Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Плотность жидких металлов жидкостей

Условия однозначности рассматриваемой задачи включают в себя форму и размеры возмущающего тела (нагретого или охлажденного относительно начальной температуры жидкой среды), распределение температуры или плотности теплового потока на поверхности этого тела, физические свойства жидкости (Я, а, V, р, р) и ускорение силы тяжести g. Изменением физических свойств (кроме плотности) жидких металлов в зависимости от температуры можно пренебречь.  [c.209]


При выходе жидкого металла из мундштука в форму первое время истечение происходит в среду с весьма малой плотностью по сравнению с плотностью вытекающей жидкости. В дальнейшем, когда форма будет заполнена, картина изменится, но для начала процесса, когда форма еще не заполнена, можно принять Ig = 0.  [c.239]

Для гидравлических расчетов используются следующие величины, характеризующие поток в каналах геометрические характеристики канала (площадь сечения, гидравлический диаметр или другой определяющий размер, абсолютная эквивалентная шероховатость и т. д.) скорость плотность среды. Средняя плотность среды определяется по средней температуре среды в канале на данном участке. Все теплоносители, используемые в атомной энергетике, включая жидкие металлы, являются ньютоновскими жидкостями и, таким образом, подчиняются общим закономерностям.  [c.17]

При турбулентном движе- и жидкости. Практически часто наблюдаемом при заливке жидкого металла в литейные формы, кроме сил внутреннего трения большое значение приобретают силы инерции элементарных частиц, пропорциональные плотности металла. Поэтому при прочих равных условиях турбулентное движение жидкого металла определяется отношением т]в/рм, которое имеет большое значение для практики и определяется как коэффициент кинематической вязкости.  [c.71]

Величина эрозионного износа при данной температуре зависит от скорости потока и от плотности жидкости. Чем больше эта плотность, тем интенсивнее эрозионные повреждения. При малых скоростях потока эрозия не развивается даже в потоке тяжелых жидких металлов.  [c.50]

Термодинамический анализ показывает, что для обеспечения высокого к. п. д. цикла необходимо иметь малое отношение расхода жидкости к расходу пара и большое отношение скорости инжектирующего потока пара к скорости инжектируемой жидкости. Для получения высокого к. п. д. цикла желательно использовать металл с низким значением произведения плотности жидкой фазы на скрытую теплоту парообразования. Из всех жидких металлов минимальную величину этого произведения имеет цезий.  [c.101]

В качестве примера практического использования полученных результатов рассмотрим расчет системы охлаждения ядерного реактора. Изменение плотности теплового потока на стенке q"d по длине канала х задано. Обычно q"o максимальна в середине канала и минимальна на входе и выходе. Когда в качестве теплоносителя используется жидкий металл, при расчете температуры стенки канала могут быть допущены существенные ошибки, если не использовать теоретического уравнения для температуры стенки (8-48), учитывающего изменение плотности теплового потока по длине канала. С другой стороны, если теплоносителем является газ или вода под давлением, то аксиальное изменение плотности теплового потока на стенке влияет на теплоотдачу очень слабо, и для расчета местной разности температур стенки и жидкости можно пользоваться числом Нуссельта для постоянной плотности теплового потока на стенке. (Естественно, что разность температур должна определяться по местной плотности теплового потока, даже если последняя изменяется по длине трубы.)  [c.234]


В разделе даны новые сведения по расчету теплообмена при пузырьковом и переходном режимах кипения в большом объеме и при вынужденном движении жидкости в каналах. Включена новая информация о методах расчета критической плотности теплового потока при кипении в условиях низких давлений, а также о расчете теплообмена при течении жидких металлов в магнитном поле. Существенно переработан материал по гидродинамической аналогии теплообмена (аналогия Рейнольдса), в которую включено новое расчетное соотношение, существенно расширяющее диапазон чисел Прандтля, в котором эта аналогия может с успехом применяться.  [c.8]

