Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Жаропрочные Закалка —

Термическая обработка сплава нимоник, приводящая его в структурное состояние с максимальной жаропрочностью, заключается в воздушной закалке с 1100—1200°С и отпуске (старении) при 700—750°С в течение 10—16 ч. Максимальная жаропрочность соответствует однородной крупнозернистой структуре и однородным, равномерно распределенным дисперсным образованиям -фазы.  [c.476]

Термическая обработка жаропрочны.х кованых сплавов (АК2, АК4) заключается в закалке с 510—520°С с последующим искусственным старением в течение 5— J0 ч при 100 -180°С.  [c.595]


К деформируемым алюминиевым сплавам, упрочняемым термической обработкой, относятся сплавы системы А1—Си—Mg с добавками некоторых элементов (дуралюмины, ковочные сплавы), а также высокопрочные и жаропрочные сплавы сложного химического состава. Дуралюмины (Д16—Д18) содержат 3,8—4,8 % Си, 0,4— 1,8 % Mg, а также 0,4—0,9 % Мп, который повышает коррозионную стойкость сплавов. После термической обработки (закалка и естественное старение) эти сплавы имеют высокую прочность и удлинение. Ковочные сплавы (АК6—АК8) содержат 1,8—4,8 % Си,  [c.17]

Химико - термическая обработка металлических деталей применяется с целью улучшить физико- химические и механические свойства деталей — повысить их жаропрочность, износоустойчивость и т. д. путем изменения химического состава поверхностного слоя металла, который искусственно насыщается азотом (процесс носит название азотирования), алюминием (алитирование), углеродом и азотом одновременно с последующей закалкой (цианирование) и некоторыми другими элементами. Сюда же иногда относят широко распространенный процесс термической обработки — насыщение низкоуглеродистой стали углеродом с последующей закалкой (цементация).  [c.27]

Вводимые легирующие элементы изменяют механические и физико-химические свойства стали. Легирование значительно повышает прочность и твердость при сохранении хорошей вязкости стали, увеличивает ее прокаливаемость, а также позволяет проводить закалку на мартенсит в умеренных охладителях, что уменьшает возможность появления трещин и коробления. Легирование придает сталям ряд особых свойств жаропрочность, окалиностойкость, кислотоупорность и др.  [c.155]

Упрочнение жаропрочных аустенитных сталей осуществляется в результате дисперсионного твердения. Для этого они подвергаются термической обработке, состоящей из закалки на аустенит и последующего длительного старения при 700—750° С.  [c.210]

Упрочнение жаропрочных сплавов на основе N1 является результатом дисперсионного твердения после термической обработки (закалки для получения однородного твердого раствора легирующих элементов в N1 и последующего длительного старения при высоких температурах 700—800° С) (рис. 13.14).  [c.215]

Аустенитные стали обладают не-магнитностью при закалке, повышенной жаропрочностью, хорошей свари-  [c.270]

Жаропрочные стали после закалки и старения  [c.52]

Жаропрочные сплавы на железоникелевой основе К этой группе сплавов относятся сплавы, основная структура которых является твердым раствором хрома и других легирующих элементов в железоникелевой основе. Наилучшие жаропрочные свойства сплав получает после первой закалки от  [c.105]


Так же, как и высокотемпературная термомеханическая обработка (ВТМО) сталей (см. гл. III), данный способ упрочнения основывается на сохранении в материале такого структурного состояния, которое возникло при пластической деформации в области высоких температур. Однако, в отличие от ВТМО, данный способ не связан с обязательным фазовым превращением (например, мартенситным в случае закаливающихся сталей) и может быть осуществлен на материалах, не претерпевающих фазового перехода при охлаждении (аустенитные стали, некоторые жаропрочные сплавы, чистые металлы и др.). Применяемое в этом случае для сохранения полученного структурного состояния быстрое охлаждение от высоких температур (закалка) предназначается для предотвращения развития рекристаллизации в наклепанном материале через зарождение и рост новых зерен [70], а не для фиксации полученной дислокационной структуры в новой фазе.  [c.44]

Оаль 10XI1M23T3MP, содержащая несколько болыпе никеля и добавочно легированная молибденом, имеет лучшую жаропрочность при 700—750 С по сравнению со сталью 10Х11Н20ТЗР. Режим термической обработки первой из них для получения максимальной жаропрочности закалка с 1100—1130°С на воздухе (при крупных сечениях в масле) и двойное старение при 750—785 °С, 16 ч и при 600 -650 С, 10-16 ч.  [c.293]

