Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сопротивление разрушению - Методы определения характеристик разрушения

В СССР и за рубежом опубликован ряд обобщающих трудов, посвященных анализу важнейших достижений по механике хрупкого разрушения i. Однако к настоящему времени еще не разработаны в достаточной мере методы определения характеристик трещиностойкости конструкционных материалов, т. е. методы определения характеристик сопротивления материала развитию в нем трещины.  [c.6]

Рассмотрены вопросы несущей способности поверхностно-упрочненных деталей машин и элементов конструкций при циклическом нагружении, а также особенности зарождения, развития и торможения усталостных трещин в поверхностно-упрочненных деталях. Указаны особенности применения критериев подобия усталостного разрушения для определения длительной выносливости упрочненных деталей. Рассмотрены расчеты деталей на долговечность. Разработаны графические методы определения характеристик сопротивления материалов разрушению. Даны рекомендации по практическому применению разработанных методов.  [c.2]


Температурные зависимости характеристик сопротивления хрупкому разрушению и методы их определения  [c.40]

Поставленная задача предусматривала анализ эксплуатационных условий работы магистральных трубопроводов и характера их разрушений разработку метода испытания труб большого диаметра в условиях повторных нагружений внутренним давлением исследование напряженно-деформированного состояния труб при статическом и повторно-статическом нагружениях о учетом концентрации и наличия моментных зон определение характеристик сопротивления малоцикловому деформированию и разрушению конструкционных материалов получение данных о малоцикловой прочности труб большого диаметра разработку основ метода оцен-  [c.138]

МЕТОДЫ ОПРЕДЕЛЕНИЯ МЕХАНИЧЕСКИХ СВОЙСТВ МАТЕРИАЛОВ И ХАРАКТЕРИСТИК СОПРОТИВЛЕНИЯ ДЕФОРМИРОВАНИЮ И РАЗРУШЕНИЮ  [c.209]

Отмеченное непостоянство сопротивления деформированию при малоцикловом нагружении материала, а также связь характеристик деформирования и разрушения приводят к необходимости осуществлять исследование прочности при малом числе циклов нагружения с непрерывным контролем и фиксацией изменения напряженного и деформированного состояния в процессе циклических нагружений. При этом методы определения механических свойств должны включать в равной степени исследование как деформационных, так и прочностных характеристик.  [c.209]

В настоящей серии будут рассмотрены три группы основных вопросов определения прочности и ресурса ВВЭР 1) конструкции, условия эксплуатации и методы расчетного определения усилий и напряжений (данная книга) 2) методы и средства экспериментального определения напряженно-деформированного состояния на моделях, стендах и натурных конструкциях ВВЭР при пусконаладке и в начальный период эксплуатации 3) методы определения расчетных характеристик сопротивления конструкционных реакторных материалов деформированию и разрушению и расчетов прочности и ресурса при статическом, циклическом, динамическом и вибрационном нагружении.  [c.8]

В Институте машиноведения АН СССР разработана система экспериментальных средств для определения характеристик сопротивления деформированию и разрушению конструкционных материалов. Здесь были созданы [16] получившие широкое распространение испытательные машины и стенды с механическим, электромагнитным и электродинамическим возбуждением, применение которых способствовало развитию вероятностных методов расчетов деталей машин на усталость с распространением их на области больших долговечностей и высоких температур.  [c.130]


Существующие к настоящему времени методы прогнозирования характеристик ползучести и длительной прочности обобщены в [322—324]. Разработана система определения деформационно-силовых критериев работоспособности материала с использованием структурно-кинетического и вероятностного подходов к прогнозированию прочности, пластичности и сопротивления хрупкому разрушению материалов для ресурса эксплуатации 100—200 тыс. ч и более. Рекомендуются смешанные структурные и деформационные испытания до разрушения в большом количестве для статистического определения пяти—шести коэффициентов сложных рабочих уравнений.  [c.204]

Экспериментальное определение характеристик сопротивления разрушению выполнено на лабораторных образцах промышленных биметаллических материалов, изготовленных методами наплавки, наплавки с последующей прокаткой и совместной пластической деформацией, а также сварных соединений плакированной стали, изготовленной пакетной прокаткой. Технология изготовления и термическая обработка заготовок для образцов соответствовали принятым для штатных изделий.  [c.110]