Классические эксперименты для твердого состояния, дающие сведения о поверхности Ферми (эффект де Гааза-ван-Альфена и Др.), к сожалению, неприменимы для жидкостей, так как средний пробег свободных электронов в них слишком мал. В гл. VI были рассмотрены явления переноса при постоянном токе, в частности удельное сопротивление и термо-э. д. с., которые, вероятно, зависят не от истинной плотности состояний п Е) в жидких металлах, а от плотности состояний свободных электронов По Е). Однако Мотт [75] доказал, что если п Е) очень мало, то соответствие теории практике должно быть полным, что имеет место, возможно, для жидкой ртути. Более того, доказательства, полученные опытным путем с помощью коэффициента Холла, показывают, что поведение электронов в жидкости подобно  [c.94]

Кроме вынужденной конвекции, тепло переносится также свободной конвекцией. В этом случае циркуляция газа или жидкости происходит вследствие разности плотностей, вызванной разностью температур, а не под действием насоса. Вообще говоря, свободная конвекция дает низкие коэфициенты теплопередачи. Большинство газов дает значения коэфициента теплопередачи около 120 или ниже, а вода дает коэфициенты теплопередачи примерно до 1400. Нет определенных данных о величине коэфициентов теплопередачи, получаемых при применении жидких металлов.  [c.296]

Следует заметить, что в формуле (27-1) р есть местное (в малом сечении) значение плотности. В формуле же (27-5) р есть средняя плотность в большом сечении потока. Различие в плотности по сечению потока может быть вызвано разными причинами, например различными температурными условиями в каждой точке потока (течение жидкого металла, движение жидкости в теплообменниках и т. п.).  [c.270]

Анализ закономерности распространения жидкого металла по поверхности керамики показывает, что основными факторами, воздействующими иа этот процесс, являются отношение между поверхностными энергиями твердого и жидкого материалов и на их межфазовой границе микрорельеф твердой поверхности характер среды, в которой находится контактирующий металл температура растворимость жидкого металла в керамике и скорость объемной диффузии атомов расплава физические свойства жидкости (плотность, вязкость и др.) энергия активации поверхностной диффузии и некоторые другие факторы.  [c.140]

При графическом представлении температурной зависимости плотности по оси ординат обычно откладывают разность плотностей двух фаз, а по оси абсцисс — отклонение температуры от критической. В дальнейшем мы будем изучать два типа систем, а именно классическую жидкость и жидкие металлы. Характерные результаты для таких систем представлены на фиг. 2, а и б и фиг. 3, где приведены данные соответственно для ксенона, СО2 и щелочных металлов ). При построении фиг. 2, а и б делалось определенное предположение о виде степенной зависимости, которая изображается прямой линией, тогда как на фиг. 3 представлена зависимость между логарифмами исходных давления и температуры, а показатель степени можно определить по наклону кривых. Значения показателя Р в этих трех случаях равны соответственно 0,33, 0,33 и 0,42—0,45. Большое различие между щелочными металлами и классическими жидкостями можно  [c.238]


Для зашиты узлов трения электродвигателей погружных насосов от попадания воды с абразивом применяют динамические гидрозатворы. В качестве затворной жидкости в них часто используют экологически небезопасный жидкий металл или какую-нибудь другую жидкость высокой плотности. Напор, выдерживаемый таким гидрозатвором, определяется разностью плотностей затворной жидкости и рабочей среды. Иногда в качестве затворной жидкости применяют ферромагнитную жидкость, удерживаемую магнитным полем. Магнитные жидкости представляют собой коллоидные суспензии частиц магнитного материала (оксида железа и др.) В качестве несущих жидкостей используют трансформаторные масла, углеводороды, в которых взвешены весьма малые ферромагнитные частицы размером 3... 10 нм и поверхностно-активные вещества [30].  [c.510]

Из (12) и (18) видно, что фононное контактное теплосопротивление определяется соотношением между плотностями и скоростями звука в рассматриваемых средах. В приведенных расчетах нигде не фигурирует скорость потока жидкого металла и параметры, характеризующие режим его течения. Известно, что теплоотдача при вынужденной конвекции жидкости может быть выражена соотношением между безразмерными критериями Нуссельта, Рейнольдса и Прандтля, т. е. интенсивность теплообмена будет определяться и скоростью потока жидкости. Однако специфика жидких металлов заключается в том, что они имеют очень низков значение числа Прандтля по сравнению со всеми другими жидкостями [9]. Поэтому для них передача тепла турбулентной конвекцией отступает на второй план по сравнению с чрезвычайно высоким коэффициентом теплопроводности. А так как основное термическое сопротивление находится при этом в узком пристеночном слое, в котором тепло переносится к жидкому металлу или от него за счет обычной теплопроводности, то тем самым правомерность предпринятого рассмотрения жидкого металла как неподвижного при расчете контактного теплосопротивления получает достаточное обоснование. При решении же гидродинамической задачи о нахождении коэффициента теплообмена между жидким металлом и твердой стенкой учет режима течения обязателен.  [c.13]

