Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Осесимметричное течение сопротивление тела

Отметим, что, например, при числе Маха набегающего потока М = 4 максимальное сопротивление тела вращения может в два раза превышать сопротивление полубесконечного цилиндра с плоским головным срезом в случае осевой симметрии. Для проведения этого сравнения был использован расчет осесимметричного течения с отошедшей ударной волной, приведенный Белоцерковским в [38].  [c.173]


Оценка сопротивления с использованием (4.14.18) часто представляет собой трудную задачу. Если среда неограниченна, то можно поступать иначе, воспользовавшись результатами разд. 4.12 для осесимметричного течения, вызванного точечной силой. На достаточно большом расстоянии от обтекаемого препятствия функция тока должна совпадать с функцией тока, генерируемой в результате действия точечной силы, равной по величине силе сопротивления, при условии что жидкость на бесконечности покоится. Как следует из (4.12.3), при замене D на сила, действующая со стороны жидкости на тело в положительном направлении оси определяется при помощи соотношения  [c.136]

Если отрыв потока нежелателен в инженерных приложениях, его условились называть срывом . Напомним, что срывом на крыловом профиле называют отрыв потока, ухудшающий характеристики профиля вследствие резкого возрастания сопротивления и падения подъемной силы. Однако на практике отрыв потока не всегда нежелателен. Например, благодаря взаимодействию отрывного течения, создаваемого иглой, установленной перед тупым телом, при сверхзвуковых скоростях полета с отошедшим головным скачком уплотнения лобовое сопротивление сильно уменьшается. Следовательно, необходимо новое определение понятия срыва как явления в течении, которое приводит к накоплению значительных количеств заторможенной жидкости и часто связано с появлением нестационарности [35]. Нестационарность возникает из-за периодических выплескиваний накопившейся застойной жидкости, а так как возможность вытекания исключена, накопление жидкости продолжается. В трехмерном течении существует компонента скорости, перпендикулярная направлению основного потока. Накопленная жидкость может выплескиваться в этом направлении. Поэтому в несимметричном течении, т. е. в трехмерном течении, срывы встречаются редко. Однако в строго двумерном течении вытекание по нормали к направлению основного потока исключено и возможно накопление значительного количества заторможенной жидкости с периодическим выплескиванием другими словами, возникает срыв. На практике двумерные течения встречаются весьма редко и чаще всего наблюдается осесимметричное течение. В противоположность строгому определению отрыва потока определение срыва следует считать довольно субъективным, так как его существование связано с геометрией поля течения и характеристиками жидкости.  [c.46]


Широкие возможности решения задач о трении и конвективном тепломассообмене при градиентном течении жидкостей и газов дает теория пограничного слоя. Сопротивление, которое испытывает тело при движении в жидкости или газе, а также интенсивность тепломассообмена между жидкостью или газом и поверхностью тела в значительной степени обусловлены развитием динамического и теплового пограничных слоев. В случае образования на обтекаемой поверхности ламинарного пограничного слоя получены точные аналитические решения уравнений пограничного слоя для некоторого класса задач. Особенно простым классом точных решений этих уравнений являются автомодельные решения, имеющие место в случае, когда скорость внешнего потока пропорциональна степени расстояния х,. измеренного от передней критической точки, а также при плоскопараллельном и осесимметричном течении вблизи критической точки. В других случаях при невозможности получения точных решений надежные результаты дают методы численного интегрирования или приближенного решения интегральных уравнений количества движения, кинетической, тепловой или полной энергии для пограничного слоя. Разными авторами предложены методы преобразования уравнений пограничного слоя в сложных условиях тече-4  [c.4]