Сформулированы деформационные и энергетические критерии усталостного разрушения металлов и выполнена их экспериментальная проверка. Проанализированы методы ускоренного определения пределов выносливости, основанные на деформационных и энергетических критериях. Рассмотрено влияние неупругих циклических деформаций на несущую способность неоднородно напряженных конструктивных элементов, в том числе при наличии концентрации напряжений. Изложены методы прогнозирования характеристик сопротивления усталостному разрушению металлов с учетом влияния концентрации напряжений, сложного напряженного состояния, режима нагружения и наличия усталостных трещин.  [c.2]

Создание ускоренных методов определения пределов выносливости металлов и расчетных методов построения кривых усталости с целью более широкого внедрения в промышленность контроля качества металла по характеристикам сопротивления усталостному разрушению.  [c.98]

Рассмотрим температурно-временные факторы в связи с расчетом сопротивления малоцикловому разрушению. Как отмечалось выше, методы определения долговечности изложены для уровней температур, когда реологические эффекты практически отсутствуют. Однако и при таких умеренных температурах в отдельных случаях характеристики прочности и пластичности,  [c.108]

Анализ ударной вязкости как характеристики материала при динамическом нагружении и методы определения вязкости детально рассмотрены в монографиях Г. А. Погодина-Алексеева (1, 2]. Методы определения ударной вязкости стандартизованы [3]. Склонность к хрупкому разрушению материала можно оценивать также и по критериям, характеризующим сопротивление отрыву, по относительной волокнистости излома при понижающихся температурах и т. п. Описание этих методов можно найти в специальной литературе [4—10].  [c.49]

Температурная зависимость к используется в методе Робертсона для определения значений Vk и других характеристик сопротивления хрупкому разрушению по критерию остановки распространяющейся трещины. По этому методу в статически растянутой напряжением Ок пластине трещина инициируется односторонним надрезом, который расклинивается ударом (рис. 3.9,а). Другим способом инициирования трещины в предварительно  [c.51]

В большинстве исследований влияния сложного напряженного состояния на сопротивление разрушению (особенно разрушению в условиях ползучести) опыты проводились в ограниченном объеме при малом количестве испытаний и варьировании вида напряженного состояния в небольших пределах всего трехмерного пространства (испытания тонкостенных трубчатых образцов от чистого сдвига до двухосного растяжения), параллельные опыты на один и тот же режим в большинстве случаев отсутствуют, В связи с этим используются такие методы обработки экспериментальных данных, которые допускают совместный анализ результатов различных исследований, проведенных в разных условиях на материалах разного класса. С этой точки зрения целесообразно использование безразмерных координат, когда все параметры напряженного состояния отнесены к какой-либо характеристике механических свойств материала, например к условному пределу длительной прочности за определенный срок службы или к сопротивлению разрушения при кратковременном разрыве в условиях одноосного растяжения  [c.130]


Определение механическими методами таких постоянных и функциональных параметров исследуемого конструкционного материала, которые полностью характеризуют его длительное сопротивление и входят в соответствующее кинетическое уравнение повреждений, представляет собой трудоемкую лабораторную работу, требующую наличия соответствующего оборудования для проведения длительных и кратковременных испытаний. Даже само изготовление нужного количества образцов материала связано подчас со значительными затратами времени и сил. В связи с этим чрезвычайно актуальна разработка неразрушающих физических методов наблюдения за процессами повреждений, протекающими в различных условиях термомеханического нагружения конструкционных материалов. Однако за исключением указанного, другие неразрушающие методы, основанные на применении различных приборов для физических измерений, пока не могут быть рекомендованы для надежного определения необходимых параметров материала, главным образом, по той причине, что получаемые численные значения физических характеристик, изменяющихся в процессе выдержки под напряжением, не обладают достаточным постоянством в момент фактического разрушения исследуемых образцов.  [c.5]