Схема кристаллизации металла из жидкости показана на рис. 3. В процессе охлаждения при температуре застывания в жидком металле одновременно появляется много центров кристаллизации, из каждого центра идет обрастание кристаллами, образуются отдельные группы кристаллов, называемые кристаллитами или зернами. При полном застывании металла зерна плотно смыкаются, образуя сплошную массу застывшего металла. Зернистое строение, металлов можно заметить простым глазом в изломах. При застывании металлы уплотняются, сокращая несколько свой объем. Плотность металла в твердом виде обычно отличается от плотности в жидком на 5—7%.  [c.13]

Процесс анодно-механической обработки зависит от плотности тока, напряжения и давления на обрабатываемую поверхность, скорости движения инструмента. Электролитический режим определяет производительность процесса и качество обработанной поверхности. Напряжение источника тока 14—28 В, плотность тока колеблется от десятых долей ампера на 1 см на чистовых операциях до нескольких сотен на черновых. Давление инструмента обусловливает межэлектродный зазор и связанное с ним электролитическое сопротивление, а совместно с силой тока и рабочим напряжением определяет съем металла. Скорость перемещения инструмента относительно обрабатываемой поверхности влияет на скорость и степень нагрева поверхностного слоя металла заготовки и шероховатость поверхности. Скорость инструмента составляет 0,5— 25 м/с, а сила его прижима 50—200 КПа. Наилучший состав рабочей жидкости — раствор жидкого стекла (силиката натрия) в воде.  [c.297]

Кроме обычного вида спекания (заключающегося в нагреве исходной порошковой массы или прессовки в защитной атмосфере до довольно высокой температуры, однако ниже точки плавления) имеются еще два главных вида спекания. При горячем прессовании порошковая масса или прессовка подвергается воздействию как повышенной температуры, так и внешнего давления в данном случае температура также остается ниже точки плавления материала. Этот метод широко используют для керамических материалов и тугоплавких металлов, но редко - для изделий из железного порошка. Спекание обычно рассматривают как процесс в твердом состоянии это означает, что в данном случае отсутствует расплавленная или жидкая фаза. Жидкофазное спекание относится к тем случаям, когда температура спекания достаточно высока, чтобы одна или более компонент материала присутствовали в виде жидкости в течение всего процесса спекания или его части. К этой категории относится случай пропитки жидкостью в сочетании со спеканием массу металла с более низкой точкой плавления расплавляют и она затекает в поры неспеченной прессовки. Оба типа жидкофазного спекания обеспечивают достижение высоких плотностей в спеченном состоянии. Однако метод пропитки обеспечивает уплотнение без необходимости в какой-либо усадке исходной неспеченной прессовки пористость заполняется пропитывающей жидкостью. В большинстве других случаев уплотнение означает усадку, обусловленную устранением пористости.  [c.68]

После расплавления шихты в сталеплавильной печи образуются две несмешивающиеся среды жидкий металл и шлак. Металл и шлак разделяются из-за различных плотностей. В соответствии с законами распределения закон Нернста), если какое-либо вещество растворяется в двух соприкасающихся, но несмешивающихся жидкостях, то распределение вещества между этими жидкостями происходит до установления определенного соотношения (константы распределения) постоянного для данной температуры. Поэтому большинство компонентов (Мп, Si, Р, S) и их соединения, растворимые в жндкovf металле и шлаке, будут распределяться между металлом и шлаком в определенном соотношении, характерном для данной температуры.  [c.29]


