Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Движение жидкости вынужденное

Движение жидкости вынужденное 156  [c.890]

Коэффициент теплоотдачи а зависит от физических свойств жидкости и характера ее движения. Различают естественное и вынужденное движение (конвекцию) жидкости. Вынужденное движение создается внешним источником (насосом, вентилятором, ветром). Естественная конвекция возникает за счет теплового расширения жидкости, нагретой около теплоотдающей поверхности (рис. 9.1) в самом процессе теплообмена. Она будет тем сильнее, чем больше разность температур A/ = f — и температурный коэффициент объемного расширения  [c.78]


ТЕПЛООТДАЧА И ГИДРАВЛИЧЕСКОЕ СОПРОТИВЛЕНИЕ ПРИ ВЫНУЖДЕННОМ ДВИЖЕНИИ ЖИДКОСТИ в ТРУБЕ  [c.65]

Различают конвекцию вынужденную (движение жидкости создается искусственно) и свободную — движение возникает в связи с ее нагреванием и изменением плотности.  [c.402]

В случае вынужденного движения жидкости и при развитом турбулентном режиме свободная конвекция в сравнении с вынужденной очень мала, поэтому критериальное уравнение теплоотдачи упрощается  [c.423]

При свободном движении жидкости, когда вынужденная конвекция отсутствует, вместо критерия Рейнольдса в критериальное уравнение теплоотдачи необходимо ввести критерии Грасгофа. Отсюда получаем  [c.424]

Критическая нагрузка также зависит от скорости потока, причем эта зависимость имеет место даже и для таких условий движения, при которых коэффициент теплоотдачи от скорости не зависит. Вынужденное движение жидкости вдоль поверхности нагрева затрудняет образование паровой пленки, поэтому с увеличением скорости течения критическая тепловая нагрузка возрастает.  [c.412]

Полностью развитое пузырчатое кипение характеризуется независимостью величины теплового потока от скорости движения жидкости. Другими словами, влияние вынужденной конвекции здесь настолько незначительно, что теплообмен определяется только закономерностями роста паровых пузырьков, совпадающими в основном с тем, что имеет место при кипении  [c.478]

Очевидно также, что влияние силы тяжести на кризис кипения при вынужденном течении жидкости несущественно (как вообще несущественно влияние силы тяжести на движение жидкости при значительных скоростях последней). В этом заключается основное отличие кризиса кипения при вынужденном движении жидкости от кризиса кипения в большом объеме. Доказательством малого влияния силы тяжести служит тот факт, что кризис кипения развивается в данных условиях при любом как горизонтальном, так и вертикальном положениях поверхности нагрева (трубы)  [c.480]

Явление кризиса кипения при вынужденной конвекции заключается в нарушении устойчивости движения жидкости и пара его физическая природа та же, что и при кипении в большом объеме. Однако при вынужденном движении явление носит более сложный характер, так как пар отводится от поверхности нагрева в условиях движущейся в заданном направлении жидкости.  [c.480]


Критерий Фруда характеризует, соотношение массовых сил сил тяжести) и сил инерции при вынужденном движении жидкости. Число Фруда используется при испытании в опытных бассейнах моделей кораблей, глиссеров и т. п.  [c.179]

В зависимости от причин возникновения конвективного движения жидкости или газа различают свободную и вынужденную конвекции. При свободной конвекции перемещение теплоносителя происходит только под влиянием разности плотностей холодной и горячей жидкости или газа в поле тяготения. Нагревшиеся объемы теплоносителя поднимаются вверх, охладившиеся опускаются. Около нагретых тел имеет место, как правило, восходящая (подъемная) конвекция, а у холодных — опускная (нисходящая).  [c.89]

Вынужденной конвекцией называется движение жидкости, вызванное действием внешних поверхностных сил, создаваемых работой насосов, компрессоров и т. д. В отличие от свободной вынужденная конвекция может и не сопровождаться теплообменом (изотермическое течение) в этом случае осуществляется конвективный перенос массы. Вынужденная конвекция в общем случае может сопровождаться и свободной конвекцией. Доля в переносе теплоты свободной конвекцией тем больше, чем больше разница температур отдельных частей среды и чем меньше скорость вынужденного движения.  [c.194]

