жаропрочность при 700—750 С по сравнению со сталью 10Х11Н20ТЗР. Режим термической обработки первой из них для получения максимальной жаропрочности закалка с 1100—1130°С на воздухе (при крупных сечениях в масле) и двойное старение при 750—785 °С, 16 ч и при 600 -650 С, 10-16 ч.  [c.293]

Цирконий вводят в белый чугун при получении ковкого чугуна (ЛЯ того, чтобы при обработке его в жидком состоянии получить )Олее высокие механические свойства за счет образования первич 1ЫХ чешуек графита в процессе затвердевания. При содержании в )елом чугуне до 0,09% цирконий аналогично титану связан прей лущественно в нитридах. Обработка жидкого чугуна циркониевым 10Дификатором усиливает влияние таких легирующих элементов, <ак хром, молибден и ванадий.  [c.63]


Высокотемпературный нагрев при получении биметалла обусловливает взаимную диффузию составляющих сплавов, в данном случае молибдена в сталь и углерода из стали в молибден, что подтверждается результатами металлографического анализа. Из рис. 89 видно, что поверхностные слои стали обезуглерожены, а феррит имеет столбчатое строение. Первое объясняется диффузией углерода в молибден, второе — диффузией молибдена в сталь. Когда в стали достигается такое содержание молибдена, при котором а - 7, превращения не происходит, феррит приобретает столбчатое строение. Темная прослойка между молибденом и железом - карбид (Мо, Ре)бС. Толщина зтой прослойки, как и зоны обезуглероживания, тем больше, чем выше температура прокатки, вследствие ускорения диффузионных процессов при повышении температуры. Увеличение толщины хрупкой карбидной прослойки приводит к уменьшению прочности сцепления, что видно из рис. 91 (повышение температуры прокатки снижает прочность сцепления). В дальнейшем перераспределение элементов между слоями будет рассмотрено дополнительно — при описании результатов исследования необходимости (целесообразности) проведения после прокатки термической обработки.  [c.94]

Металлический тантал получается в виде порошка. Получение компактного танталла производится методом порошковой металлургии. Чистый металлический тантал хорошо поддается обработке давлением (ковке, прокатке в лист и фольгу, протяжке в тонкую проволоку). При обработке на холоде на-гартовывается медленно. Температура рекристаллизации 1200—1800 С. Хорошо сваривается ниобием, молибденом, вольфрамом, никелем. Хорошо обрабатывается резанием  [c.352]

Среднее содержание молибдена в земной коре оценивается в 3-10 %, что значительно превышает содержание таких металлов, как вольфрам, ниобий и тантал. Молибден образует относительно крупные месторождения молибденита (минерал состава M0S2) и шеелита (минерал состава СаМо04), разработка которых является относительно несложной и хорошо освоена в промышленности. Из концентратов молибденита и шеелита в промышленности производят ферромолибден и молибдат кальция для легирования сталей и цветных металлов [27, 56, 57, 84], металлический молибден и изделия из него для электровакуумной и электронной промышленности [46, 56, 57, 84]. В настоящее время в нашей стране и за рубежом разработан ряд жаропрочных сплавов на основе молибдена, ведутся широкие исследования по усовершенствованию технологии их получения, обработки и сварки [1, 53, 83, 86, 87, 146, 149].  [c.8]

Ниже приведены результаты исследования работоспособности деталей трения из материала М-801 (молибден с покрытием из M0S2 толщиной 35—40 мк, полученным химико-термической обработкой) в паре с технически чистым молибденом в вакууме при температурах до 800° С и на воздухе при комнатной температуре. Испытания проводили по схеме вал — втулка (вал из материала М-801, втулка из молибдена) на машине ВВТ-1 [7] при следующих условиях вакуум при установившемся режиме 2 -lO тор наг-грузка 7,8 кГ см скорость скольжения 0,265 м1сек температурный интервал 20—800° С.  [c.139]

