Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эйлера материальный

С другой стороны, если деформация или течение тела задается уравнением вида (1.125), то независимыми переменными являются координаты Xi и время t. Такой способ описания деформации и течения называется эйлеровым. Это описание позволяет проследить обратную картину развития деформации от конечного состояния Xi к начальному xj при U-В методе Эйлера материальная частица для деформированного состояния в момент времени t может быть выбрана также в форме прямоугольного параллелепипеда. Рассматривается бесконечно малое за время  [c.31]


ГЛАВА XV(. ПРИНЦИП ГЕРМАНА — ЭЙЛЕРА — ДАЛАМБЕРА ДЛЯ МАТЕРИАЛЬНОЙ ТОЧКИ И ДЛЯ МЕХАНИЧЕСКОЙ СИСТЕМЫ  [c.279]

ПРИНЦИП ГЕРМАНА —ЭЙЛЕРА —ДАЛАМБЕРА ДЛЯ МАТЕРИАЛЬНОЙ ТОЧКИ  [c.279]

В чем заключается сущность принципа Германа—Эйлера — Даламбера для материальной точки  [c.297]

Если внешние силы, приложенные к твердому телу, постоянны либо зависят от положений точек твердого тела, то можно получить первый интеграл динамических уравнений Эйлера, применяя теорему об изменении кинетической энергии системы, материальных то-  [c.542]

Удобство применения общих теорем динамики заключается в возможности упростить интегрирование дифференциальных уравнений движения системы. Однако эти общие теоремы могут (как показано выше) применяться только в некоторых случаях. Удобно и то, что в формулировки общих теорем динамики не входят внутренние силы, определение которых обычно связано со значительными трудностями (это замечание о внутренних силах в равной мере относится к дифференциальному уравнению вращения твердого тела вокруг неподвижной оси, дифференциальным уравнениям плоского движения твердого тела и динамическим уравнениям Эйлера). Лишь в формулировку теоремы об изменении кинетической энергии системы материальных точек входят не только внешние, но и внутренние силы (в частном случае неизменяемой материальной системы, например абсолютно твердого тела, и в этой теореме фигурируют только внешние силы).  [c.544]

Эти уравнения называют дифференциальными у )авнениями движения материальной точки в форме Эйлера. Они даны Эйлером в 1736 г.  [c.270]

Теорема 5.3.2. (Формула Эйлера). Пусть поток материальных точек через объем V стационарен. Тогда суммарная сила воздействия точек, расположенных внутри объема V, на его оболочку равна сумме главного вектора объемных си.а и дополнительной силы  [c.407]

Лагранжев и эйлеров тензоры деформаций являются симметричными декартовыми тензорами второго ранга и поэтому для них можно в каждой точке тела найти три главных направления (главные оси) и три главных значения. С физической точки зрения материальная частица, у которой направления ребер (мы условились, что материальная частица имеет форму параллелепипеда) совпадают с главными направлениями деформации, не меняет своей ориентации. Так как направляющие косинусы осей х,- и X,- удовлетворяют условиям  [c.67]


Аналогично можно определить эйлеров тензор линейного поворота. Условие со = 0 (со=0) является условием отсутствия поворота произвольной материальной точки. Используя (3.80), представим (3.16) в виде  [c.76]

Метод кинетостатики, заключающийся в том, что в любой момент времени геометрическая сумма равнодействующей задаваемых сил. равнодействующей реакции связей и силы инерции для каждой материальной точки несвободной механической системы равна нулю (то же, что и принцип Германа - Эйлера - Даламбера, начало Даламбера).  [c.69]

Основные законы механики, установленные И. Ньютоном, относятся, как было указано в гл. III, к случаю движения свободной материальной точки. Аксиома об освобождаемости от связей дает возможность свести задачу об исследовании движения несвободной материальной точки к задаче о движении свободной точки. Но Герману, Эйлеру и Даламберу не были известны эта аксиома и понятие о реакциях связей в их современном понимании. Именно установление принципа Даламбера дало возможность прийти к выводу, что второй закон Ньютона вместе с аксиомой об освобождаемости от связей эквивалентны этому принципу.  [c.419]

Тождество Эйлера — Лагранжа 41 Точка материальная 17  [c.455]