Следующим этапом исследования явилось определение области существования найденных решений в плоскости годографа скорости и в плоскости течения. Для безударных решений была найдена область, в которой увеличение энтропии ведет к увеличению сопротивления тела или к уменьшению тяги сопла. На основании исследования локальной второй вариации была найдена область, в которой выполняются необходимые условия минимума сопротивления. Граница этой области совпадает с геометрическим местом точек экстремалей, в которых ускорения становятся бесконечными. Для решения с изэнтропическими разрывами было найдено дополнительное необходимое условие минимума. Было выполнено построение области существования различных решений в плоскости течения для осесимметричных сопел при безвихревых течениях совершенного газа.  [c.243]

Рассматриваемые здесь вариационные задачи заключаются в определении формы тел, обладающих минимальным волновым сопротивлением в плоскопараллельном или осесимметричном сверхзвуковом потоке газа, и контуров сопел, реализующих максимальную силу тяги при некоторых ограничениях. Силы, действующие на тела при течениях невязкого газа, определяются давлением на стенки. Величина давления находится из рещения граничных задач для нелинейных уравнений газовой динамики. Такие задачи в настоящее время решаются численно. Нахождение решения вариационных задач со связями в виде уравнений с частными производными приводит к сложным численным процессам. О таком прямом подходе к оптимизации формы тел будет сказано в послесловии к этой главе. Здесь будет рассмотрен подход, который в плоскопараллельном и осесимметричном случаях допускает точную одномерную постановку ряда вариационных задач и их простое решение.  [c.45]

Пусть задан набегающий поток газа, то есть функции ги х,у), в х,у), р(х,у), р х,у), удовлетворяющие системе уравнений (1.6)-(1.9). В поток (рис. 3.6) помещается некоторое тело с образующей у = Д(ж), которая соединяет точки а и Ь. Поскольку рассматриваются только сверхзвуковые течения, обтекание верхней и нижней поверхностей плоского профиля можно изучать независимо друг от друга, а в осесимметричном случае достаточно рассмотреть одну меридиональную плоскость течения. Волновое сопротивление X тела с контуром аЬ, то есть проекция равнодействующей сил давления на ось х, выражается формулой  [c.63]

Особый интерес представляют исследования теплообмена и сопротивления для цилиндрических и осесимметричных тел при наличии значительных отрицательных и особенно положительных градиентов давления. Этот вопрос является актуальным в случае течения в соплах с большим коэффициентом расширения.  [c.14]


Представляют большой интерес задачи о течениях газа с организованным тем или иным способом подводом энергии. При соответствующем расположении областей теплоподвода вблизи внешней поверхности летательного аппарата можно существенно снизить волновое сопротивление, создать тягу, получить управляющие усилия [1]. Аэродинамические явления при обтекании лазерного луча изучены в [2-4]. Задачи, связанные с подводом тепла к сплошной среде, возникают и в астрофизике [5]. Ниже приведены некоторые результаты исследования сверхзвукового обтекания областей тепловыделения и их влияния на волновое сопротивление осесимметричных затупленных тел вращения, расположенных вниз по потоку.  [c.414]

В прошлом основные свойства отрыва потока исследовались на простых моделях, таких, как впадина, уступ, игла. Углубление на поверхности летательного аппарата может вызвать разрушение конструкции из-за нестационарного течения в нем, но углубления вместе с тем полезны для увеличения сопротивления гиперзвуковых космических летательных аппаратов, возвращающихся в атмосферу Земли. Отрыв потока перед уступом аналогичен отрыву потока от иглы, установленной перед затупленным телом. Если игла установлена перед затупленным осесимметричным телом, прямой скачок перед затупленным телом может перейти в конический, и тогда между концом иглы и носовой частью тела формируется коническая область отрыва потока, в результате чего  [c.230]