Хромоникелемолибденованадиевые стали. Нередко в хромоникелевую сталь кроме молибдена (вольфрама) добавляют ванадий, который способствует получению мелкозернистой структуры. Примером сталей, легированных Сг, N1, Мо и V, могут служить 38ХНЗМФ и 36Х2Н2МФА. Большая устойчивость переохлажденного аустенита обеспечивает высокую прокаливае.мость, что позволяет упрочнять термической обработкой крупные детали. Даже в очень больших сечениях (1000—1500 мм и более) в сердце-вине после закалки образуется бейннт, а после отпуска — сорбит. Указанные стали обладают высокой прочностью, пластичностью и вязкостью и низким порогом хладноломкости (см. табл. 8). Этому способствует высокое содержание никеля. Молибден, присутствующий в стали, повышает ее теплостойкость. Эти стали можно использовать при температуре 400—450 С.  [c.281]

Сталь 10Х11Н23ТЗМР, содержащая несколько больше никеля и добавочно легированная молибденом, имеет лучшую жаропрочность при 700—750 °С по сравнению со сталью I0X11H20T3P. Режим термической обработки первой из них для получения максимальной жаропрочности закалка от 1100—  [c.309]

Для получения высокой окалиностойкости никель легируют хромом ( 20%), а для повышения жаропрочности — титаном (1,0—2,8 %) и алюминием (0,55—5,5 %). В этом случае при старении закаленного сплава образуется интерметаллидная у -фаза типа Nig (Ti, Al), когерентно связанная с основным у-раствором, а также карбиды Ti и нитриды TiN, увеличивающие прочность при высоких температурах. Дальнейшее увеличение жаропрочности достигается легированием сплавов молибденом и вольфрамом, повышающими температуру рекристаллизации и затрудняющими процесс диффузии в твердом растворе, который необходим для коагуляции избыточных фаз и рекристаллизации. Добавление к сложнолегированным сплавам кобальта еще больше увеличивает жаропрочность и технологическую пластичность сплавов. Для упрочнения границ зерен у-раствора сплав легируют бором и цирконием. Они устраняют вредное влияние примесей, связывая их с тугоплавкими соединениями. Примеси серы, сурьмы, свинца и олова понижают жаропрочность сплавов и затрудняют их обработку давлением. В связи с этим для повышения жаропрочности при выплавке жаропрочных сплавов необходимо применять возможно более чистые шихтовые материалы, свободные от вредных легкоплавких примесей.  [c.310]

Полная рекристаллизация приводит к значительной потере твердости и прочности, увеличение которых достигалось в результате механической обработки. Поэтому с точки зрения применения интересно знать самую высокую температуру, до которой молибден и его сплавы можно нагревать с незначительной рекристаллизацией или вообще без рекристаллизации. За температуру рекристаллизации принимается самая низкая температура, при которой появляются новые зерна, видимые под микроскопом. Для неле-гированного молибдена в виде тонкой проволоки дается температура рекристаллизации 900°. Ниже приведены данные для круглых прутков диаметром 15,9 мм, полученных из полностью рекристаллизованныч прутков диаметром 50,8 мм путем прокатки без промежуточного отжига.  [c.407]

Вместе с тем в работе Суркова и Садовского [167] показано, что при ВТМО такого же никелевого сплава (марка ХН77ТЮР) в случае малых скоростей деформирования (осадкой на 20— 30% ) возникает термически стабильная полигональная структура и сопротивление ползучести сплава больше при достаточно высокой температуре по сравнению с обычной обработкой. В ра-бота. [168 6] была показана возможность получения стабильной полигональной структуры в результате относительно небольшой деформации (1 —10%) и последующего нагрева ниже температуры рекристаллизации (механико-термическая обработка). При этом возрастает сопротивление ползучести, длительная и циклическая прочность. Создание полигональной структуры в молибдене приводит к значительному повышению температуры рекристаллизации (на 200—300° С) и к улучшению механических свойств [169].  [c.199]