Л. Эйлер впервые строго доказал принцип Мопертюи для случая движения материальной точки, находящейся под действием центральной силы (1744 г.). Наконец, Ж. Лагранж распространил принцип наименьшего действия на широкий класс задач динамики системы.  [c.201]

Это равенство выражает принцип Эйлера —Лагранжа в ме, найденной Эйлером. Л. Эйлер рассматривал движение одной точки. Равенство (II. 153) установлено для системы материальных точек.  [c.206]

Уравнения движения материальных систем можно найти и на основании принципа Эйлера — Лагранжа. Конечно, в этом случае была бы получена система уравнений, описывающая движение материальной системы со стационарными связями в консервативном силовом поле. Интегральные принципы механики по своему содержанию эквивалентны системам уравнений движения, которые из них вытекают.  [c.210]

Пусть теперь известно описание движения по способу Эйлера осуществим переход к переменным Лагранжа. Для этого прежде всего рассмотрим материальную частицу, находящуюся в данный момент времени t в точке пространства Х] эта частица обладает скоростью v x, t) и в момент времени будет иметь коор-  [c.5]

Метод решения очень важной задачи о движении несвободной материальной системы с помощью уравнений статики был предложен в 1716 г. Я. Германом (впоследствии академиком Российской Академии наук) и в 1737 г. обобщен Л. Эйлером. Позднее этот метод получил развитие в трудах французского ученого Даламбера (1717—1783). Нельзя не упомянуть также имени французского ученого Лагранжа (1736—1813), проделавшего большую работу по математическому обоснованию законов механики. Выводы Лагранжа были уточнены и дополнены русским математиком и механиком, академиком М. В. Остроградским (1801—1861). Им же разработана общая теория удара, решен ряд важнейших задач из области гидростатики, гидродинамики, теории упругости и др.  [c.5]

Вместе с тем появились и существенные дополнения, среди которых следует отметить написанную К. А. Лурье новую (тридцать первую) главу, содержащую изложение основ специальной теории относительности. В заново написанных параграфах получили освещение вопросы полета ракеты простейшей схемы, теории колебаний систем с произвольным конечным числом степеней свободы, применения общих теорем динамики систем материальных точек к сплошным средам (теоремы Эйлера, Бернулли, Борда), а также к выводу общих дифференциальных уравнений динамики сплошных сред и выражения мощности внутренних сил в сплошной среде. Последнее в случае сред с внутренним трением позволяет глубже судить о важном для механики понятии потерь (диссипации) механической энергии при движении среды.  [c.7]


Уравнения Эйлера упрощаются в случае гироскопа ( 153), т. е. твердого тела, имеющего ось материальной симметрии и вращающегося вокруг неподвижной точки, расположенной иа этой оси. Будем обозначать через /i( = /2) экваториальный,  [c.598]

Уравнения (12) называются дифференциальными уравнениями криволинейного движения свободной материальной точки в проекциях, на оси естественного трехгранника. Эти уравнения были впервые получены Л. Эйлером. Заметим, что уравнения (12) применяют в том случае, когда траектория материальной точки известна, т. е. известны для каждой точки траектории направления осей естественного трехгранника и радиус кривизны.  [c.452]

Уравнения (10) называются дифференциальными уравнениями криво-линейного движения несвободной материальной точки в проекциях на оси естественного трехгранника, или уравнениями в форме Эйлера.  [c.483]

Уравнениями в форме Эйлера (10) или (11) можно пользоваться и в случае, когда материальная точка под действием активных сил движется по заданной неподвижной шероховатой кривой при этом в первом из уравнений (10) или (11) к проекции равнодействующей активных сил (/ ) должна быть присоединена проекция силы трения Р Р =—( У)-  [c.483]

Ряд разделов книги дается в нетрадиционном изложении. Кинематика твердого тела основывается на теореме Эйлера о мгновенном движении твердого тела. В изложении общих теорем динамики системы материальных точек автор следует методике  [c.2]

Теорема о моменте количеств движения. Пусть среди возможных перемещений материальной системы существует вращение вокруг неподвижной оси z как твердого тела. Обозначим через бф элементарный возможный поворот системы вокруг оси z. Из теоремы Рис. 110 Эйлера имеем  [c.148]

Освободим теперь материальную систему от части связей, Отбросив часть из функций /,. Пусть дх , дуч, dzy, обозначают действительные изменения скоро(стей точек освобожденной системы при тех же внешних силах и при тех же значениях координат и скоростей для момента t. Перемещения, возможные при полных связях, тем более будут среди возможных перемещений освобожденной системы. Поэтому из принципа Эйлера —  [c.224]