Сталь 10Х11Н23ТЗМР, содержащая несколько больше никеля и добавочно легированная молибденом, имеет лучшую жаропрочность при 700—750 °С по сравнению со сталью I0X11H20T3P. Режим термической обработки первой из них для получения максимальной жаропрочности закалка от 1100—  [c.309]

Сталь Х12Н22ТЗМР, содержащая несколько больше никеля и добавочно легированная молибденом, имеет лучшую жаропрочность при температуре 700—750° С (рис. 170, а) по сравнению со сталью Х12Н20ТЗР. Режим термической обработки для получения максимальной жаропрочности закалка при температуре 1100—1130° на воздухе (при крупных сечениях в масле) и двойное старение при температуре 750—785° С в течение 16 ч и при 600—650° С в течение 10—16 ч.  [c.301]

Х11Н20ТЗР. Режим термической обработки первой из них для получения максимальной жаропрочности закалка при 1100—ПЗОХ на воздухе (при крупных сечениях в масле) и двойное старение при 750—785°С, 16 ч и при 600—650Х, 10—164.  [c.327]

Кроме высоких коррозионных свойств, снлавы хастеллой обладают и высокими механическими свойствами (аа>90 кгс/мм ,. СТо,2>40 кгс/мм ) при высокой пластичности, что делает их ценным конструкционным материалом. Ешс более высокие механические свойства (Ствг 120 кгс/мм ) можно получить термической обработкой, аналогично той, которую применяют для ппкелсвых жаропрочных сплавов закалка+старение при 800°С, Однако ма -симал1,ное упрочнение соответствует минимуму коррозионной стойкости, поэтому упрочняющая термическая обработка рекомендуется не вссгда.  [c.498]

Процессы закалки и последуюн1его старения ишроко используют для иовыи1еиия прочности (жаропрочности) и некоторых с()изи-ческнх свойств многих сплавов на основе алюминия, железа,. меди и никеля.  [c.110]

Аустенитные жаропрочные стали со структурой твердых растворов (например 09Х14Н16Б и 09Х14Н19В2БР), предназначенные для изготовления пароперегревателей и трубопроводов силовых установок, установок сверхвысокого давления, работают при 600—700 °С, их применяют в закаленном состоянии (закалка с 1100—1160 °С в воде или на воздухе). После закалки стали приобретают умеренную прочность и высокую пластичность. При длительном нагреве при 500—700 °С возможно выделение ст-фазы, которая охрупчивает сталь.  [c.290]

Жаропрочные сплавы. Наибольшее применение получил сплав АЛ1, из которого изготовляют поршни, головки цилиидров и другие детали, работающие при температурах 275—300 С. Структура литого сплава АЛ1 состоит из а-твердого раствора, содержащего Си, Mg и Ni, и избыточных фаз Al2 uMg и Ale U ,Ni. Отливки применяют после закалки и кратковременного старения при 175 С (Т5) поршни подвергают закалке и старению при 290 С (Т7). При закалке S-фаза растворяется в а-твердом растворе.  [c.337]

Алюминиевые бронзы обладают высокими механическими свойствами, повышенной жаропрочностью и антикоррозионной стойкостью. Упрочняющая термическая обработка состоит из закалки с 850— 900° С в воде и последующего отпуска при 400—600°С в течение 1,5 ч. На рис. 16.12 показана микроструктура бронзы Бр.АЖМц10-3-1,5, состоящая из зерен а-кристаллов (светлая составляющая) и а-МЗ-эвтек-тоида (темная составляющая).  [c.299]


Сталь ЗИ589 хромомаргаицевоникелеаая с добавлением ниобия, вольфрама и ванадия применяется для изготовления лопаток ГТД, работающих при температурах до 750°С. В целях повышения жаропрочности и коррозионной стойкости поверхность лопаток никелируют и алитируют. Такие лопатки успешно работают при температуре 850°С. Лопатки после закалки с температуры 1200°С в масле подвергают двойному старению.  [c.53]

Типичными примерами зональной разнозернистости могут служить грубозернистые периферийные зоны, возникающие при нагреве под закалку прессованных изделий из некоторых промышленно важных алюминиевых сплавов (рис. 212, а), горячедеформированных изделий из углеродистой стали (рис. 212,6) и др. Зональная разнозернистость встречается в изделиях сложной формы из жаропрочных сплавов.  [c.389]