Сталь для азотирования. Простая углеродистая сталь малопригодна для азотирования ее поверхность получается недостаточно твердой и вместе с тем хрупкой В настоящее время для азотирования. чаще применяют легированную сталь марки 38ХМЮА, содержащую 0,35—0,42% С 1,35—1,65% Сг 0,15—0,25% Мо .0,7— 1,10% AI. Легирующие элементы — алюминий, хром и молибден — необходимы для получения устойчивых дисперсных нитридов, создающих высокую твердость на поверхности после азотирования. Молибден, кроме того, устраняет хрупкость отпуска, которая может возникнуть в стали вследствие длительного нагрева ее при 500° С во время азотирования (явление отпускной хрупкости рассматривается в главе Легированная сталь , раздел Особенности термической обработки ). Ввиду высокой стоимости молибдена в качестве заменителя стали 38ХМЮА применяется сталь марки 38ХЮ. Для азотирования можно применять и сталь без алюминия, содержащую 1,5—2,5% Сг 0,2—0,6% V 0,3—1,0% Мо 0,5—1,0% Ti и т. д., у которой азотирование при 480—520° С может создать на поверхности твердость до HV 900—950.  [c.285]


При дальнейшем нагреве выше критических точек и происходит рост аустенитных зерен. Рост зерна аус-тенита при нагреве стали оказывает большое влияние на результаты термообработки, главным образом закалки. Размер зерна при комнатной температуре, который получен в стали в результате того или иного вида термической обработки, называют действительным зерном. Размер действительного зерна зависит от размера зерна аустенита. Обычно чем крупнее зерно аустенита, тем крупнее действительное зерно. Сталь с крупным действительным зерном имеет пониженный предел прочности, пониженную ударную вязкость и склонность к образованию трещин, поэтому при термообработке всегда стремятся к получению мелкого зерна. По склонности к росту аустенитного зерца при нагреве все стали делят на наследственно мелкозернистые и наследственно крупнозернистые. В наследственно крупнозернистых сталях размер зерна быстро увеличивается даже при небольшом нагреве выше критических точек. В наследственно мелкозернистых сталях при значительном нагреве сохраняется мелкое зерно. На процесс роста зерен в углеродистой стали оказывают влияние температура и продолжительность нагрева, содержание углерода в стали, способы раскисления, применяемые при выплавке стали. Кипящие стали являются, как правило, наследственно крупнозернистыми, а спокойные — наследственно мелкозернистыми. Введение легирующих элементов, за исключением марганца, тормозит рост зерен аустенита при нагревании. Наиболее энергично тормозят рост зерна карбидообразующие элементы титан, ванадий, вольфрам, молибден и хром. Наследственно мелкозернистые стали позволяют использовать расширенный интервал закалочных температур и облегченные условия нагрева стали.  [c.113]

Вольфрам (молибден) образует в стали карбид MeeQ который при аустенитизации частично переходит в твердый раствор, обеспечивая получение после закалки легирован ного вольфрамом (молибденом) мартенсита Эти легирующие элементы, а также ванадий затрудняют распад мартенсита при нагреве, обеспечивая необходимую красностой кость Нерастворенная часть карбида МевС приводит к повышению износостойкости стали Таким образом, без вольфрама или молибдена не может быть быстрорежущей стали Наличие в стали высокого содержания вольфрама приводит к ухудшению теплопроводности стали, что вызы вает осложнения при обработке давлением и необходимость замедленного (ступенчатого) нагрева стали под закалку вотзбежание появления трещин Кроме того, вольфрамо вые стали склонны к сильной карбидной неоднородности Частичная замена вольфрама молибденом уменьшает этот недостаток  [c.363]

