Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пирометр фотоэлектрический

Как и оптические пирометры, фотоэлектрические пирометры измеряют условную яркостную температуру. Действительная температура тела определяется с помощью соотношения (9.18) или специальных таблиц.  [c.187]

Пирометры фотоэлектрические 1 — 169 — Характеристики технические 1 — 168  [c.448]

Для измерения температуры нагрева металла применяют термопары и пирометры (фотоэлектрические и радиационные). Показания температуры регистрируются самопишущими потенциометрами. Расход газа и воздуха измеряют и регистрируют самопишущими кольцевыми весами. Давление газа отмечается тягомером мембранного типа или самопишущим дифференциальным манометром. Разрежение в дымоходах от рабочего пространства печи контролируется тягомерами. Все приборы являются составной частью схемы автоматического управления тепловым режимом нагревательных печей.  [c.28]


Пирометры фотоэлектрические 1622 Пламенная закалка, виды горючего 983  [c.1649]

Фотоэлектрические методы измерения яркостей широко используются в прецизионных фотоэлектрических установках, применяемых для научных исследований и эталонных работ в области оптической пирометрии. Фотоэлектрические методы позволили превзойти точность в измерении яркостей, которая была достигнута в визуальной оптической пирометрии, так как в последнем случае точность ограничена контрастной чувствительностью человеческого глаза.  [c.280]

Параллельно с развитием пирометров с исчезающей нитью шло усовершенствование вольфрамовых ленточных ламп, предназначенных для поддержания и распространения оптической температурной шкалы. Эти лампы совершенствовались непрерывно, и сейчас они используются в поверочных лабораториях совместно с образцовыми фотоэлектрическими пирометрами. Международные сличения температурных шкал выполняются путем кругового обмена такими лампами между национальными термометрическими лабораториями. В настоящее время согласованность между радиационными температурными шкалами в области от 1000 до 1700 °С, установленными основными национальными термометрическими лабораториями, характеризуется погрешностью 0,1 °С.  [c.311]

На рис. 7.13 показана полость, сделанная из графита и используемая для реализации точки затвердевания золота при первичной калибровке фотоэлектрических пирометров. Однородность температуры обеспечивается помещением цилиндрической полости непосредственно в золото. Для исключения прямого зеркального отражения задняя стенка выполняется рифленой. Передняя стенка сделана из платинового диска с отверстием диаметром 1,5 мм. Как отмечалось выше, наличие слабо  [c.346]

Рис. 7.14. Плавление и затвердевание золота, окружающего по-. ость, изображенную на рис. 7.13. Для наблюдений использован фотоэлектрический пирометр, показанный на рис. 7.32. Рис. 7.14. Плавление и затвердевание золота, окружающего по-. ость, изображенную на рис. 7.13. Для наблюдений использован фотоэлектрический пирометр, показанный на рис. 7.32.
При градуировке второго вида шкала опирается на черное тело в точке золота и выполняются прямые измерения, с использованием набора фильтров или секторных дисков с известной величиной X. При градуировке этим способом к определению длины волны предъявляются значительно более высокие требования. Рассматривать подробно воспроизведение шкалы с помощью пирометра с исчезающей нитью не имеет смысла, поскольку этот метод применяется теперь редко. Вместо этого мы рассмотрим проблему эффективной длины волны, а затем перейдем к устройству и характеристикам точного фотоэлектрического пирометра.  [c.368]


Это выражение, полученное из уравнения Планка, связывает спектральную яркость L K, Т) черного тела при температуре Т (здесь подразумевается Tes) со спектральной яркостью черного тела при точке золота L X, T u). При применении формулы (7.68) для практических измерений возникает вопрос, как обходиться с конечной шириной полосы АХ, которая для оптического пирометра с исчезающей нитью составляет примерно 0 нм, а для фотоэлектрического пирометра может составлять примерно от 1 до 10 нм.  [c.369]

Примеры более современных фотоэлектрических пирометров, освобожденных от внутренней образцовой лампы, показаны на рис. 7.32, а, б [44, 70]. Для сравнения двух внешних источников, например черного тела в точке золота и ленточной вольфрамовой лампы, используется свойственная фотоумножителю стабильность. Отношения яркостей в этих пирометрах измеряются либо посредством секторных дисков и прямых отношений счета фотонов [21] или фототоков, либо посредством удвоения яркости.  [c.373]