Значения С, т и п найдены путем обработки большого числа экспериментальных данных, полученных при кипении различных жидкостей. Для неметаллических теплоносителей С = 0,0625, и = 0,5, т = 0,33 при Ке < 0,01 С = 0,125, н = 0,65, ш = 0,33 при Ке 0,01 для жидких металлов С = 0,125, и = ш = 0,65, Ке 0,01. Пределы применимости этого уравнения 10" < Ке < 10 0,86 Рг <7,6 И < 7 м/с. При плотности з силового потока, большей первой критн-  [c.124]

Жидкие металлы существенно отличаются по физическим свойствам от неметаллических жидкостей. Oihh имеют высокие температуры кипения при низких давлениях являются термически устойчивыми характеризуются высокой теплопроводностью, плотностью, а следовательно, и большой интенсивностью теплоотдачи. В отличие от неметаллических жидкостей в жидких металлах процессы молекулярной теплопроводности приобретают важную роль не только в пристеночной области, но и в турбулентном ядре потока. В предельном случае, когда X— оо, а числа Рг— 0, молекулярная теплопроводность становится основным способом переноса тепла, так как интенсивность конвективного теплообмена оказывается ничтожно малой. Температурное поле по поперечному сечению турбулентного -потока в жидких металлах имеет профиль, характерный для течения неметаллических жидкостей при ламинарном режиме в трубах (см. рис. 3-1). Поскольку в жидких металлах Рг -<1, то они характеризуются большой толщиной теплового пограничного слоя, см. уравнение (3-4)] и малой длиной начального участка тепловой стабилизации по сравнению с длиной начального участка гидродинамической стабилизации [см. уравнение (3-6)]. Малая длина участка тепловой стабилизации означает, что в жидких металлах наблюдаются значительные аксиальные температурные градиенты, которые могут иметь порядок величин, одинаковый с радиальными температурными градиентами, что в неметаллических жидкостях не имело места. Поэтому появляется необходимость учета переноса тепла за счет продольной молекулярной теплопроводности в жидких металлах при проведении как теоретических, так и экспериментальных исследований.  [c.212]

Парафины хлорированные 240, 241 Паскаля закон передачи давления 26 Пенообразование 176, 177 Пентаэритрит 257 Перегонка жидкостей 182, 183 Перфторсоединения 240 Пикнометры 123 Пленка защитная жидкости 169 Плотность 23, 122, 123 алканов 244 гексахлорбутадиена 239 диэфиров Й4 жидких металлов 318 жидкостей Дау Корнинг 269, 272  [c.358]

После расплавления шихты в сталеплавильной печи образуются две несме-шивающиеся среды жидкий металл и шлак. Шлак представляет собой сплав оксидов с незначительным содержанием сульфидов. Образование шлака связано с окислением элементов металлической фазы во время плавки и образованием различных оксидов с меньшей плотностью, чем металл, собирающихся на его поверхности. В соответствии с законом распределения (закон Нернста), если какое-либо вещество растворяется в двух соприкасающихся, но несмешивающихся жидкостях, то распределение вещества между этими жидкостями происходит до установления определенного соотношения (константы распределения), постоянного для данной температуры. Поэтому большинство компонентов (Мп, Si, Р, S) и их соединения, растворимые в жидком металле и шлаке, будут распределяться между металлом и шлаком в определенном соотношении, характерном для данной температуры.  [c.33]

В дальнейшем могут встретиться случаи движения сплошной среды с непрерывным по ходу движения среды возникновением (исчезновением) вещества данного сорта за счет, например, химической реакции превращения одного из составляющих ее веществ в другое или вследствие изменения фазового состояния вещества (испарение движущейся жидкости, сопровождающееся возникновением в ней пузырьков пара, или, наоборот, конденсация пара и появление в нем жидких капель, цепенение жидкого металла, таяние льдинок в потоке воды и т. п.). В этих случаях естественно говорить о применении в сплошных средах методов механики переменной массы . Теоретической моделью такого рода явлений может служить заданное наперед, определяемое химической или физической кинетикой происходящих в движущейся среде процессов, непрерывное распределение источников притока (стока) массы, с интенсивностью, характеризуемой секундным, отнесенным к единице объема приростом массы вещества в данной точке потока. Эту величинз имеющую размерность [М/(7у Г)] = плотность/время, было бы естественно обозначить символом р, но, чтобы не смешивать ее с индивидуальной производной по времени ф/di, примем для нее обозначение /. Связь между символами ф/di и / определится из очевидного соотношения  [c.56]