Этот частный случай отрыва потока может быть применен для практических приложений с использованием преимуществ отрывного течения. Отрыв такого типа может существовать как в ламинарных, так и турбулентных течениях, включая взаимодействие скачка уплотнения с пограничным слоем, присоединение оторвавшихся слоев и пульсационные нестационарные течения. Вначале перечисляются некоторые возможные практические приложения затем описываются особенности механизма течения. Наконец дается описание подробной картины течения на основе экспериментальных наблюдений. Экспериментальные исследования проводились большей частью на цилиндрических моделях с носовыми частями, имеющими полусферическую форму, плоскую форму, полусферическую форму с плоским срезом, а также форму оживала и усеченного конуса. Интервал исследуемых чисел Маха набегающего потока 1,75 Моо 14 ж чисел Рейнольдса, вычисленных по диаметру цилиндрической части тела, 0,85-10 Re 1,5-10 . Течение около таких осесимметричных моделей при нулевом и отличном от нуля углах атаки будет рассмотрено более тщательно после рассмотрения свойств течения около двумерных поверхностей при нулевом угле атаки. Коэффициенты сопротивления, подъемной силы и т. п. определялись каждым исследователем по-своему, что будет упомянуто в соответствующих разделах.  [c.218]

При исследовании осесимметричных струйных течений был получен один точный теоретический результат. В 2 было отмечено, что в плоской задаче струи в бесконечности за препятствием расширяются по параболическому закону, причем сопротивление препятствия выражается через параметр параболы. М. И. Гуревичем (1947) было доказано ), что при струйном обтекании неограниченным потоком осесимметричного тела расстояние вдоль оси симметрии х при х оо связано с радиусом каверны у соотношением  [c.24]

Экспериментальное определение профильного сопротивления посредством измерения сил сопротивления во многих случаях слишком неточно. Например, в аэродинамической трубе эта неточность возникает вследствие большого дополнительного сопротивления подвесок, с помощью которых крепится исследуемое тело. В других же случаях такое экспериментальное определение вообще невозможно, например в условиях полета. В таких случаях большую ценность представляет изложенный в главе IX способ определения профильного сопротивления по распределению скоростей в спутном течении. Часто этот способ является вообще единственным возможным способом определения профильного сопротивления. Он применим и к плоской, и к осесимметричной задаче, однако здесь мы ограничимся описанием его только для плоского течения.  [c.676]

Модели для исследования этой проблемы имеют вид осесимметричных тел с различными затуплениями и тонкими стержнями (иглами), установленными перед этими телами. Примеры таких моделей с иглами и без них показаны яа фиг. 24—36. Затупление носовой части может варьироваться за счет изменения площади плоского участка носовой части от нескольких процентов до 100 относительно максимальной площади поперечного сечения модели. Игла может иметь форму цилиндра с коническим заострением, цилийдра с плоским торцом или состоять из нескольких цилиндров различных диаметров. Длины и диаметры игл различны. Течение около таких тел подобно двумерному, описанному в разд. 5.3, за исключением, например, пульсирующего течення. Одно из основных качественных различий между двумерным и осесимметричным течениями заключается в том, что переход от одного типа отрыва к другому в первом случав сопровождается пульсирующим течением, в то время как во втором случае неста-ционарность не наблюдалась [49]. При нулевом угле атаки были измерены [46] угол отрыва и распределение давления на поверхности тупого тела при М , = 1,% и Ке/см = 1,3-10 . Распределения давления и скорости, а также коэффициенты сопротивления и теплопередачи для тупых тел при М = 12,7 — 14,0 и Не/см =0,29-10 определены экспериментально [54].  [c.229]

Круглая струя жидкости с осесимметричными свободными границами представляет собой исторический и уникальный пример безвихревого течения, поле скоростей которого было точно описано с помощью аналитических функций. В других случаях, в том числе и в случае осесимметричных трехмерных течений, не существует формул, аналогичных полученным в двумерной теории. Важный вклад в строгую математическую теорию трехмерных струй и каверн внесли Рябушинский [62], Гилбарг [29], Серрин [72, 73], Гарабедян, Леви и Шеффер [23] и др. Однако практический расчет осесимметричных свободных струйных течений по-прежнему основан на разнообразных приближенных методах. К ним относятся, например, два метода расчета полей течения и сил с помощью замены каверны телом, близким по форме к телу Рэнкина, определяемому методами распределения источников — стоков [59, 89], а также релаксационные [53, 77] и электролитические [67] методы расчета осесимметричных течений. Гарабедян [22] предложил итерационный метод аппроксимации функции тока и использовал его для расчета поля кавитационного течения и сопротивления круглого диска по модели Рябушинского. Сопротивление дисков, конусов и других тел рассчитывалось по известным распределениям давления для аналогичных двумерных профилей [4, 58, 60]. В случае кавитационных течений для трехмерных аналогов двумерных тел получаются другие формы каверн. Однако распределения скоростей (и следовательно, давления) на смоченной части эллипсов и сфероидов подобны. Поэтому для тел с затупленной носовой частью лобовое сопротивление определяется с достаточной точностью. Наоборот, результаты для клина и конуса с одинаковым углом при вершине различны.  [c.226]