Стали перлитного класса содержат до 0,16% С и молибдена до 0,7%, который увеличивает температуру рекристаплизации феррита и тем са.мым повышает жаропрочность. Аналогично, но слабее действует хром. Присадка ванадия измельчает зерно, а также повышает жаропрочность Обычный режим термической обработки - закалка в масле или нормализация при температурах 950.. 1030 с и отпуск при 720. 750 С (Ас1 = 760 С). Предельная рабочая температура 550.. 580 С. Структура сталей после охлаждения на воздухе перлит и карбиды МзС. Область применения сталей приведена в табл 13.  [c.102]

Стали мартенситного и мартенситно-ферритного классов содержат 8 13% Сг и легируются вольфрамом, молибденом, ванадием, ниобием, бором. Эти стали, помимо более высокого значения длительной прочности, обладают высокой жаропрочностью Структура этих сталей состоит из мартенсита, феррита и карбидов типа МгзСб, М С, МгС, МС и фазы Лавеса - Рв2 У, Ре Мо. Высокая жаропрочность достигается за счет упрочнения твердого раствора, образования карбидов и интерметаллидных фаз Предельная рабочая температура 580...600 С. Стали применяют после закалки на воздуосе или в масле от 1050. 1100 С и отпуска при 650. 750 С. Высокие температуры  [c.102]

Бериллиевые бронзы. Содержат 2...2,5% Ве. Эти сплавы упрочняются термической обработкой. Предельная растворимость бериллия в меди при 866 составляет 2,7%, при 600 °С - 1,5%, а при 300 °С всего 0,2%. Закалка проводится при 780 С в воде и старение при 300 "С в течение Зч. Сплав упрочняется за счет выделения дисперсных частиц у-фазы СпВе, что приводит к резкому повышению прочности до 1250 МПа при 5 = 3...5%. Бронзы БрБ2, БрБНТ1,9 и БрБНТ1,7 имеют высокую прочность, упругость, коррозионную стойкость, жаропрочность, немагнитны, искробезопасны (искра не образуется при размыкании электрических контактов). Применяются для мембран, пружин, электрических контактов.  [c.117]

На рис. 3.6 представлена параметрическая диаграмма партии стали 15Х1М1Ф, обработанной по режиму закалка 1 ч при 1050 °С, охлаждение в масле, отпуск 10 ч при 750 °С. Структура металла представляла собой отпущенный бейнит и 20% феррита. Получены следующие параметрические уравнения жаропрочности  [c.78]

Рис. 5. Зависимость скорости роста усталостной трещины от К никелевого жаропрочного сплава ASTM А 637 (закалка и старение) со стабильной аусте-нитной структурой при температуре, К Рис. 5. Зависимость <a href="/info/129608">скорости роста усталостной трещины</a> от К <a href="/info/59230">никелевого жаропрочного сплава</a> ASTM А 637 (закалка и старение) со стабильной аусте-нитной структурой при температуре, К
Никелевый жаропрочный сплав In onel Х750 аустенитно-го класса очень широко используют для жаровых труб, экранов, наружных обшивок корпусов и валов сверхпроводящих генераторов мощностью 5 МВт, разработанных компанией Вестннгауз [1,2]. Для оценки поведения безопасно повреждаемой конструкции такого генератора проведены исследования характеристик разрушения и механических свойств указанного сплава при низких температурах в зависимости от технологии изготовления и режимов термообработки. Изучено влияние трех промышленных методов выплавки и горячего изостатического прессования, а также двух видов термообработки закалки и закалки с последующим двухступенчатым старением.  [c.298]

В ранее проведенном исследовании закаленного и состаренного по двухступенчатому режиму жаропрочного никелевого сплава In onel 718 получены довольно низкие пластичность и характеристики разрушения. Это связано с присутствием грубой карбидной сетки по границам зерен, которая образуется на первых этапах изготовления кованых заготовок и не устраняется при последующей закалке по стандартному режиму (нагрев при 1255 К). Поэтому для обеспечения оптимальных свойств материала при низких температурах необходимы либо нагрев под закалку при более высокой температуре для растворения этих карбидов, либо такое сочетание последней технологической операции с термообработкой, которые позволили бы разрушить  [c.331]

Значения СРТУ для сплава In onel 718 в исходном состоянии (после закалки и двухступенчатого старения — 3i+ ) приведены на рис. 3. Они значительно выше при комнатной, чем при низких температурах, при этом разница в СРТУ при исследованных низких температурах не обнаружено. Увеличение СРТУ при повышении температуры от 4 до 297 К типично для структурно стабильных жаропрочных никелевых сплавов и нержавеющих сталей [1, 13, 15— 17]. В работах [18, 19] указывается, что температурный интервал такого поведения сплава In onel 718 может быть расширен с 297 до 811 К.  [c.339]