Уравнения движения. Прямоугольные координаты точки материальной системы u(t, Xi, х ), v(t, х,, ж ), w(t, Xi,. ... .Хп), /н — масса точки. Силы пусть допускают для простоты силовую функцию. Принцип Эйлера — Лагранжа  [c.297]

Эйлера координаты x k точек пространства и время t используются, например, в гидромеханике. В теории упругости обычно применяется способ Лагранжа, позволяющий определить перемещение фиксированной материальной точки М (Хй), которое она получает из начального состояния в результате внешнего воздействия на тело..  [c.8]

Поскольку законы механики (второй закон Ньютона, закон количества движения и т. п.) сформулированы применительно к материальным телам, каковыми в механике жидкости и газа являются жидкие частицы и их конечные совокупности, то необходимо уметь, пользуясь методом Эйлера, выражать ускорения а жидких частиц. В соответствии с физическим смыслом оно определяется полной производной вектора скорости по времени  [c.29]

Мы можем следить за какой-либо частицей, если фиксируем величину а. Следовательно, в материальном описании (переменные Лагранжа) материальная производная есть частная производная по времени didt). В пространственном описании (переменные Эйлера) материальная производная обозначается как d/dt или точкой над символом соответствующей величины.  [c.18]

Расслютрим несвободную механическую систему, состоящую пз п материальных точек. Применим к каждой точке М/ этой системы принцип Германа—Эйлера—Даламбера (см. 106). Тогда  [c.283]

Теорема об изменении главвектора количеств движения системы материальных точек в приложении к сплошным средам (теорема Эйлера). Рассматривается объем жидкости (или газа), ограниченный боковой поверхностью трубы и двумя плоскими поперечными сечениями 1 ш 2, перпендикулярными к стенкам трубы (рис.  [c.180]

Эти величины уже не являются функциями положения материальной системы и не могут быть приняты за обобщенные координаты. Поясним это на примере. Как известно ), проекции угловой скорости твердого телн, имеющего одну неподвижную точку, па оси, жестко связанные с телом, выражаются ( формулами Эйлера  [c.80]

Оси координат Oxyz считаем направленными в каждый момент времени по главным осям инерции системы шар - материальная точка . Положение главных осей инерции относительно осей Oir определяется с помощью углов Эйлера ф, t3, р. Угол прецессии ф выберем также в качестве обобщенной координаты относительного движения точки.  [c.52]

Дифференциальные уравнения движения Движение точки можно материальной точки в форме Эйлера, описать в проекциях на оси кинематике МЫ изучали три способа естественного трехгранника определения движения точки 1) вектор-двуия уравнениями цый, 2) в прямоугольных координатах,  [c.270]

Динамика твердого тела изучается на основе общих теорем об изменении кинетической энергии, кинетического момента и количества движения, а также с помощью основных понятий геометрии масс. Показывается, что аппарат динамики системы материальных точек применим для описания движения твердого тела и систем твердых тел. Проясняется вычислительная экономность использования уравнений Эйлера. Традиционно анализируются случаи Эйлера-Пуансо, Лагранжа-Пуассона, Ковгияевской [24]. В качест)зе примера методики по.чучения частных случаев интегрируемости приводятся случаи Гесса и Бобылева-Стеклова [6]. С целью демонстрации приложения развитых методов к практике даются основы элементарной теории гироскопов [14, 41], достаточные для качественного анализа действия гироскопических приборов.  [c.12]


Действительное движение материальной системы со стационарными голономными связями в консервативном силовом поле отличается от иных кинематически возможных эквиэнергетиче-ских движений тем, что для произвольного промежутка времени лагранжево или якобиево действие, найденное для действительного движения, стационарно. Иначе говоря, первая вариация лагранжевого действия и других его форм, определенная для произвольного промежутка времени соответственно закону действительного движения, равна нулю. Условие (II. 149) или (11. 150) —это необходимые, но недостаточные условия наличия экстремума функционалов, которыми выражается якобиево или лагранжево механические действия. Конечно, как будет видно из дальнейшего, это утверждение относится и к форме действия, предложенной Эйлером.  [c.204]