Начнем с приближенных методов. Большинство из них опирается на известный в гидродинамике прием, состоящий в распределении вдоль границ течений различных особенностей — вихрей источников, стоков и мультиполей — и последующем составлении интегральных уравнений для определения интенсивностей этих особенностей. Д. Саламатов (1959) под руководством Ф. И. Франкля рассмотрел задачу об истечении несжимаемой жидкости из осесимметричной воронки конической формы, определил вид свободной поверхности и распределение скоростей вдоль стенки воронки. Метод решения задачи состоял в замене границ течения непрерывно распределенными кольцевыми вихрями, причем на поверхности сосуда неизвестной являлась интенсивность вихрей, а на свободной поверхности — радиус вихревого кольца. Для определения этих величин по граничным условиям было составлено интегро-дифференциальное уравнение, которое было решено в отдельных точках методом последовательных приближений. В дальнейшем тот же метод был применен Д. Сала-матовым для нахождения сопротивления круглого конуса при струйном обтекании и сопротивления тела вращения при кавитационном обтекании.  [c.23]

Течение с развитой кавитацией, аналогичное рассмотренному выше, возникает в потоке, если число кавитации делается весьма малым. В этом случае за телом образуется большая кавитационная полость, заполненная парами воды и газами. Давление в каверне весьма мало и близко к давлению водяных паров. При обычных условиях в воде паровая кавитация возникает при очень больших скоростях, которые трудно воспроизводить в лаборатории. Введение в каверну газа, например воздуха, позволяет получить малое число кавитации и развитую каверну при малых скоростях буксировки, легко осуществимых в лаборатории. Метод искусственной (газовой) кавитации позволил, в частности, измерить сопротивления различных тел — конусов, диска, шара и эллипсоидов при кавитационнод режиме обтекания в опытовых бассейнах (Л. А. Эпштейн, 1948, 1949). Оказалось, что для диска и тупых конусов с ростом числа кавитации коэффициент сопротивления Сд. возрастает приблизительно как Сх (1 + о)-Однако для острых тел подходит лучше формула С" + а. Теоретическое исследование развитой кавитации в пространственных случаях шло главным образом по ЛИНИИ получения приближенных решений, согласующихся с физическим опытом. Изучение фотографий газовых каверн, применение теоремы о количестве движения и анализ осесимметричного кавитационного течения позволили сделать важный вывод о том, что сопротивление тела с каверной за ним, с точностью до поправочного множителя к, близкого к единице, равно произведению площади миделева сечения каверны на разность статического давления перед обтекаемым телом и давления в каверне. Это значит, что коэффициент сопротивления, отнесенный к ми-делеву сечению каверны, равен числу кавитации а. Полученный результат может служить теоретическим обоснованием возможности достижения весьма малого коэффициента сопротивления на больших скоростях для тела, тесно вписанного в каверну. Это очень важное обстоятельство впервые было отмечено в 1944 г. Д. А. Эфросом и затем развито рядом авторов.  [c.42]

