Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Равновесие устойчивость в гетерогенной системе

Ранее отмечалось, что термодинамические системы не могут находиться в состоянии неустойчивого равновесия. Но очень часто между устойчивыми и неустойчивыми состояниями существует значительная область значений термодинамических переменных, в которой критерии устойчивого равновесия не выполняются, но система тем не менее может существовать длительное время, причем ее состояние зависит от бесконечно малых изменений внешних переменных. Это состояние нейтрального (безразличного) равновесия. Любые гетерогенные системы, в которых происходят процессы, не влияющие на состояние ее-щества в гомогенных частях системы, т. е. не изменяющие интенсивных термодинамических характеристик фаз, находятся. по отношению к таким процессам в нейтральном равновесии. Чтобы пояснить особенности этого состояния, рассмотрим устойчивость равновесия гетерогенной системы, состоящей из двух открытых фаз, а и р, с одинаковым химическим составом и плоской межфазной границей. Можно воспользоваться уже выведенными формулами (12.15) — (12.17) или (12.19), если положить в них а = 0 или г = оо. Нетрудно видеть, что в этом случае при постоянных Т, V  [c.119]


Гл. 6 посвящена вычислению средней теплоты реакции и среднего сродства. В гл. 7 приводится детальный вывод полного дифференциала сродства для случая закрытых систем. Эти результаты используются в гл. 8 и 9 для изучения превращений при постоянном сродстве и для случая состояния устойчивого равновесия. Гл. 10 посвящена рассмотрению виртуальных сдвигов равновесия в гетерогенных -системах и правилу фаз. Идеальные газы подробно изучаются в гл. 11. В ней детально изложены расчеты термодинамических потенциалов, сродства и химических потенциалов, компонентов для смеси идеальных газов [уравнения (4.28) — (Н.Э )]. Показано, что для такой системы переменные 7 и 5 (температура и энтропия) или переменные р V (давление и объем) не определяют полностью значение термодинамического потенциала.  [c.15]

Мы рассмотрели условия устойчивости (7.66) —(7.70) однородной системы по отношению к непрерывным изменениям состояния. В гетерогенных системах имеет место случай так называемого безразличного равновесия. Так, для однокомпонентной двухфазной системы жидкость — пар во всей области сосуществования фаз выполняется равенство  [c.164]

Термодинамические системы разделяются на гомогенные и гетерогенные, каждая из них может находиться в состоянии устойчивого и неустойчивого равновесия.  [c.79]

В гетерогенных системах при фиксированных некоторых координатах возможны нейтральные равновесия за счет перераспределения веществ между гомогенными частями без изменения их интенсивных свойств. Такие процессы называют фазовыми реакциями. При использовании ограничений на термодинамические свойства гетерогенной системы они должны исключаться из рассмотрения. Запрет на определенные процессы не является, однако, чем-то особенным, исключительным с точки зрения методов термодинамики, поскольку понятие термодинамического равновесия имеет смысл лишь тогда, когда конкретно указаны все возможные, допустимые в системе процессы (см. 4). Поэтому можно условиться не рассматривать фазовые реакции, считая их запрещенными, что позволяет, как уже говорилось, выяснить аналогию между устойчивостью равнове-си71 в гомогенных и в гетерогенных системах. С другой стороны, если допустить возможность протекания в гетерогенной системе фазовых реакций, то удается обнаружить существенные особенности поведения гетерогенных систем (подробнее см. [6]).  [c.128]


Дифференциальные условия устойчивости, которыми мы пользовались в гл. 3, 6, и гл. 6, 8, получены в предположении. что свободная энергия представляет собой аналитическую функцию надлежащим образом выбранных параметров состояния. Для гетерогенных систем это не всегда так. Рассмотрим прежде всего равновесие двухфазной системы. которая представляет собой смесь газообразной и жидкой фаз некоторого чистого вещества. На фиг. 22 показана типичная РУГ-поверхность для такой системы. Линии Т = onst на этой поверхности, т. е. изотермы в обычной проекции на ЯУ-плоскость. нам уже знакомы (см., например, фиг. 2). На этот раз мы проведем также линии  [c.188]


Смотреть страницы где упоминается термин Равновесие устойчивость в гетерогенной системе : [c.85]    [c.186]    [c.18]   
Основы термодинамики (1987) -- [ c.120 , c.127 ]



ПОИСК



Гетерогенное равновесие

Равновесие гетерогенных систем

Равновесие системы тел

Равновесие устойчивое

Система Устойчивость

Система гетерогенная

Система устойчивая

Устойчивость равновесия

Устойчивость равновесия системы



© 2025 Mash-xxl.info Реклама на сайте