При проектировании особо ответственных и сложных конструкций современных энергетических установок эффективно применение разработанных в ИМАШ АН СССР методов и средств анализа напряженно-деформированных состояний атомных реакторов и другого оборудования для оценки их прочности и ресурса. Решение задач прочности и ресурса энергоустановок при этом осуществляется применительно к основным стадиям их создания проектированию, изготовлению, испытаниям и начальной стадии эксплуатации. На каждой из этих стадий проводится определение номинальных и местных напряженно-деформированных состояний с учетом термомеханической нагруженности, а также характеристик сопротивления деформациям и разрушению, применяемых в энергомашиностроении конструкционных материалов.  [c.29]

Ниже приведены основные положения, расчетные уравнения и характеристики для определения малоцикловой и длительной циклической прочности, а также алгоритмы и программы расчетов на ЭВМ сопротивления разрушению элементов конструкций при малоцикловом нагружении. В излагаемых методах расчета на сопротивление малоцикловому разрушению были использованы результаты научных разработок, изложенных в настоящ ей серии монографий [1—4] и в работах [5—8], а также разработок нормативных материалов применительно к атомным энергетическим реакторам [9] и методических рекомендаций (по линии научно-методических комиссий в области стандартизации методов расчетов и испытаний на прочность).  [c.214]

Традиционные методы механических испытаний включают установление комплекса свойств материала (предел текучести, предел прочности, характеристики пластичности), а определение сопротивления разрушению сводится к установлению на основе теоретических и экспериментальных данных некоторой функции [239]  [c.137]

Слева в выражении (3.3.2) стоит коэффициент интенсивности напряжений К, который следует знать в виде функции нагрузки, размеров детали и трещины, а справа он же, но определенный из опыта и играющий роль механической характеристики материала, оценивающей его трещиностойкость, т.е. сопротивление материала росту в нем трещины . Величина К . - критический коэффициент интенсивности напряжений для плоского образца данной толщины 1 (более кратко - вязкость разрушения , или просто трещиностойкость) - определяется из эксперимента. (Подробнее о методах экспериментального получения статических характеристик трещи-ностойкости см. п. 3.3.3.)  [c.144]

В этой главе мы рассматриваем основные элементы конструкции автомобиля и их назначение, пути, по которым идет развитие конструкций, а также внешние нагрузки, которые следует использовать в расчете. Мы проанализировали компоновку автомобиля и выяснили, как на нее влияют аэродинамические характеристики, размещение агрегатов, пассажиров и водителя. В других главах книги мы исследуем поведение тонкостенных балок при изгибе и кручении, методику, с помощью которой реальные конструкции легковых машин и автобусов можно заменить расчетными схемами, а также рассмотрим порядок определения распределения нагрузок между элементами конструкции. Кроме того, мы рассмотрим порядок расчета сопротивления конструкции удару и усталостному разрушению, а также влияние на конструкцию технологии изготовления. Наконец, рассматриваются специальные задачи, связанные с конструкцией грузовых автомобилей и автофургонов, оснащенных шасси и не оснащенных ими, используя более совершенные методы строительной механики.  [c.18]

Температурная зависимость Урс используется в методе Робертсона для определения значений урс и других характеристик сопротивления хрупкому разрушению по критерию остановки распространяющейся трещины [57]. По этому методу в статически растянутой пластине напряжением сг трещина инициируется односторонним надрезом, который расклинивается ударом (рис. 14). Пластина по ширине неравномерно нагрета (в области надреза она охлаждена), возникшая от надреза трещина, встречая в более теплой части повышенное сопротивление своему развитию, останавливается в месте, где температура напряжение и длина тре-  [c.241]

В последнее время в связи с развитием методов расчета остаточного ресурса конструкций внимание к этой характеристике заметно возросло. Для определения сопротивления хрупкому разрушению получил распространение параметр - наименьшее значение разрушающего напряжения, при котором происходит переход зародышевой трещины хрупкого транскристаллитного скола в лавинную стадию распространения хрупких трещин. Фундаментальность характеристики обусловлена тем, что она инвариантна по отношению к виду напряженного состояния, скорости деформирования.  [c.81]


Так как наиболее показательной характеристикой сопротивления усталостному разрушению деталей является предел выносливости, то ускоренные методы для решения задач такого типа направлены в основном на определение ускоренными испытаниями предела выносливости.  [c.167]