Рис. 19.10. Теплоотдача при ламинарном и переходном режимах вынужденного движения жидкости в трубе Рис. 19.10. Теплоотдача при ламинарном и переходном режимах вынужденного движения жидкости в трубе
По природе возникновения движения жидкости различают есг е-ственную (свободную) и вынужденную конвекцию.  [c.39]

Датчики закладываются заподлицо с поверхностью стенки 1 (рис. 5.15), особенно при больших скоростях омы-вания стенки жидкостью (вынужденное движение). Особые меры по устранению возмущений набегающего потока применяются по ходу движения жидкости. Так, при заделке плоских датчиков 2 на наружной поверхности трубы / сравнительно большого диаметра вместо трудоемкой операции по изготовлению квадратных впадин под датчики делаются поперечные пропилы 3, если направление движения жидкости совпадает с образующей трубы 4. При малых скоростях омывания датчика (свободное движение) или при малой толщине стенки, когда впадину изготовить нельзя, датчики располагаются на поверхности стенки,  [c.118]

ТЕПЛООТДАЧА ПРИ ВЫНУЖДЕННОМ ДВИЖЕНИИ ЖИДКОСТИ В ТРУБАХ  [c.186]

Формула для определения среднего по длине коэффициента теплоотдачи при вынужденном ламинарном движении жидкости в трубе, учитывающая влияние свободной конвекции и направление теплового потока, может быть представлена в виде  [c.190]

Рис. 10.3. Теплообмен при ламинарном и переходном режимах вынужденного движения жидкости в трубе влияние на теплообмен свободного движения жидкости Рис. 10.3. Теплообмен при ламинарном и переходном режимах вынужденного движения жидкости в <a href="/info/411057">трубе влияние</a> на теплообмен <a href="/info/2450">свободного движения</a> жидкости
Возможен другой случай, когда плотность теплового потока столь велика, что вызывает такие большие турбулентные возмущения, которые остаются больше вызванных вынужденным движением жидкости. В этом втором случае коэффициент теплоотдачи будет зависеть от теплового потока так же, как при пузырьковом кипении в большом объеме.  [c.268]

Вынужденное движение жидкости в трубах  [c.313]

Ламинарный режим. На перенос теплоты при вынужденном ламинарном движении жидкости в трубе влияет свободная конвекция. Наиболее сильное влияние свободная конвекция оказывает при следующих условиях вектор скорости вынужденного движения жидкости в вертикально расположенной трубе направлен вниз жидкость нагревается, при этом у внутренних повер№-  [c.317]


Различают естественную и вынужденную конвекцию. Естественная конвекция возникает за счет того, что в неравномерно нагретой жидкости разность температур приводит к неравномерному распределению плотности, а следовательно, и к появлению подъемной силы, обусловливающей движение жидкости. Конвективный теплообмен, возникающий под действием внешних сил, называется вынужденной конвекцией.  [c.131]

При малых скоростях движения жидкости и больших перепадах температур теплота переносится как за счет естественной, так и вынужденной конвекции. Если скорости движения велики, а температурные перепады незначительны, то влияние свободной конвекции на суммарный теплообмен также незначительно. Интенсивность теплоотдачи конвекцией зависит от характера течения жидкости в пограничном слое. При ламинарном режиме течения жидкости, когда линии тока параллельны теплоотдающей поверхности, интенсивность теплоотдачи невелика, слабо зависит от скорости течения жидкости и сильно изменяется при изменении теплофизических свойств теплоносителя.  [c.131]