Таким образом, при движении материальной точки в каждьш данный момент времени активная сила Р, реакция связи N и сила инерции Q взаимно уравновешиваются. Это положение называют принципом Германа — Эйлера — Даламбера.  [c.156]

Краткие исторические сведения о развитии кинематики. Если механика как наука о движении и равновесии материальных тел существует десятки столетий, то кинематика как самостоятельный ее раздел возникла сравнительно недавно. Основные понятия кинематики — скорость и ускорение (при прямолинейном движении) — были введены Г. Галилеем (1564— 1642) в первой половине XVII в. Он же сформулировал закон сложения скоростей. Общее попятив ускорения было введено Ньютоном. Кинематика твердого тела была разработана академиком Российской Академии наук Л. Эйлером (1707—1783) в труде Теория движения твердых тел (1765).  [c.144]

Проектируя основное уравнение (13.3) на естественные оси, получим естественные уравнения движения материальной точки (уравнення движения в форме Эйлера)  [c.243]

В полной общности принцип этот был развит Лагранжем. В 1788 году вышла его знаменитая Аналитическая механика в ней впервые, после тщательного анализа решенных к тому времени задач и высказанных в связи с этим предложений, Лагранж выделил указанную идею Германа и Эйлера и развил ее во всей общности. Содержание их мысли следующее. Пусть М., — точки материальной системы, — их массы, г, — их радиусы-векторы, Fv — векторы действующих на них заданных сил предполагается, что система стеснена идеальными связями. Под действием сил точка Л/v при наложенных связях в действительном движении в рассматриваемый момент времени пусть имеет ускорение jv (рис. 108). Если к точке приложить еще -rufjy силу, равную —mvjv, то эта сила остановила бы изменение скорости. Точка была бы в покое или в равномерном и прямолинейном двин е-нин, ибо если бы точка Л/v была свободной, то силы /Wvjv было бы достаточно, чтобы вызвать ускорение jv. И так для канедой точки (v = 1,. ..  [c.140]

Принцип Эйлера — Лагранжа для движения относительно центра масс. Допустим, что материальная система среди своих возможных перемещений имеет поступательные перемещения как твердого тела в направлении неподвижных осей Oxyz. В силу сделанных предположений имеют место законы о движении центра масс в направлении всех трех неподвижных осей координат  [c.161]

Подобная абстракция дает при решении многих основных задач гидравлики возможность применения законов теоретической механики как точки, так и системы материальных точек и получения дифференциальных уравнений молярного движения жидкости, пользуясь впедепны.ми Эйлером понятиями о давлении и скорости в жидкости, не принимая во внимание молекулярного движения, ио учитывая косвенно влияние его введением в рассмотрение сил трения.  [c.13]

Для численного пптегрировагсия полученной системы уравнений разобьем выделенный объем среды точками г = (г=1, 2,. ... ... п) на и материальных частиц значения всех искомых функций будем определять в точках = г (i=l, 2,. .., п). Тогда четыре последних дифференциальных уравнения в частных производных по времени от иеремеп ых а,, а, w, р2 перейдут в Ап обыкновенных дифференциальны уравнения по времени, для численного интегрирования которых удобно использовать модифицированный метод Эйлера — Коши. Для определения значений давления р i в точках г = г. в к шдый фиксированный момент времени необходимо решать лине пую (для pi ) краевую задачу для первого дифференциального (по / ) уравнения второго порядка с краевыми условиями (6 7.17).  [c.53]


Смотреть страницы где упоминается термин Эйлера материальный : [c.280]    [c.540]    [c.11]    [c.8]   
Нелинейное деформирование твердых тел (2000) -- [ c.35 ]



ПОИСК



Материальная

Принцип Гермаиа — Эйлера—Даламбера для материальной точки

Принцип Гермаиа—Эйлера—Даламбера для материальной точки и для механической системы

Связь между теоремами, принципом Германа—Эйлера—Даламбера и основным уравнением динамики материальной точки

Теорема об изменении главного вектора количеств движения материальной системы в приложении к сплошным средам (теорема Эйлера)

Теорема об изменении главного вектора количеств движения системы материальных точек в приложении к сплошным средам (теорема Эйлера)

Эйлер

Эйлера материальной частицы

Эйлера эйлеров

Эйлерова (L.Euler) материальная



© 2025 Mash-xxl.info Реклама на сайте