Измерение твердости царапанием ранее применялось главным образом при изучении минералов. Между тем, возможность определения сопротивления разрушению и связанных с ним характеристик по испытаниям очень малого участка поверхности представляет большой практический интерес и при изучении металлов. В связи с этим, а также в связи с большим практическим значением оценки анизотропии сплавов в последнее время метод царапания получил известное распространение и для металлов [22]. Если царапание производят не конусом 90°, а более тупым наконечником, например алмазной 136° пирамидой, то может происходить не разрушение, а смятие материала с выдавливанием царапины. В таких случаях не должно быть принципиального отличия от твердости при вдавливании.  [c.70]

Нам представляется, что в процессе разрушения металлов и сплавов при трении об абразивную поверхность, а в ряде случаев и при трении металлических поверхностей происходит проявление особенностей механизма пластической деформации и разрушения, когда более эффективно реализуется прочность межатомной связи, нежели в случае определения твердости при вдавливании или исследовании других механических характеристик. Поэтому сопротивление абразивному изнашиванию не всегда может быть оценено по величине твердости, определяемой методом вдавливания, без учета природы трущихся тел и способа их упрочнения.  [c.232]

Для инженерных расчетов долговечности конструкций применяют численные методы определения полей напряжений и деформаций, реализуемые с помощью ЭВМ на базе соответствующих расчетных процедур для установления максимальных напряжений и деформаций в зонах концентрации напряжений используют интерполяционные, зави-О1М0СТИ, а также прочностные характеристики, полученные в результате базовых экспериментов. Необходимо учитывать зависимость характеристик сопротивления деформированию и разрушению от формы циклов нагруз и и температуры.  [c.3]

В случаях, когда есть основания считать возможное разрушение хрупким, то обычно, предполагая справедливость положений линейной механики разрушения, расчет ведут по критерию разрушения (3.3.2). Вычисление стоящего слева коэффициента интенсивности напряжений К при современном развитии вършслительных методов и техники и наличии справочников, как правило, не вызывает затруднений. Гораздо труднее экспериментальное определение правой части критерия (3.3.2), а именно критического коэффициента интенсивности напряжений К , называемого иногда вязкостью разрушения. Сопротивление материала росту трещины во многом определяется затратами энергии на пластическое деформирование объемов материала в ближайшей окрестности вершины трещины. А величина и распределение пластических деформаций, форма и размеры пластически проде-формированных областей как вдоль фронта трещины, так и в удалении от него существенно зависят от многих условий нагружения и размеров рассматриваемого объекта и образца, служащего для определения характеристики трещино-стойкости. Поэтому постановке эксперимента по определению значений (или, что в некотором смысле более просто, Къ) следует уделять много внимания, проводя эксперимент с ориентацией на данную конструкцию.  [c.169]

Применение двух- и многослойных сталей и сплавов, обладающих взаимодополняющими физико-механическими свойствами, позволяет значительно снизить металлоемкость элементов конструкций. Проблема проектирования, создания и эксплуатации биметаллических конструкций повышенного ресурса, в частности высоконагру-женного оборудования АЭС, делает весьма актуальными экспериментальные исследования, направленные на разработку методов оценки несущей способности таких конструкций не только по интегральным характеристикам прочности, но и с учетом наличия трещиноподобных дефектов на стадиях инициации разрущения, а также распространения и остановки трещин. Развитие методов определения критериев сопротивления разрушению и их анализ необходимы для оптимизации свойств биметалла путем правильного выбора сочетания разнородных составляющих соединения, назначения технологического способа его изготовления и определения рационального соотношения толщин основного металла и плакирующего слоя. Кроме того, это необходимо при проведении расчетов на прочность и оценке ресурса биметаллических элементов конструкций, определении допускаемых размеров дефектов, выборе методов и средств дефектоскопии.  [c.107]

С увеличением нагрузки происходит разрушение диска при малых деформациях разрушение имеет хрупкий характер (фиг. 158). Это позволяет судить о величине сопротивления отрыву у металлов —характеристике, имеющей важное значение для оценки прочностных свойств. Указанный метод предложен А. Л. Немчинским [ ]. Для определения величины сопротивления отрыву необходимо знать напряженное состояние такого диска.  [c.237]