Организованное движение жидкости (вынужденная или естественная циркуляция) вызывает повышение интенсивности теплоотдачи при кипении. Однако степень этого влияния зависит от отношения величин турбулентных возмущений, вызываемых организованной циркуляцией жидкости и процессом парообразования. Последний процесс оказывает относительно большее воздействие, ибо развивается непосредственно в самом пограничном слое жидкости. Поэтому значения коэффициента теплоотдачи, при постоянной скорости циркуляции, меняются с ростом теплового потока вначале весьма мало, затем темп нарастает и, наконец, по мере увеличения q коэффициент тепло-котдачи стремится к некоторому предельному значению, близкому точке на кривой a. — f q) для условий свободной циркуляции. Такая зависимость графически изображена на фиг. 60. На фиг. 61  [c.137]

В этой главе мы рассмотрим теплообмен при стационарном ламинарном течении в цилиндрических трубах. Будем полагать, что движение жидкости вынужденное, поле скорости не зависит от цоля температуры и массовые силы отсутствуют. Анализ теплообмена проводится в предположении постоянства физических свойств жидкости. Влияние на теплоотдачу зависимости физических свойств от температуры обсуждается в гл. 12.  [c.130]

Так как 0,5<ак/аш<2, то согласно (9-4в) иптенснвпость теплообмена определяется как вынужденным движением жидкости, так и процессом кипения и  [c.183]

Изложенная выше методика расчета теплообмена при кипении в условиях вынужденного движения жидкости может применяться в тех режимах течения двухфазной смеси, где возможно пузырьковое кипение. Применительно к схеме рис. 8.1 это области II—IV и часть V-й. Для недогретой жидкости (xq < 0) пузырьковое кипение ограничено снизу минимально необходимым перегревом стенки Т -= АГ , а сверху — критической тепловой нагрузкой В отсутствие надежной теоретической модели закипания на твердой  [c.358]

Значения физических свойств жидкости входят в критерии подобия при температуре, называемой определяющей температурой. Для удобетва раечетов за определяющую температуру принимают такую температуру, которая задана в технических расчетах. Например, при вынужденном движении жидкости в трубах в качестве определяющей температуры принимают среднюю температуру потока.  [c.113]

Свободной конвекцией называется движение жидкости, вызванное неоднородным распределением массовых сил, в частности, обусловленное разностью плотности нагретых и холодных слоев, находящихся в поле тяготения. В этом случае нагретые слои жидкости испытывают действие архимедовой силы и движутся вверх, и, наоборот, охлажденные слои движутся вниз. Свободная конвекция в отличие от вынужденной не может осуществляться без теплообмена.  [c.194]

Для тела, расположенного в неограниченном пространстве, когда движение жидкости наблюдается только у его поверхности, а остальная ее масса остается неподвижной, можно составить уравнения пограничного слоя. Путем анализа порядка величин и отбрасывания малых, так же как это было сделано для случая вынужденного движения (гл. 7), из уравнений Иавье —Стокса для несжимаемой жидкости (2.29 и 2.30) при др1дх = 0 получим уравнения движения для стационарного двухмерного пограничного слоя с учетом (7.9) и (7.10) при свободной конвекции в проекции на ось X в следующем виде  [c.176]

В предыдущих гл. 7 и 8 были рассмотрены способы теоретического анализа процессов теплоотдачи на основе теории пограничного слоя на примере продольно и поперечно-омываемой пластины и вынужденного движения жидкости в гладкой круглой трубе. При этом физические константы К, ji,, р, с), от которых зависит способность жидкости переносить теплоту, принимались постоянными. Кроме того, не учитывалось влияние свободной конвекции, которая может либо усиливать теплоотдачу при вынужденном движении жидкости, либо ослаблять ее. Однако теоретическое определение теплоотдачи при наружном омывании тел более слоя ной формы или при вынужденном движении в трубах некруглого сечения с шероховатыми стенками (практически внутренние стенки труб всегда имеют шероховатую поверхность) с учетом переменности физических констант жидкости и свободной конвекции пока невозможно. Следует отметить, что значительная часть сведений о процессах переноса теплоты, которыми мы располагаем, была получена экспериментально. Поэтому инежерные расчеты теплоотдачи в основном построены на экспериментальных сведениях.  [c.185]


