Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теорема Даламбера Лагранжа

Из принципа Даламбера-Лагранжа, следуя доказательству теоремы 5.1.4, найдем  [c.402]

Теорема 7.1.1. В лагранжевых координатах тождество принципа Даламбера-Лагранжа эквивалентно тождеству  [c.524]

Доказательство. Согласно теореме 5.1.1 принцип Даламбера-Лагранжа состоит в выполнении тождества  [c.524]

При рассмотрении основных теорем динамики системы применялась аксиома об освобождении от связей. Если применять эту аксиому, то доказательство основных теорем динамики на основании принципа Даламбера — Лагранжа сводится к специальному выбору возможных перемещений. Например, для доказательства теоремы о движении центра инерции и теоремы об изменении количества движения достаточно положить, что все возможные перемещения бг равны бгр, т. е. предположить, что система перемещается поступательно.  [c.120]


Как указывалось выше, из принципа Даламбера — Лагранжа можно вывести основные теоремы динамики системы.  [c.132]

Следует подчеркнуть, что вариационные принципы имеют более широкий смысл, чем теоремы динамики, рассмотренные нами выше. Далее будет видно, что из некоторых вариационных принципов механики можно найти, как следствия, основные теоремы динамики системы. Об этом упоминалось при рассмотрении принципа Даламбера —Лагранжа.  [c.180]

ТЕОРЕМА ДАЛАМБЕРА И УРАВНЕНИЯ ЛАГРАНЖА  [c.211]

Глава XXI. Теорема Даламбера и уравнения Лагранжа 213  [c.213]

Принцип Даламбера-Лагранжа и общие теоремы динамики системы материальных точек со связями  [c.124]

Теорема 1. Принцип Даламбера-Лагранжа. Чтобы вектор-функция г(/), удовлетворяющая связям, определяла на интервале времени действительное движение системы, необходимо и достаточно, чтобы уравнение  [c.125]

Перейдем к доказательству теоремы. Подставляя = у(0 в уравнение Даламбера-Лагранжа (2), получим  [c.139]

Так как r(i) удовлетворяет условиям (4) и (5), а (i) на открытом интервале /f = (ii, I2) (см. лемму 1) есть произвольная вектор-функция, удовлетворяющая (6) и (7), то мы можем воспользоваться принципом Даламбера-Лагранжа (см. (3.5.2)), согласно которому обращение в нуль правой части (20) для любой (i), удовлетворяющей (6) и (7), есть необходимое и достаточное условие того, что r(i) - действительное движение системы. Тем самым теорема доказана.  [c.198]

Если определять систему с голономной связью как предел при — оо, то принцип Даламбера — Лагранжа становится теоремой ее доказательство намечено выше для простейшего случая.  [c.85]

Замечание 1. Выведем из доказанной теоремы принцип Даламбера — Лагранжа для системы из п точек эсх е К , 1 = = 1.. . ., п, с массами /га,-, с голономными связями.  [c.86]

Это утверждение — простое следствие теоремы 2 и принципа Даламбера—Лагранжа.  [c.29]

Теорема 6 выводится из принципа Даламбера—Лагранжа с помощью тождества (3).  [c.95]

Общие теоремы динамики системы, выводимые из уравнения Даламбера — Лагранжа  [c.220]

Теоремы динамики системы, выводимые из общего уравнения механики (уравнения Даламбера—Лагранжа)  [c.222]

Теорема о сохранении энергии как следствие принципа Гамильтона. Закон сохранения энергии, полученный раньше как следствие принципа Даламбера (см. гл. IV, п. 3), может быть теперь выведен из принципа Гамильтона. Попутно при этом выводе выясняются общие соотношения, существующие между полной энергией механической системы и функцией Лагранжа L.  [c.145]


Основные теоремы динамики. В 3 мы видели, как из начал Даламбера и Лагранжа получается основное уравнение динамики  [c.502]

Динамика системы твердых тел состоит из двух томов. В первом томе, содержащем общие сведения по динамике системы твердых тел, рассматриваются моменты инерции, принцип Даламбера, движение тела относительно неподвижной оси, движение тела, параллельное неподвижной плоскости, пространственное движение, теоремы об изменении момента количеств движения, живой силы, уравнения Лагранжа, малые колебания. Первый том представляет значительный интерес с точки зрения подхода к изложению материала (например, все теоремы выводятся из принципа Даламбера наряду с обычными силами систематически рассматриваются ударные силы), а также из-за огромного числа примеров и обширной библиографии.  [c.7]