Последующие этапы расчета на прочность и долговечность элементов конструкций в рамках механики хрупкого разрушения связаны с решением соответствующих задач о предельно-равновесном состоянии тел с трещинами (задач теории трещин) и с экспериментальным определением характеристик сопротивления материала распространению в нем трещины. Решения двумерных задач такого класса в рамках указанных моделей эффективно осуществляют на основе известных методов Колосова — Мусхели-швили [72] или других, разработанных в настоящее время методов в частности численных методов. Эти методы с достаточной  [c.11]

Во многих случаях напряжения в конструкции при периодических нагрузках превышают предел усталости. Это относится, например, к деталям авиационных двигателей, лопастям несухцих винтов вертолетов, к ряду объектов военной техники, срок эксплуатации которых очень ограничен различными причинами. В этих случаях важно знать характеристики ограниченной выносливости, которые определяют ресурс детали или конструкции, обеспечивают сопротивление усталостным разрушениям в течение определенного срока, т. е. некоторого числа циклов. Поэтому,, если при расчетах на усталость из всей кривой Велера важно знать фактически лишь одну точку — предел усталости, то при расчете на ограниченную выносливость суш.ественное значение приобретает верхняя часть кривой Велера. Однако характеристики работы детали и ее ресурс, поскольку он задан, исходя из других соображений, фактически определяют уменьшенную базу испытаний на усталость. Тем самым главным становится по возможности наиболее точное воспроизведение в испытаниях истинных условий работы детали и установление статистических характеристик, определяющих вероятность разрушения детали при напряжениях, отличающихся от выявленного таким образом условного предела усталости (предела ограниченной выносливости), и при числах циклов, отличающихся от базы испытаний. Последнее особенно важно в связи с тем, что при напряжениях, заметно превышающих истинный предел усталости и близких к пределу статической прочности, разброс данных усталостных испытаний бывает очень большим. В последние годы статистическим методам обработки данных усталостных испытаний уделяется большое внимание.  [c.306]


При участии автора книги в СССР были разработаны РД 50.344— 82 "Методические указания. Расчеты и испытания на прочность в машиностроении. Методы механических испытаний металлов. Определение характеристик вязкости разрушения (трещиностойкости) при циклическом нагружении", являющиеся первым межотраслевым нормативно-методическим документом по испытаниям металлов на трещиностойкость. Определяемые в соответствии с этими методическими указаниями характе 1стики могут быть использованы (наряду с другими характеристиками механических свойств) для суждения о сопротивлении материала развитию трещины и определения влияния на него различных металлургических, технологических и эксплуатационных факторов сопоставления материалов при обосновании их выбора для машин и конструкций контроля качества материалов оценки долговечности элементов конструкций на основании данных об их дефектности и напряженном состоянии установления Критерия неразрушающего контроля и анализа причин разрушения конструкций.  [c.49]

Простейший метод расчета предусматривает использование только одной механической характеристики — минимальной прочности углового шва и соответственно одного допускаемого напряжения. Обычно таковой является прочность шва на продольный срез. Для большинства видов соединений используется кинематический метод определения сил в швах. При определении касательных напряжений в поясных швах балок при наличии перерезьшающей силы (2 используют формулу сопротивления материалов Хд = ((25)/(/6), а при наличии сосредоточенной сипы Р находят длину участка шва, передающего эту силу. Так как в этом методе не используются критерии пластичности, он может обслуживать только I н 2 виды разрушений соединения с пластичными и вязкими швами.  [c.262]

Проведенные исследования [26-27, 59-60, 91] показали возможность применения уравнения усталостного разрушения для расчётов поверхно-стно-упрочнённых деталей при условии замены их такими же по форме и размерами и эквивалентными по прочности неупрочнёнными деталями, изготовленных из материалов с другими, более высокими свойствами, к которым применимы уравнения (4.3)-(4.4). Задача в этом случае свелась к отысканию условий перехода от поверхностно-упрочнённой детали к эквивалентной, т.е. к определению характеристик сопротивления усталости материала эквивалентной детали по известным характеристикам исходного материала детали и свойствам упрочнённого поверхностного слоя, определяемых режимами проведения ППД или другими методами упрочнения.  [c.72]

На основании сформулированных выще представлений были разработаны методы ускоренного определения пределов выносливости [5], методы учета влияния на характеристики сопротивления усталостному разрушению концентрации напряжений [20, 21], сложного напряженного состояния [22], режима нагружения [23], нестацио-нарности нагружения [24, 25], методы оценки несущей способности конструктивных элементов с учетом неупругих деформаций [26, 27].  [c.9]