Распространение изложенного метода расчета на осесимметричный случай впервые было выполнено А. Д. Янгом В дальнейшем Н. Шольц существенно развил этот метод как для плоского, так и для осесимметричного случая, причем применил его также к шероховатым стенкам. Из большого числа выполненных им расчетов для профилей (плоское течение) и тел вращения он установил зависимость профильного сопротивления от относительной толщины обтекаемого тела. Эта зависимость графически изображена на рис. 25.5, на котором через Аа/ = с/ — с о обозначено превышение вычисленного коэффициента сопротивления f, отнесенного к смоченной поверхности, над коэффициентом сопротивления q плоской пластины, обтекаемой в продольном направлении. Кривая для плоского случая довольно хорошо  [c.684]

При многих экспериментальных исследованиях осесимметричных кавитационных течений в качестве тел (кавитаторов), за которыми образуется каверна, приняты диски, сферические и эллиптические головки. Эксперименты позволяют выявить ряд особенностей кавитационных течений таких, как нестационарность, влияние весомости, а также установить зависимости между расходами газа, числами кавитации и Фруда, коэффициентом сопротивления воды и числами кавитации и т. д.  [c.211]

Враун и Доноуф, используя зависимости для физических свойств газа, близкие к реальным, провели расчет теплообмена и сопротивления при обтекании клиновидных тел, а также при вдуве и отсосе [Л. 15]. Решотко и Коэн рассчитали теплообмен при течении в окрестности критической точки осесимметричного тела Л. 16]. В этих расчетах, кроме уравнений (12-11) и (10-1), использовались следующие, несколько отличающиеся от рассмотренных, преобразования переменных  [c.321]

А - для осесимметричного потока, г 1 - производная в концевой точке контура. При вычислении коэффициента для тела врагцения сила сопротивления отнесена к кольцевой плогцади 7г(г — Гд), в случае плоского течения го = О и рассматривается сила сопротивления, действуюгцая на одну сторону профиля. Контур предполагается гладким и имеюгцим только конечные разрывы второй производной в отдельных точках. При таких предположениях запись формулы Буземана в виде (1) остается справедливой.  [c.374]

В СВЯЗИ С полетом с большой сверхзвуковой скоростью возникает ряд задач о выборе аэродинамической формы таких тел. Классической задачей является задача об определении аэродинамической формы тела минимального сопротивления. Решению этой задачи посвяш ено значительное число работ, в которых для описания течений использовались приближенные и точные теории обтекания тел [1-8]. Большинство этих работ посвяш ено определению плоских профилей, осесимметричных тел или тел, образованных коническими или гомотетичными новерхностями. В последнем случае поперечный контур тела, даюш его суш ественный выигрыш в сопротивлении, имеет звездообразный вид [1, 2]. При использовании таких головных частей встает проблема соединения носовой части тела с корпусом летательного аппарата, который имеет плавные обводы, например окружность. В 1967 г. Г. Г. Черным было высказано предположение о суш ествовании тел пространственной конфигурации, обладаюш их положительными свойствами звездообразных тел и хорошо сопрягаюш ихся с произвольными контурами поперечного сечения основного корпуса летательного аппарата. Тогда же был предложен один из возможных способов построения таких тел.  [c.424]

Рассмотрена задача об определении формы плоских и осесимметричных тел минимального сопротивления и сопел максимальной тяги при стационарном сверхзвуковом течении невязкого и нетеплопроводного газа при наличии необратимых процессов типа химических реакций, идуш их с конечными скоростями, и при отсутствии таких процессов. Предполагается, что область влияния искомого участка контура ограничена характеристиками и не содержит ударных волн. Ограничения на контур тела произвольны могут задаваться размеры тела, плош адь поверхности, объем и т. п.  [c.523]



Смотреть страницы где упоминается термин Осесимметричное течение сопротивление тела : [c.202]    [c.105]    [c.383]   
Гидродинамика при малых числах Рейнольдса (1976) -- [ c.137 ]



ПОИСК



Сопротивление осесимметричных тел

Сопротивление тела

Тела осесимметричные

Течение осесимметричное



© 2025 Mash-xxl.info Реклама на сайте