Измерения вязкости, плотности, поверхностного натяжения и других неэлектронных параметров прямо не указывают на структуру, хотя в принципе можно определить прочность межатомной связи из этих данных с помощью одной из теорий жидкости, основанной на функции радиального распределения. Термодинамические и физические измерения высокочистых материалов могут дать информацию о явлениях пред- и послеплавления. Необходимо измерить удельную теплоемкость многих жидких металлов, особенно в широких температурных интервалах, чтобы исследовать истинную температурную зависимость спектра колебаний в этих материалах и его изменение после плавления. Нужны прямые электронные измерения, в частности эффекта Холла, термо-э.д. с. и магнитных свойств, чтобы точно установить степень, до которой можно применять модель свободных электронов к жидким металлам. Представляется широкое поле деятельности для работы над металлами с высокой точкой плавления, хотя здесь, конечно, имеются серьезные экспериментальные проблемы кажется, можно получить много прямых доказательств из некоторых необычных измерений — например, изучение аннигиляции позитронов и, следовательно, средней длины свободного пробега электронов или изучения мягкого рентгеновского спектра. Измерения ядерного магнитного резонанса и электронного спина также могут дать полезные результаты. Ясно, что требуется оче нь много экспериментальной информации, чтобы окончательно установить структуру жидких металлов и серьезно проверить с помощью эксперимента любую теоретическую обработку.  [c.168]

Рассчитать с такой же точностью скорость звука в жидкости не удается, поскольку для жидкости не существует удовлетворительной модели, позволившей бы теоретически вычислить величину модуля объемной упругости. Поэтому расчет о ДЛя жидкостей может быть произведен на основе экспериментальных данных или изотермического модуля /Сич (измеряемого статическими методами), который связан с адиабатическим модулем соотношением (11.29), или непосредственно на основе адиабатического модуля, который, в свою очередь, определяется из данных акустических измерений по формуле К = рпсг Значение Со ДЛя д11стиллированной воды при температуре 20 °С составляет 1,49-10 м/с. В других жидкостях при этой температуре скорость варьирует от 0,9-10 М/с до 2,0 х X 10 м/с. В некоторых жидких металлах она достигает 3 10 м/с. Значения скорости звука для ряда жидкостей и газов приведены в табл. 4, где указаны также их плотности р и произведения плотности на скорость роб о, называемые удельными волновыми сопротивлениями (см. ниже).  [c.40]


Кризис теплоотдачи. Кризис теплоотдачи наступает в испарителе при высоких радиальных тепловых потоках. Аналогичное ограничение или максимум радиального теплового потока может быть достигнут также и в конденсаторе. Эти ограничения рассмотрены в 2-8. Для испарителя уравпемие (2-8-8) дает значение которое должно удовлетворяться в случае гомогенного фитиля. Это соотношение, отвечающее капиллярному ограничению мощности, к к показано в 2-8-4, применимо для калия при тепловых потоках до 315 кВт/м . Возможно оно применимо и при более высоких тепловых потоках для калия и других жидких металлов. В случае воды и других неметаллических жидкостей существенную роль играет образование пара внутри фитиля, происходящее при сравнительно низких тепловых потоках (130 кВт/м для воды). Для этих жидкостей простое соотношение для дети отсутствует и следует пользоваться приведенными в табл. 3-2 опытными данными по максимально достижимой плотности теплового потока.  [c.77]

Аналогичные явления наблюдаются в расплЗвленной зоне сварной точки. Однако неравномерность плотности тока по горизонтальным сечениям точки, а также чечевицеобразная форма расплавления создают дополнительные направления течения жидкости. В верхней и нижней части расплавленного ядра давление будет меньше, так как там диаметр расплавления и /о (вследствие растекания) меньше, чем на поверхности раздела листов (в твердом проводнике эти силы уравновешиваются сопротивлением кристаллической решетки). Вследствие этого в ядре сварной точки возникает градиент давления также в вертикальном направлении от линии раздела листов (рис. 1, е). Под действием этих давлений жидкий металл течет вдоль поверхности раздела по направлению к оси затем он стремится течь либо вверх, либо вниз, и, наконец, течет вдоль границы расплавления вверху и внизу (рис. 1, ж). Одновременно образуются и другие мелкие потоки в вертикальном направлении. Все это способствует интенсивному перемешиванию жидкого металла.  [c.189]