Рис. 7.32а. Фотоэлектрический пирометр с преломляющей оптической системой [44]. / — источник 2 2 — диафрагма 3 — галогенная вольфрамовая лампа 4 — полевая диафрагма 5 —линза 6 — коллимированный источник 7—поглощающие фильтры 8 — интерференционные фильтры 9 — фотоумножитель 10 — карусель // — поглощающий фильтр 12 — ограничивающая диафрагма 13 — затвор 14 — прицельный телескоп 15 — линза объектива 16 — источник 1. Рис. 7.32а. Фотоэлектрический пирометр с преломляющей <a href="/info/14569">оптической системой</a> [44]. / — источник 2 2 — диафрагма 3 — галогенная <a href="/info/351183">вольфрамовая лампа</a> 4 — <a href="/info/166277">полевая диафрагма</a> 5 —линза 6 — коллимированный источник 7—поглощающие фильтры 8 — <a href="/info/192386">интерференционные фильтры</a> 9 — фотоумножитель 10 — карусель // — поглощающий фильтр 12 — ограничивающая диафрагма 13 — затвор 14 — прицельный телескоп 15 — линза объектива 16 — источник 1.
Конструкции фотоэлектрических пирометров, приведенных на рис. 7.32а, б, являются только примерами различных систем, действующих в разных национальных лабораториях. Ко-  [c.375]

При конструировании фотоэлектрического пирометра одним из наиболее важных выборов, который нужно сделать, учитывая температурную область, в которой должен работать пирометр, является выбор детектора.  [c.376]

Градуировка фильтра фотоэлектрического пирометра высокой точности должна всегда проводиться на месте, чтобы освещение во время применения было точно таким же, как и во время градуировки. Типичная угловая чувствительность интер-  [c.378]

Рис. 7.35. Пропускание трех интерференционных фильтров. Фильтры 1 и 2 пригодны для точных фотоэлектрических пирометров, фильтр 3 непригоден вследствие большого пропускания за пределами пика [25]. Рис. 7.35. Пропускание трех <a href="/info/192386">интерференционных фильтров</a>. Фильтры 1 и 2 пригодны для точных фотоэлектрических пирометров, фильтр 3 непригоден вследствие большого пропускания за пределами пика [25].
При оценке погрешностей фотоэлектрической пирометрии было найдено, что имеются источники погрешностей, связанные со способа.ми взаимодействия оптической системы и источника. Погрешности этой категории исследовать довольно трудно, так как они часто являются результатом сложных комбинаций различных эффектов. Один из наиболее важных эффектов такого рода связан с размером наблюдаемого источника и распределением яркости за пределами геометрически наблюдаемой площади. Для объекта конечного размера, находящегося в плоскости источника, поток излучения, прошедший плоскость диафрагмы, из-за дифракции меньше потока, который должен иметь место в соответствии с геометрической оптикой. Чтобы эти потери свести к нулю, нужно было бы увеличить размер источника так, чтобы в отверстии диафрагмы он стягивал угол 2л стерадиан. Таким образом, если пирометр измеряет по очереди два источника с разными размерами, сравнение будет содержать погрешность, обусловленную дифракцией. Дополнительная погрешность возникает в результате рассеяния на линзах объектива или на зеркале. Она также будет зависеть от размера источника, так как рассеяние пропорционально освещенности элементов объектива.  [c.379]


Рис. 25.4. Схема фотоэлектрического цветового пирометра Рис. 25.4. <a href="/info/220256">Схема фотоэлектрического</a> цветового пирометра
В яркостных фотоэлектрических пирометрах чувствительным элементом является фотоэлемент, что позволяет освободить этот тип приборов от известной субъективности измерений, присущих оптическим пирометрам, и, следовательно, повысить точность измерений, а также дает возможность проводить автоматическую запись температуры и использовать эти приборы в системах автоматического регулирования. Ток в цепи фотоэлемента пропорционален потоку излучения, падающего на него от объекта измерения, н может служить мерой его температуры.  [c.187]

Различают две разновидности фотоэлектрических пирометров. К первой из них относятся пирометры, использующие сравнительно узкий спектральный интервал с эффективной длиной волны 7 = = 0,65 мкм (как и у оптических пирометров). Во второй разновидности фотоэлектрических пирометров используются щирокие -спектральные интервалы с различными значениями эффективной длины волны, зависящими как от спектрального состава излучения объекта измерения, так и от спектральных свойств применяемого фотоэлемента. Отсутствие в настоящее время полных сведений о значениях степени черноты тел в различных интервалах длин волн создает серьезные трудности для пересчета яркостной температуры, измеренной пирометрами этой разновидности, на действительную, поэтому такие пирометры используют главным образом для контроля температуры, когда знание действительной температуры необязательно.  [c.187]