Никелевые стали 0Н6 и 0Н9 содержат < 0,1 % С и по хладостойкости приближаются к аустенитным. Оптимальные свойства никелевых сталей обеспечивают термообработкой двойной нормализацией при 930 °С, а затем при 800 °С с последующим отпуском при 570 - 590 °С или закалкой от 830 °С и отпуском при 580 °С. Первал нормализация необходима для гомогенизации твердого раствора, вторая с последующим отпуском — для получения структуры мелкозернистого феррита. По сравнению с нормализацией закалка и отпуск увеличивают вязкость стали. Сталь 0Н6 используют до -150°С, а 0Н9 — до -196 °С. В структуре термически обработанной стали 0Н9 помимо феррита сохраняется 10 - 15 % остаточного аустенита в виде тонких прослоек. Задачей термической обработки, а также дополнительного легирования марганцем (1 - 2%), молибденом ( 0,4%), ниобием, хромом, медью в разных сочетаниях является обеспечение устойчивости остаточного аустенита он не должен превращаться в мартенсит ни при охлаждении, ни при деформировании сталей. Механические свойства термически обработанных листов толщиной 10 - 13 мм из низкоуглеродистых никелевых сталей при 25 °С (числитель) и -196°С (знаменатель) приведены ниже  [c.513]

При необходимости снятия напряжений в аппарате из аустенитной стали, содержащей молибден, сваренном стабилизированным электродом, нужно назначить отжиг при температуре выше температуры рекристаллизации с медленным охлаждением в печи режим такого отжига приведен на стр. 672. Следует также отметить, что при термической обработке сварных изделий из коррозионно-стойкой стали значительное влияние на свойства изделия могут оказывать колебания в химическом составе основного металла и металла шва даже в пределах нормы. В связи с этим иногда приходится назначать режим термической обработки, учитывая результаты, полученные при испытании термообработаиных образцов — свидетелей или пробных образцов.  [c.666]

СПЕЧЕННЫЙ Молибден — тугоплавкий металл, изготавливаемый методом порошковой металлургии. Дл получения компактного (беспористого) металла спеченные заготовки подвергают обработке давлением (ковке, протяжке, прокатке) как в холодном, так и в нагретом состоянии. С. м. отличается мелкокристаллич. структурой и по большинству своих свойств пе уступает металлу, полученному плавлением в электродуговых вакуумных печах. Метод порошковой металлургии является более простым, дешевым и производительным, чем метод плавления, но при этом С. м. содержит большее количество примесей, в частности кислорода, и хуже поддается сварке, чем молибден плавленный.  [c.186]

Для получения особо чистых материалов и в других специальных технологиях применяют высокочастотные плазменные установки (рис. 3.4, б)-Электронно-лучевые печи (ЭЛП) применяют для плавления, термической обработки и испарения металлов. В ЭЛП плавят тугоплавкие металлы (вольфрам, молибден, тантал, ниобий), металлы, имеющие высокую химическую активность (цирконий, гафний, титан), высоколегированные стали, медь, никель и др. ЭЛП позволяют переплавлять металлическую шихту любого вида (стружку, гра-нулят, скрап).  [c.151]

Сталь Х12Н22ТЗМР, содержащая несколько больше никеля и добавочно легированная молибденом, имеет лучшую жаропрочность при температуре 700—750° С (рис. 170, а) по сравнению со сталью Х12Н20ТЗР. Режим термической обработки для получения максимальной жаропрочности закалка при температуре 1100—1130° на воздухе (при крупных сечениях в масле) и двойное старение при температуре 750—785° С в течение 16 ч и при 600—650° С в течение 10—16 ч.  [c.301]