Таким образом, в структуре жидких металлов и сплавов, в том числе в жидком чугуне, есть только движущиеся кластеры и пустоты. В сплавах кластеры могут быть весьма разнообразны по параметрам, они могут взаимодействовать и образовывать в жидкости лабильные объединения кластеров вплоть до частичного расслоения расплавов по плотности. Благодаря микронеоднородной структуре жидких сплавов, наличию в них кластеров различного состава, в свою очервщ,, при кристаллизации происходит формирование двухфазного состояния, ликвидуса и солидуса, так как кластеры различного состава кристаллизуются при различных температурах.  [c.416]

По мере того как температура повышается, поверхностное натяжение жидкости, находящейся в равновесии с собственным паром, уменьшается и принимает нулевое значение в критической точке [47]. При приведенной температуре, равной 0,45—0,65, значения СТ для большинства органических жидкостей находятся в пределах от 20 до 40 дин/см, но для некоторых жидкостей высокой плотности, имеющих низкую молекулярную массу (таких как, например, формалин), а > > 50 дин/см. Для воды ст = 72,8 днн/см при 20 °С для жидких металлов значения с составляют 300—600 дин/см (например, ртуть при 20 °С имеет поверхностное натяжение около 476 дин/см). Новейшие экспериментальные значения поверхностного натяжения различных жидкостей после тщательной их оценки собрал Яспер [29].  [c.513]

Хлор жидкий С1а (ГОСТ 6718—68). Маслянистая жидкость бледно-оранжевого цвета, получаемая сжижением хлоргаза, выделяемого электролизом из водных растворов хлористых солей. Жидкий хлор содержит lj не менее 95,6% и влаги не более 0,05%. Плотность 1,33 г/сл4 . Отравляющее вещество. Хра-нятв стальных баллонах, изолировав от скипидара, эфира, аммиака, светильного газа, углеводородов, водорода и порошков металлов. Баллон защитного цвета с синей надписью Хлор .  [c.291]

Аргон Ат (молекулярная масса 39,948 плотность 1,662 г/л). Аргон принадлежит к числу недеятельных газов, т. е. не вступающих в соединешге с другими веществами, поэтому широко используется в качестве оградительной нейтральной атмосферы при сварке н переплавке металлов и т. д. Жидкий аргон— бесцветная жидкость без запаха плотность 1,392 г/см1 По ГОСТ 10157—73 он выпускается трех сортов высшего, I и И с содержанием чистого аргона соответственно 99,99 99,98 п 99,95% киморода 0,001 0,003 и 0,005%, азота 0,008 0,01 и 0,04 и влаги 0,1 0,03 п 0,03%. Поставляется в баллонах по ГОСТ 949—73.  [c.419]

Селен Se (Selenium). Порядковый номер 34, атомный вес 78,96. Для селена известно несколько аллотропических форм. Стекловидный селен получается при отвердевании жидкого селена и представляет чёрную массу со стекловидным изломом. При нагревании выше 100 стекловидный селен быстро превращается в серый кристаллический селен. Последний обладает заметной фотопроводимостью и легко проявляет фотоэффект. Оба эти свойства обусловливают его применение в электрических приборах. Кристаллический селен, являясь полупроводником, проявляет униполярность, будучи помещён между двумя дисками, сделанными из разных металлов, что используется для изготовления сухих выпрямителей. Кристаллический селен весьма хрупок = 220°, кап — плотность 4,8. Жидкий селен представляет собой чёрную, непрозрачную, очень вязкую жидкость. Помимо указанных форм, селен обнаруживает способность давать и другие аллотропические видоизменения.  [c.360]