На основании обработки результатой многих экспериментов академик М. А. Михеев составил формулу для определения среднего коэффициента теплоотдачи при вынужденном движении жидкости в трубе  [c.189]

Ламинарный режим. На процесс переноса теплоты при вынужденном ламинарном движении жидкости в трубе влияет свободная конвекция. Наиболее сильное влияние свободная конвекция оказывает при следующих условиях вектор скорости вынужденного движения жидкости в вертикально расположенной трубе направлен вниз жидкость нагревается, при этом у внутренних поверхностей стенки может возникнуть свободная конвекция, что приведет к тур-булизации пристенного слоя и, следовательно, к интенсификации теплоотдачи.  [c.190]

Теплоотдача при пузырьковом кипении в условиях вынужденной конвекции жидкости. Пусть процесс пузырькового кипения происходит в трубе, по которой течет жидкость. Вынужденное движение жидкости может привести к более интенсивной теплоотдаче по сравнению со случаем кипения в большом объеме при свободном движении жидкости. Увеличение интенсивности теплоотдачи произойдет в том случае, когда турбулентные возмущения, вызванные вынужденным движениСлМ жидкости, станут больше тех, которые вызваны пузырьковым парообразованием.  [c.267]

Разработано несколько методов определения коэффициента теплоотдачи при пузырькопом кипении в условиях вынужденного движения жидкости. Например, предложена следующая формула [44]  [c.268]

Для определения локального к оэфсЬициента теплоотдачи при вынужденном движении жидкости с малой скоростью и заданном температурном напоре АТ =Т, —Т получена формула [44], учи-  [c.269]

Из рис. 31.7, а следует, что интенсивность теплоотдачи повышается с увеличением скорости жидкости только при малых значениях плотности теплового потока q при условиях, когда турбулентные возмущения, вызванные движением жидкости, больше тех, которые вызваны пузырьковым парообразованием (линии 2, 3, 4). Из рисунка следует также, что возможны другие условия, когда плотность теплового потока столь велика, что парообразование вызывает такие большие турбулентные возмущения, которые остаются больше вызванных вынужденным движением жидкости коэффициент теплоотдачи при этих условиях завиеит от плотности теплового потока, так же как при пузырь-  [c.324]


Смотреть страницы где упоминается термин Движение жидкости вынужденное : [c.406]    [c.179]    [c.39]    [c.264]    [c.317]    [c.384]   
Теплотехнический справочник Том 2 (1976) -- [ c.156 ]

Теплотехнический справочник том 2 издание 2 (1976) -- [ c.156 ]



ПОИСК



Вынужденное движение жидкости в трубах

Движение вынужденное

Движение жидкости вынужденное свободное

Движение жидкости вынужденное теплоотдача

Движение жидкости вынужденное уравнения

Интенсивность теплообмена при поверхностном кипении в условиях вынужденного движения жидкости

Исследование теплоотдачи при вынужденном движении жидкости внутри труб и каналов

Се pfpeji сКонвективная теплоотдача, ( р,У e.rJpt, Теплоотдача при вынужденном движении жидкости и газов

Теплообмен при вынужденном движении жидкости в труДвижение жидкости в трубах

Теплообмен при кипении жидкости в условиях вынужденного движения

Теплоотдача при вынужденном (напорном) движении жидкости в трубах и каналах постоянного сечения

Теплоотдача при вынужденном движении жидкостей и газов

Теплоотдача при вынужденном движении жидкости в труТеплоотдача при поперечном обтекании труб

Теплоотдача при вынужденном движении жидкости в трубах

Теплоотдача при вынужденном течении жидкости в труОсобенности движения и теплообмена в трубах

Теплоотдача я гидравлическое сопротивление при вынужденном движении жидкости в трубе

Теплоотдача — Коэффициент поправочный при вынужденном движении жидкости

Теплоотдача — Коэффициенты Единицы измерения конвекцией при вынужденном движении жидкост

Трубы — Теплоотдача конвекцией при вынужденном движении жидкости



© 2025 Mash-xxl.info Реклама на сайте