При азотировании высокая твердость поверхности (до 1000 Яд) достигается насыщением поверхности стали азотом и образованием дисперсных нитридов, заклинивающих плоскости скольжения. Для получения высокой твердости приходится прибегать к специальным сталям, имеющим в своем составе элементы, обладающие большим химическим сродством с азотом и образующие прочные и дисперсные нитриды. 1К таким элементам относятся алюминий, хром, молибден и др. Типовой сталью для азотирования является сталь марки 38ХМЮА. Однако присутствие в стали алюминия придает ей хрупкость и высокую чувствительность к выделению свободного феррита поэтому часто применяют сталь марки ЗОХМА, не содержащую алюминий. После азотирования никакой допо.пнительной термической обработки не требуется. Термическая обработка сердцевины для повышения ее свойств проводится до азотирования и заключается в закалке и отпуске на сорбит.  [c.73]

Медь с молибденом взаимно нерастворимы, но жидкая медь способна смачивать его поверхность. Поэтому для получения соединений этого сочетания материалов напши применение сварко-пайка, диффузионная и элек-тронно-лучевая сварка. В электронной промышленности распространен способ заливки в специальные оправки в вакууме молибденового стержня расплавом меди с последующим изготовлением из полученной заготовки деталей механической обработкой.  [c.200]

Механические свойства ВЧШГ, регламентируемые ГОСТ 7293—70, и рекомендуемые для него разными авторами [10, 16, 28, 50, 51] составы представлены в табл. 1.19, а механические свойства, не вошедшие в ГОСТ,— в табл. 1.20 . Особенности технологии и производства ВЧШГ изложены в [10, 28, 50, 57] и в РТМ (руководящем техническом материале) Технология плавки и внепечной обработки серого, ковкого и высокопрочного чугуна [44]. Значительные трудности представляет получение самой высшей марки чугуна — ВЧ 120-4. В дополнение к рекомендациям табл. 1.19 можно указать на целесообразность ведения плавки (и при этом преимущественно в электропечах) с применением шихт с высоким содержанием стали или выплавки чисто синтетического чугуна с добавочным легированием молибденом в количестве 0,2—0,4% и вводом при модифицировании комплексных модификаторов (КМ), как это указано в гл. III, а также изотермической закалки с температуры на 10—15° С выше Л" в среде с 350 С.  [c.69]

Уже проведение кратковременных испытаний на растяжение при высоких температурах в вакууме показало, что предварительная обработка и способ получения молибдена и его сплавов оказывают существенное влияние на характеристики механических свойств. Так, рекристаллизационный отжиг заметно снижает предел прочности при ко.мнатной и повышенных те.мпературах и повышает пластичность в интервале температур 815—I ЮО С (фиг. 175). Даже разница в условиях спекания порошкообразного молибдена (в вакууме или в водороде) оказывает определенное влияние на механические свойства. Сравнение кривых деформации образцов молибдена, изготовленных методом порошковой металлургии и путем плавки в вакуумной печи, показано на фиг. 176. При понижении температуры испытания влияние способа изготовления молибдена на ход кривых деформации проявляется особенно резко. Это послужило основанием к проведению серийных испытаний молибдена на растяжение при различных температурах (фиг. 177) оказалось, что критическая температура перехода молибдена из вязкого в хрупкое состояние (определялась в основном по значениям относительного сужения) достаточно высока, и это следует учитывать при конструктивных расчетах. Дальнейшие испытания показали также, что критическая температура зависит от скорости деформации, условий нагружения, величины зерна и наличия загрязнений, в первую очередь углерода, кислорода и азота, образующих с молибденом твердый раствор.  [c.764]



Смотреть страницы где упоминается термин Молибден Получение и обработка : [c.177]    [c.181]    [c.252]    [c.328]    [c.71]    [c.302]    [c.175]    [c.34]    [c.20]    [c.1051]    [c.123]   
Справочник металлиста Том2 Изд3 (1976) -- [ c.554 ]

Справочник металлиста Том5 Изд3 (1978) -- [ c.2 , c.554 ]



ПОИСК



Молибден

Молибденит

Получение и обработка

Свойства, получение и обработка монокристаллического молибдена



© 2025 Mash-xxl.info Реклама на сайте