На рис. 9.10 показана схема фотоэлектрического пирометра типа ФЭП, основанного на использовании узкого спектрального интервала с эффективной длиной волны Яэ = 0,65 мкм. Поток излучения от объекта измерения 1 через объектив 2 и диафрагму 3, одно из двух отверстий в диафрагме 7 и красный светофильтр 5 попадает на фотоэлемент 9. Наведение пирометра и фокусировка изображения объекта измерения в плоскости отверстия диафрагмы 7 контролируются визуально с помощью визирного устройства, состоящего из окуляра 5 и зеркала 4.  [c.188]

При измерениях температуры, превышающей 1700 К, применяются ослабляющие светофильтры. В этом случае фотоэлектрическими пирометрами можно измерять температуру до 4000 К-  [c.188]

Фотоэлектрические пирометры могут быть использованы в качестве датчиков устройств сигнализации и терморегулирования.  [c.188]

Погрешности измерения температуры фотоэлектрическими пирометрами имеют те же причины, что и при измерении оптическими пирометрами.  [c.189]

Же длине волны (обычно А,—0,65 мкм), можно, вычислив их отношение, определить температуру Т [см. (3.10)]. Именно таким образом определяется практическая шкала температур от 1337,58 до 6300 К. Такие пирометры, осно ванные на зависимости энергии излучения от температуры при неизменной длине волны, называют оптическими или фотоэлектрическими пирометрами.  [c.114]

Принцип действия фотоэлектрических яркостных пирометров основан на применении фотопреобразователей для измерения монохроматической яр-. кости объекта или ее сравнения с яркостью эталона. Эти приборы позволяют автоматизировать и ускорить процесс измерения и исключить субъективные ошибки измерения. Нижний температурный предел пирометров определяется спектральной чувствитель-  [c.131]

Для измерения и регулирования температуры промышленность изготовляет в большом количестве термопары, термометры сопротивления, стеклянные жидкостные термометры, манометрические термометры, пирометры — оптические, фотоэлектрические и радиационные.  [c.11]

Знание температуры, от которой производится закалка, является обязательным. Температуру измеряют при единовременной закалке фотоэлектрическим пирометром, при непрерывно-последовательной — пирометром с исчезающей нитью (с нитью накаливания).  [c.146]

А. М. Гуревич, Объективный оптический пирометр (фотоэлектрический), С, А. Друкер, Новый вариант метода контроля спектральногс состава по сине-красному отношению. Заводская лаборатория, Л Ь И, 1950.  [c.430]

Пирометр полного излучения с линзовой оптикой 11.39 Пирометр портативный Ц.7п Пирометр радиационный 11. Збп Пирометр с диафрагменной оптикой 11.37 Пирометр с зеркальной оптикой 11.38 Пирометр с исчезающей нитью 11.14 Пирометр с линзовой оптикой 11-39 Пирометр с серым клином 11,14п Пирометр сканирующий 11.5 Пирометр спектрального отношения 11.50 Пирометр спектрального распределения 11.49 Пирометр стационарный Ц.6 Пирометр треххроматический 11.51п Пирометр трехцветный 11.51п Пирометр фотоэлектрический 11.2п Пирометр цветовой 11.50п Пирометр частичного излучения 11.11 Пирометр энергетический 11.10 Пирометр яркостный 1Ы2п Пироскоп 9.9п Плавление 1.62 Пластина шкальная 5.21 Плато 2.38 Пленка термоиндикаторная 9.23 Плотность спектральная 1,52 Плотность теплового потока 1,26 Площадка 2.38 Площадка фазового перехода 2,38 Площадь теплового контакта 4.5 Поверхность изотермическая 1.8 Поглощение 1.51 Погрешность динамическая 4.19 Погрешность пирометра методическая 11.53  [c.68]

Пирометр фотоэлектрический типа ФЭП-3 предназначен в основном для измерения температуры прокатываемого металла, после удаления окалины. Работа пирометра основана на свойстве фотоэлемента изменять возникающий в нем ток пропорционально падающему на него световому потоку. Эффективная длина волны, на которой работает пирометр типа ФЭП-3, близка к длины волны Х = = 0,65 мин, поэтому для определения действительной температуры нечерных тел можно пользоваться данными, приведенными в табл. 29-13.  [c.460]


ПОЗВОЛЯЮТ использовать их в таких разнообразных ситуациях, как измерение температуры лопастей турбин авиационных моторов и в сталелитейных печах. В поверочных лабораториях оптические пирометры с исчезающей нитью сейчас вытеснены фотоэлектрическими пирометрами, которые применяются в качестве приборов, используемых для реализации МПТШ-68 выше точки затвердевания золота.  [c.311]

Описав свойства теплового излучения, полости черного тела, вольфрамовые лампы и эффективную длину волны, мы имеем теперь все элементы, которые требуются для того, чтобы обсудить воспроизведение МПТШ-68 фотоэлектрическим пирометром.  [c.372]