Этот второй путь формирования механики был наглядно продемонстрирован Лагранжем в его знаменитой Аналитической механике через сто лет после выхода Начал . И этот путь пролегал через творчество Галилея, Декарта, Гюйгенса, Лейбница, И. и Д. Бернулли, Даламбера. Вывод о сохранении величины, называемой ныне кинетической энергией, для движения точки в центральном поле сил мы видим в Началах (Книга первая, предложение ХЬ). Однако ни Ньютон, ни еще ранее Гюйгенс в его теории удара не придавали этому результату особого значения, статуса закона. И только Лейбниц, ссылаясь на авторитет Галилея, предложил считать мерой движения не декартово количество движения, а величину названную им живой силой . Он же первым и сформулировал закон сохранения живых сил , и дал словесную формулировку теоремы об изменении кинетической энергии. Работы И. и Д. Бернулли укрепили в механике понятие живой силы и сделали естественным переход от второго закона к теореме энергии в ее математическом выражении.  [c.106]

Динамика системы материальных точек сначала излагается для случая, когда движение стеснено произвольными дифференциальными связями. Из принципа Даламбера-Лагранжа (общее уравнение динамики) с использованием свойств структуры виртуальных перемещений [68] выводятся общие теоремы динамики об изменении кинетической энергии (живой силы), кинетического момента (момента количеств движения), количества движения. Изучается динамика системы переменного состава [1]. На основе принципа Гаусса наи-меньщего принуждения выводятся уравнения Аппеля в квазикоординатах. Получены также уравнения Воронца и, как их следствие, уравнения Чаплыгина. Установлено, что воздействие неголономных связей включает реакции, имеющие гироскопическую природу [44].  [c.12]

Теорема 5.1.1. (Приыщш Даламбера-Лагранжа). Для того чтобы ускорения Ги материальных точек (ш,у,г ), I/ = удовлетворяли второму закону Ньютона в инерциальной системе отсчета под действием активных сил и идеальных двусторонних связей (см. 3.8), необходимо и достаточно выполнение общего уравнения динамики  [c.378]

Получить уравнения движения голономной системы с идеальными связями можно, воспользовавщись теоремой 7.1.1 о форме принципа Даламбера-Лагранжа в лагранжевых координатах. Основное  [c.539]

Существенного успеха по сравнению с тем, что было достигнуто геометрическими методами, впервые добился Лежандр в мемуаре Исследования о прйтяжении однородных эллипсоидов , представленном Парижской академии в 1785 г. несомненно, работа была закончена на год или два года раньше. Лежандр справедливо указывает, что хотя Лагранж рассмотрел задачу о притяжении во всей общности, но фактически провести интегрирование ему удалось только в тех случа ях, которые были уже исследованы Маклоре-ном. Лежандр доказывает новую важную теорему если известна сила притяжения телом вращения любой внешней точки на продолжении оси тела, то она известна для любого положения внешней точки. Это позволяет ему обобщить теорему Маклорена о софокусных эллипсоидах вращения (обобщение теоремы на случаи трехосных софокусных эллипсоидов позже удалось Лапласу). Лежандр впервые вводит в этом мемуаре разложение в ряд по полиномам, названным его именем (по сферическим функциям), и здесь же впервые появляется силовая (или потенциальная) функция, но с указанием, что эта идея принадлежит Лапласу. По оценке Тодхантера, ни один мемуар в истории рассматриваемого вопроса не может соперничать с этим мемуаром Лежандра. В течение сорока лет средства анализа, даже в руках Даламбера, Лагранжа и Лапласа, не продвинули теорию притяжения эллипсоидов дальше того рубежа, на который вышла геометрия Маклорена.... Лежандр обобщил главный результат этой геометрии... Введение и применение круговых функций начинает новую эру в математической физике.  [c.152]


Метод вывода уравнений движения системы точек Агостинелли по существу является точечным , т. е. уравнение Леви-Чивиты, записанное для одной точки переменной массы, суммируется по всем точкам системы. Как и в динамике системы постоянных масс, он приходит к общему уравнению динамики системы (к уравнению Даламбера — Лагранжа). Из этого уравнения при дополнительных частных предположениях получается ряд теорем и свойств движения тела переменной массы. Например, теорема о движе-  [c.240]