Вследствие практической невозможности регистращш нагрузки в области откольного разрущения информация о деформировании материала и кинетике его разрущения получается в результате анализа волновых процессов, основанного на регистрируемой диаграмме изменения скорости свободной поверхности или давления на границе раздела исследуемого материала с материалом меиьщей акустической жесткости. В связи с этим принятая для анализа модель механического поведения и разрущения материала и метод аналитической обработки оказывают существенное влияние на получаемые из экспериментальных исследований результаты, а имеющиеся в литературе данные о силовых и временных характеристиках сопротивления материала откольному разрушению неразрывно связаны с методами их определения. Выбор в качестве определяющих параметров различных величин исключает возможность сопоставления экспериментальных результатов и ведет к получению количественно и качественно противоречивых выводов. Это снижает информативность таких исследований и затрудняет их использование для практических расчетов.  [c.232]

Кратко рассмотрим методы косвенной оценки характеристик сопротивления разрушению конструкций с развивающимися трещинами, которые основаны на фрактографи-ческих исследованиях пространственного расположения бороздок усталости и определении размеров зоны вытяжки. Обычно бороздки и зона вытяжки образуются на изломе металлических материалов в процессе усталостного разрушения. Анализ изменений ширины бороздок в сочетании с данными о режиме нагружения позволяет определять скорость роста трещины, вычислять значения параметра и строить диаграмму усталостного разрушения. По ширине и высоте зоны вытяжки можно приближенно установить стартовое значение  [c.287]

Основными критериями при определении предела выносливости и других характеристик сопротивления усталости и построения кривых усталости являются полное разрушение образца или появление трещин заранее заданного размера, например, трещин, протяженность которых по поверхности составляет 0,5—1,0 мм. Дополнительными критериями могут быть резкое падение нагрузки или частоты циклов, значительный рост деформации, резкий подъем температуры, уширение петли гистерезиса, а также характеристики, обусловленные накоплением усталостной повреж-денности, возникновением и развитием усталостных трещин, что выявляется измерением твердости, а также электрическими, магнитными, токовихревыми, акустическими (ультразвук, акустическая эмиссия) и другими методами.  [c.310]

Попутно не вредно обсудить вопрос о так называемых константах материала, термине, широко употребляемом в механике сплошной среды. Константы или постоянные материала действительно существуют, пока материал рассматривается на уровне кристаллической решетки. Чем больше по масштабной шкале (укрупняя объем) мы уходим от параметров решетки, тем менее константы остаются таковыми. Для уяснения степени постоянства укажем на введенное Я.Б. Фридманом деление механических свойств на докритические, критические и закритические [261]. Все они в равной мере относятся к трем, последовательно возникающим и параллельно идущим вплоть до полного разрушения, видам деформации — упругой, пластической и разрушения. Докритические определяются по допуску на величину данного вида деформации или на появление нового, и это на стадии возрастающей несущей способности. Папример, условный предел текучести определяется по допуску на величину появившегося на фоне упругой деформации, нового вида деформации — пластической. Докритические характеристики можно считать постоянными материала. Па стадии упругой деформации модули упругости и коэффициент Пуассона — докритические характеристики и, следовательно, постоянные материала. По, например, критическое напряжение Эйлера сжатого упругого стержня есть механическая характеристика, отражающая свойства упругости в момент потери устойчивости и, как и положено критической характеристике, зависит не только от докрити-ческих характеристик, но и от формы и размеров стержня и условий закрепления. Аналогично предел прочности (временное сопротивление) является критической характеристикой, поскольку шейкообразо-вание представляет собой смену форм равновесия и сопровождается прекращением роста несущей способности. Естественно, что предел прочности должен зависеть и зависит от размеров, формы образца и схемы приложения нагрузки. По привычка считать предел прочности постоянной материала (естественно, имеется в виду неизменность условий нагружения, скорости, температуры, среды и т.п.) есть результат стандартизации метода его определения. Изменив габариты, форму сечения, взяв, наконец, вообще реальную конструкционную деталь, получим сильно различающиеся значения пределов прочности, что и должно быть для критической характеристики. Поэтому неудивительно, что при разрушении реальной детали напряжение в  [c.14]