Электроэрозионная обработка ЭЭО является разновидностью электрофизической обработки. При ЭЭО изменение формы, размеров и качества поверхности происходит под действием электрических разрядов, возникающих при пропускании импульсного электрического тока в зазоре шириной 0,01...0,05 мм между электродами — заготовкой и инструментом. Под действием электрических разрядов материал заготовки плавится, испаряется и удаляется из межэлектродного промежутка в жидком или газообразном состоянии. Такие процессы разрушения электродов (заготовок) называются электрической эрозией. Промежуток между заготовкой и электродом заполняют диэлектрической жидкостью, такой как минеральное масло. При достижении на электродах напряжения, равного напряжению пробоя в среде, между электродом и заготовкой образуется канал проводимости, по которому осуществляется импульсный дуговой или искровой разряд. Плотность тока в канале проводимостидостигает8000...10 ОООА/мм а время разряда — 10 ... 10 с. При этих условиях на поверхности электрода-заготовки температура возрастает до 10 ООО...12 ООО С, что приводит к расплавлению и испарению элементарного объема металла. На обрабатываемой поверхности образуется лунка, затем пробой происходит в другом месте, и так продолжается до тех пор, пока не снимается требуемый слой металла. В результате расстояние между электродами возрастает настолько, что пробой при заданом напряжении импульса становится невозможным, и наступает момент прекращения обработки. Поэтому для продолжения обработки электроды необходимо сближать до тех пор, пока не будет достигнут заданный размер заготовки.  [c.541]

Ингибитор ГЛК-69 - жидкое органическое соединение, применяющееся для предупреждения коррозии нефт5гаых и газовых скважин, оборудования, систем заводнения и газопроводов. Эго прозрачная жидкость темно-янтарного цвета не содержит галогенизированных углеводородов или тяжелых металлов, растворяется в сырой нефти и большинстве нефтяных фракций. Хорошо диспергируется в пресной воде и малосернис-тых и высокосернистых рассолах. Плотность при 20°С —  [c.49]

Галлий — металл серебристо-белого цвета, принадлежащий к группе легкоплавких редкоземельных элементов. Плотность 5,91, температура плавления 29,78 , кипения 2070°. Большой диапазон температур жидкого состояния позволяет испол1>зовать в качестве металлической жидкости. Применяется в радиоэлектронике, полупроводниковой и вакуумной технике, компонент легкоплавких снлавов для улучшения некоторых свойств и т. д.  [c.162]

Канифоль. Получается при отгонке жидких составных частей (скипидар или терпентин) из живицы (смолы хвойных деревьев, главным образом сосны). Живица в свою очередь может получаться либо подсочкой деревьев, т. е. нанесением на их коре надрубов и собиранием вытекающей смолы, либо экстрагированием растворителем тяжелым бензином измельченных пней, корней и веток. Канифоль при нормальной температуре — хрупкая смола с характерным раковистым изломом, с плотностью 1,07— 1,09 кг/дм , практически термопластична, температура начала размягчения около 50—70° С, температура полного расплавления в жидкость — около 100—110° С. Она растворима в нефтяных маслах (особенно при нагреве таким образом, получаются маслоканифольные компаунды, в большом количестве употребляющиеся в качестве кабельных пропиточных и заливочных масс) и в других жидких углеводородах, а также в спирте, ацетоне и растительных маслах. Канифоль представляет собой смесь нескольких кислот среднего химического состава С20Н30О2 и при нагревании с окислами металлов способна образовывать соли (мыла) соответствующих металлов, так называемые резинаты, которые, в частности, применяются в качестве сиккативов в масляных лаках ( 13 и 16). По ГОСТ 797-55 канифоль делится на три сорта высший, первый и второй температура размягчения по прибору ЦНИЛХИ должна быть не менее +68° С для высшего сорта, не менее +66° С — для I сорта и не менее +54° С — для II сорта кислотное число канифоли вообще высокое благодаря ее кислотной химической природе должно быть не менее 168 для высшего сорта, 166 — для 1 сорта и 150 лг КОН/г — для II сорта. Зольность канифоли высшего и I сортов не более 0,04%, И сорта — не более 0.07%.  [c.66]



Смотреть страницы где упоминается термин Плотность жидких металлов жидкостей : [c.274]    [c.227]    [c.213]    [c.210]    [c.83]    [c.179]    [c.202]    [c.13]    [c.36]    [c.49]    [c.436]    [c.571]    [c.54]    [c.118]   
Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.424 , c.603 ]



ПОИСК



Жидкие металлы

Плотность жидких металлов

Плотность жидкости

Плотность металлов



© 2025 Mash-xxl.info Реклама на сайте