Замечания. 1. Установленная теорема имеет место лишь при условии, что связи допускают поступательное перемещение всей системы как одного твердого тела вдоль неподв 1Жиой оси х. Уравнение движения центра масс в этом случае получается из принципа Даламбера — Лагранжа, который не содержит реакций связей. Следовательно, реакции связей не войдут и в уравнение движения центра масс вдоль оси х.  [c.308]

Цель этой главы — познакомить читателя с использованием вариационных методов в теории динамических систем, которые позволяют находить интересные орбиты некоторых динамических систем как критические точки некоторых функционалов, определенных на подходящих вспомогательных пространствах, образованных потенциально возможными орбитами. Эта идея восходит к идее использования вариационных принципов в задачах классической механики, которой мы обязаны Мопертюи, Даламберу, Лагранжу и другим. В классической ситуации, когда время непрерывно, источником определенных трудностей является уже то обстоятельство, что пространство потенциально возможных орбит бесконечномерно. Для того чтобы продемонстрировать существенные черты вариационного подхода, не останавливаясь на вышеупомянутых технических деталях, в 2 мы рассмотрим модельную геометрическую задачу описания движения материальной точки внутри выпуклой области. Затем в 3 будет рассмотрен более общий класс сохраняющих площадь двумерных динамических систем — закручивающих отображений, которые напоминают нашу модельную задачу во многих существенных чертах, но включают также множество других интересных ситуаций. Главный результат этого параграфа — теорема 9.3.7, которая гарантирует существование бесконечного множества периодических орбит специального вида для любого закручивающего отображения. Не менее, чем сам этот результат, важен метод, с помощью которого он получен. Этот метод, основанный на использовании функционала действия (9.3.7) для периодических орбит, будет обобщен в гл. 13, что даст возможность получить весьма замечательные результаты о непериодических орбитах. После этого, развив предварительно необходимую локальную теорию, мы переходим к изучению систем с непрерывным временем, хотя мы проделаем это только для геодезических потоков, для которых функционал действия имеет ясный геометрический смысл. При этом важной компонентой доказательства оказывается сведение глобальной задачи к соответствующей конечномерной задаче путем рассмотрения геодезических ломаных (см. доказательство теоремы 9.5.8). В 6 и 7 мы сосредоточим внимание на описании инвариантных множеств, состоящих из глобально минимальных геодезических, т. е. таких геодезических, поднятия которых на универсальное накрытие представляют собой кратчайшие кривые среди кривых, соединяющих любые две точки на геодезической. Главные утверждения этих параграфов — теорема 9.6.7, связывающая геометрическую сложность многообразия, измеряемую скоростью роста объема шаров на универсальном накрытии, с динамической сложностью геодезического потока, выражаемой его топологической энтропией, и теорема 9.7.2, позволяющая построить бесконечно много замкнутых геодезических на поверхности рода больше единицы с произвольной метрикой. Эти геодезические во многом аналогичны биркгофовым минимальным периодическим орбитам из теоремы 9.3.7.  [c.341]

Путь универсализации методов, обобщения известных задач был главной чертой творчества Вариньона. По если его предшественники (Стевин, Галилей, Кеплер, Декарт) и современники (Гюйгенс, Пьютон, Лейбниц) искали универсальный принцип в мире философских идей, то он больше тяготел к универсализации математического аппарата механики. Особенно к адаптации идей математического анализа и дифференциальных уравнений. Основные идеи геометрической статики, принцип возможных перемещений , теорема об изменении количества движения, теорема об изменении кинетической энергии составляли основу механико-математических работ Вариньона. Это был пролог аналитической механики Эйлера-Даламбера-Лагранжа.  [c.204]

Перейдем к изучению наиболее общих методов решения задач механики. Эти методы основываются на общем принципе — принципе возможных перемеицений, или принципе Лагранжа, так как Ж. Лагранж первый придал этому принципу законченную форму и положил его в основу статики. Обч единнв этот принцип с принципом Даламбера, Ж. Лагранж получил общее уравнение динамики, из которого вытекают основные дифференциальные уравнения движения материальной системы и основные теоремы динамики ).  [c.107]