Фотоэлектрический пирометр, пригодный для воспроизведения МПТШ-68 выше точки золота, является оптическим прибо-  [c.372]

Рис, 7.326. Фотоэлектрический пирометр с отражающей оптической системой [70]. / — источник 2 — внеаксиальное эллипсоидальное зеркало 3 — нейтральные фильтры плотности фильтр, отрезающий длинноволновую часть спектра 5 — узкополосный интерференционный фильтр 6 — фотоумножитель н усилитель 7 — механизм управления установкой дисков 8 — прицельный телескоп 9 — вращающийся секторный диск 10 — прицельная решетка 11 — входное отверстие диаметром 0,75 мм 12 — качающееся зеркало 13 — плоское зеркало.  [c.374]

Для фотоэлектрической пирометрии в области от 700 °С и выше предпочтительным детектором является фотоумножитель с фотокатодом типа 5-20. Его конкурентом служит кремниевый фотодиод, который хотя и обладает некоторыми преимущест-  [c.376]

Существуют два основных источника шума, появляющегося в выходном сигнале детектора шум самого детектора и флуктуации, присутствующие в тепловом излучении, которое попадает в детектор [58]. Ни один из них не ограничивает чувствительность фотоэлектрических пирометров в области выше 700 °С. Оба детектора (фотоумножитель и кремниевый фотодиод) могут быть использованы с временем усреднения, достаточно большим, чтобы снизить случайную погрешность из-за шума детектора и флуктуаций излучения до уровня в несколько миликельвинов в температурном эквиваленте.  [c.377]

Требования к интерференционному фильтру, который определяет ширину полосы фотоэлектрического пирометра, достаточно жестки. В частности, коэффициент пропускания при длине волны далеко за пределами основного пика должен быть меньше примерно в Ю раз, чем в максимуме. Если это не выполняется, то вычисление температуры по уравнению (7.69) существенно зависит от пропускания за пределами пика, и это ведет, вероятно, к погрещ-ностям. Если используется один из приближенных методов решения уравнения (7.69), становится очень трудно учесть пропускание за пределами пика и ошибка, несомненно, возрастет. На рис. 7.35 показаны кривые пропускания трех типичных фильтров, исследованных в работе [25]. Фильтры I VI 2 можно считать пригодными для фотоэлектрического пирометра высокого разрешения, а фильтр 3 нельзя из-за того, что его пропускание за пределами пика слишком высоко. Быстрое спадание чувствительности фотокатода 5-20 с длиной волны за пределами 700 нм удобно для компенсации длинноволнового пропускания фильтров, которое в противном случае было бы непреодолимым ввиду экспоненциалыгого возрастания спектральной яркости черного тела в этой области.  [c.378]

В гл. 3 рассматривались измерения термодинамической температуры газовым термометром и другими первичными термометрами. Было показано, что в температурной области выше примерно 30 К практически все численные значения термодинамической температуры основаны на газовой термометрии. Однако усовершенствования в термометрии излучения, возможно, это изменят. Уже измерения температурных интервалов в области от 630 °С до точки золота показали, что МПТШ-68 вблизи 800 °С содержит погрешность около 0,4 °С [15, 75]. Фотоэлектрический пирометр сам по себе не является первичным термометром, так как им можно измерить не абсолютную спектральную яркость источника, а только отношение спектральных яркостей двух источников, и невозможно, чтобы один из них находился в тройной точке воды. Однако фотоэлектрическая пирометрия может дать очень точные значения- для разностей температур  [c.381]

В фотоэлектрических пирометрах, предназначенных для измерения температуры нагретых тел, термочувствительный элемент выполнен из фотоэлементов или фо-тосопротивлений, реагирующих на инфракрасную часть, спектра. Фотоэлектрические пирометры, как и яркост-ные, основаны на измерении температуры по монохроматической (частичной) интенсивности источника излучения.  [c.113]


Смотреть страницы где упоминается термин Пирометр фотоэлектрический : [c.427]    [c.56]    [c.366]    [c.372]    [c.373]    [c.376]    [c.376]    [c.205]    [c.341]    [c.462]    [c.334]   
Теория и техника теплофизического эксперимента (1985) -- [ c.187 , c.188 , c.192 ]

Основные термины в области температурных измерений (1992) -- [ c.0 ]

Ковочно-штамповочное производство (1987) -- [ c.98 ]



ПОИСК



1 — 166, 167 — Контакты общего назначения 1 — 167169 — Пирометры фотоэлектрические 1 — 169 — Характеристики технические

Пирометрия

Пирометры



© 2025 Mash-xxl.info Реклама на сайте