Метод короткой балки позволяет измерить кажущуюся меж-слойную сдвиговую прочность композитов. Следовательно, он непригоден для получения исходной информации для проектирования. Тем не менее были случаи применения характеристик, определенных методом короткой балки в качестве допустимых параметров проектирования. Второе ограничение метода оценки сопротивления сдвигу на короткой балке применительно к современным композитам типа графито-эпоксидных вызывает серьезные сомнения относительно его полезности, даже в качестве метода предварительного отбора. В частности, при нагружении тонких однонаправленных образцов-балок (распространенного типа графито-эпоксидных изделий) исчерпание несущей способности не всегда реализуется в виде межслойного разрушения. Результаты подобных испытаний часто публикуются без упоминания вида разрушения при этом подразумевается, что изучаемое межслойное разрушение в эксперименте было реализовано. В качестве альтернативы тонкому образцу для сдвига при трехточечном изгибе были предложены образцы нового типа [1], в том числе толстая балка и балка для четырехточечного изгиба, размеры которой обеспечивают межслойное разрушение  [c.195]


Выбор того или иного метода ускоренного определения предела выносливости металлов должен осуществляться с учетом конкретных задач, которые предполагается решить с использованием ускоренного метода, а также на основе оптимального сочетания экономии времени и образцов, с одной стороны, и обеспечения необходимой точности определения предела выносливости, с другой. Тем не менее необходимость методов, которые позволили бы быстро и надежно контролировать характеристики сопротивления уста-лостному разрушению металлов и конструктивных элементов, ощущается в практике все более остро.  [c.215]

Твердость. Сопротивление тел разрушению или образованию остаточной деформации при шздействии на их поверхность достаточно больших деформирующих сил характеризуется твердостью. Так как при различном характере воздействия на поверхность тела оно ведет себя различным образом, трудно указать достаточно объективную и однозначную характеристику твердости. При разрушении твердого тела можно пытаться оценивать твердость )аботой разрушения, отнесенной к единице площади вновь образованной поверхности (учитывая, что при разрушении происходит увеличение поверхности тела). При таком определении твердость должна измеряться теми же единицами, что и коэффициент поверхностного натяжения (см. ниже), определяемый по свободной энергии, приходящейся на единицу поверхности. Следует, однако, отметить, что истинная работа. разрушения значительно больше увеличения свободной энергии поверхности, так как подавляющая часть затрачиваемой работы рассеивается в виде тепла. Существенно также и то, что при различных способах обработки фактически затрачиваемая работа может быть весьма различной. Поэтому в технической практике получили распространение различные условные методы оценки твердости материалов.  [c.138]

Метод продавливания может быть с успехом использован для испытания пластичных материалов толщиной от 0,1 до 20 мм как на специальных образцах, так и, на целых листах с возможностью косвенного определения условного предела текучести, предела прочности, сопротивления разрыву 5к, сужения шейки, условного и истинного сопротивления срезу и других характеристик [37, 38, 44]. Взаимосвязь между продавливанием и растяжением нарушается, если испытываемый материал дает при про-давливании разрушение путем среза, а при растяжении — путем отрыва. Наиболее распространенной пробой на продавливание является проба по Эриксену [37].  [c.53]


Смотреть страницы где упоминается термин Сопротивление разрушению - Методы определения характеристик разрушения : [c.142]    [c.38]    [c.87]    [c.313]   
Машиностроение Энциклопедия Т I-3 Кн 2 (1995) -- [ c.142 ]



ПОИСК



141 —149 — Определение характеристика

МЕТОДЫ И СРЕДСТВА ИССЛЕДОВАНИЯ ЗАКОНОМЕРНОСТЕЙ ДЕФОРМИРОВАНИЯ И РАЗРУШЕНИЯ ПРИ МАЛОЦИКЛОВОМ НАГРУЖЕНИИ Методы определения механических свойств материалов и характеристик сопротивления деформированию и разрушению

Метод характеристик

Методы сопротивления

Разрушения определение

Сопротивление Определение

Сопротивление разрушению

Характеристики разрушения



© 2025 Mash-xxl.info Реклама на сайте