Лагранж в 60-е годы отправлялся от этих работ в своих исследованиях колебаний системы конечного числа материальных точек. Ему было нетрудно придать утверждению Д. Бернулли форму математической теоремы, так как в 40-е годы XVIII в. Эйлер показал, как проинтегрировать линейное дифференциальное уравнение произвольного порядка с достоянными коэффициентами, а Даламбер — как интегрируются системы таких уравнений. Это позволяло просто сослаться на то, что общий интеграл дифференциальных уравнений описывающих малые колебания, является суммой слагаемых, каждое из которых соответствует малым изохронным колебаниям простого маятника. При этом, однако, надо было допустить, что корни алгебраического уравнения (уравнения частот, или векового уравнения ), которое попутно приходится решать, вещественны, положительны и не равны между собой. Однако Лагранж этим не ограничился и провел все исследование в общем виде, используя открытую им форму уравнений движения — уравнения Лагранжа второго, рода. В первом издании Аналитической механики Лагранжа (1788 г.) эти результаты даны в улучшенной редакции, в окончательном виде они вошли во. второе издание Аналитической механики (т. I., 1813 г.).  [c.265]


Вместе с развитием неголономных связей и теории общего их вида приобретают значение новые методы в поисках решений классических задач аналитической механики. Такие новые методы базируются, можно сказать, на двух теоремах. Первая теорема высказана в работах П. В. Воронца в первых десятилетиях нашего века в следующей формулировке каждый первый интеграл уравнений движения некоторой механической системы может считаться уравнением связи, наложенной на систему с соответствующими реакциями, равными нулю . Действительно, примем данный первый интеграл за связь и составим уравнения движения с множителем. Далее, учитывая, что первый интеграл тождественно удовлетворяет левым частям всех уравнений с множителем, мы придем к тому, что данный множитель должен быть равен нулю. Обратная же теорема должна читаться следующим образом. Положим, дана механическая система с заданными, пусть идеальными в смысле Лагранжа — Даламбера, связями и активными силами. Имеются динамические дифференциальные уравнения данной системы. Положим, требуется найти янтеграл заданного вида для дайной системы уравнений. Тогда, 1при-няв данный интеграл за уравнение дополнительной связи, будем составлять уравнения движения с подобной связью. Интеграл же может быть любой аналитической структуры, поскольку мы умеем уже составлять уравнения движения при связях любой, если можно так сказать, неголономности. Далее, если мы решим расширенную систему уравнений движения, т. е. уравнений с множителем вместе с уравнением связи, то могут быть две возможности находятся уравнения движения системы, т. е. обобщенные координаты основной задачи в функциях времени и вместе с ними определяется множитель в функции времени. Но, если при каких-либо параметрах системы, или предполагаемого первого интеграла, или при некоторых начальных данных, множитель обратится в ноль, то тогда действительно уравнение связи окажется первым интегралом данной задачи. Возьмем, к примеру, классическую задачу о движении твердого тела вокруг неподвижной точки. Мы знаем, с каким трудом добывались решения этой задачи и как, по существу, их мало. Всего три случая — общего решения, да и общность относится только к начальным условиям, а на другие параметры — распределение масс и положение центра тяжести — налагаются определенные условия. Частных интегралов больше, но все они находились с трудом (вспомним, например, случай Гесса). Данные же методы наиболее естественны нри выяснении вопроса, является ли заданная связь -первым интегралом уравнений движения данной системы как свободной.  [c.13]


Смотреть страницы где упоминается термин Теорема Даламбера Лагранжа : [c.2]    [c.423]   
Вибрации в технике Справочник Том 1 (1978) -- [ c.95 , c.96 ]



ПОИСК



Вывод общих теорем динамики из принципа ДАламбера-Лагранжа

Даламбер

Даламбера теорема

Даламбера-Лагранжа)

Замечания о доказательстве основных теорем динамики посредством применения принципа Даламбера — Лагранжа

О неидеальных связях Принцип Даламбера-Лагранжа и общие теоремы динамики системы материальных точек со связями

Общие теоремы динамики системы, выводимые из уравнения Даламбера—Лагранжа

Теорема Лагранжа

УРАВНЕНИЯ МЕХАНИКИ ТЕОРЕМА ДАЛАМБЕРА И УРАВНЕНИЯ ЛАГРАНЖА Теорема Даламбера. Общее уравнение динамики



© 2025 Mash-xxl.info Реклама на сайте