Жаропрочные деформируемые сплавы на железоникелевой, никелевой и кобальтовой основах (типа ХН77ТЮ, Х20Н80Т) или литейные (типа ЖС6-К, ВЖ36-Л2). Первые применяют для деталей, работающих при температурах 750—900° С, вторые — при температурах 900—1000° С в условиях больших нагрузок. Эти стали подвергают закалке и старению. Обрабатываемость деформируемых сплавов в 6—12 раз ниже, чем стали 45. Литейные сплавы по сравнению с ними обладают меньшей вязкостью, меньше при их обработке и силы резания. Наличие большого количества интерметаллидных включений и карбидов приводит к тому, что обрабатывать литейные сплавы инструментом из быстрорежущей стали практически нельзя из-за большого износа. Поэтому в основном применяют инструменты, оснащенные твердым сплавом, причем скорости резания назначают в 15—20 раз более низкие, чем. при обработке стали 45, как правило, они не превышают 8—10 м/мин.  [c.34]


Свойс1ва при высоких температурах зависят от величины зерна (рис. 21), что определяется режимами термической обработки. В тех случаях, когда изделия подвергаются действию большого числа теилосмен, рекомендуется термическую обработку проводить на более мелкое зерно путем закалки на воздухе с 1030—1070° С. Закалка с 1180° С сообщает стали более высокую жаропрочность, но малую пластичность при температурах 700—800° С. Сталь обладает небольшой склонностью к дисперси-  [c.152]

Жаропрочность стали ЭИ696М в больших сечениях после закалки на воздухе не понижается так резко, как это наблюдается у стали ЭИ696. Охлаждение в масле после нагрева под закалку обеспечивает стабильные жаропрочные свойства в больших сечениях обеих марок сталей.  [c.174]

Сталь ЭЙ725 применяют для изготовления корпусов турбин и направляющих лопаток, работающих при 750° С. Сталь относится к группе дисперсионно-тверде-ющнх повышенной жаропрочности. Термическая обработка состоит из закалки и старения, Сталь обладает достаточно высокой жаропрочностью при температурах до 700—750° С при длительных сроках службы (см. рис. 1, 2, 3). В процессе длительных испытаний при 700—800° С имеет место некоторое уменьшение ударной вязкости стали с 10 до 6 кГм1см [24, 28].  [c.175]

Сталь ЭИ787 применяют для изготовления турбинных лопаток и дисков, спрямляющих и рабочих лопаток осевых компрессоров, колец соплового аппарата [28, 27, 35]. После закалки с высоких температур (1180—1200° С), второй закалке н старения сталь имеет высокую жаропрочность, но низкие пластические свойства и чувствительность к надрезу при 600—700° С. Закалка с 1140—1160° С, выдержка 4— 8 ч + вторая закалка с 1050° С, выдержка 4 ч с охлаждением на воздухе и старение в течение 16—25 ч при 750—840° С обеспечивают несколько меньшую жаропрочность, но лучшее сочетание прочности, пластичности и нечувствительности к надрезу (табл. 33).  [c.175]


Смотреть страницы где упоминается термин Жаропрочные Закалка — : [c.302]    [c.466]    [c.472]    [c.287]    [c.289]    [c.290]    [c.293]    [c.294]    [c.294]    [c.85]    [c.17]    [c.95]    [c.21]    [c.191]    [c.154]    [c.170]   
Материалы в машиностроении Выбор и применение Том 3 (1969) -- [ c.0 ]



ПОИСК



119—121 —см. также Закалка сталей хромоникелевых жаропрочных

119—121 —см. также Закалка сталей хромоникелевых жаропрочных аустенитно-ферритных

119—121 —см. также Закалка сталей хромоникелевых жаропрочных класса

119—121 —см. также Закалка сталей хромоникелевых жаропрочных литейных

119—121 —см. также Закалка сталей хромоникелевых жаропрочных с интерметаллидным упрочнение

Жаропрочность

Жаропрочные КЭП

Закалк

Закалка

Закалка сплавов жаропрочных

Закалка сплавов жаропрочных железохромоникелевых

Закалка сплавов жаропрочных на никелевой основе деформируемых

Закалка сплавов жаропрочных окалиностойких на никелевой основе

Закалка сталей быстрорежущих жаропрочных



© 2025 Mash-xxl.info Реклама на сайте