Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Больцмана

Если рассматривать уравнение (6-3.1) как справедливое для любой предыстории, а не только в предельном случае малых деформаций, оно представляет собой пример интегрального уравнения состояния. Физическая предпосылка, лежащая в основе уравнения (6-3.1), ясна предполагается, что все деформации, которые имели место в прошлом и измеряются при помощи тензора Коши, дают линейный вклад в текущее значение напряжения. Весовая функция / (s) представляет собой материальную функцию, которая полностью определяет Частный тип материала, удовлетворяющего такому правилу линейности. Линейное соотношение, выражаемое уравнением (6-3.1), известно также как принцип суперпозиции Больцмана.  [c.216]


Поверхностная плотность потока интегрального излучения абсолютно черного тела в зависимости от его температуры описывается законом Стефана-Больцмана  [c.91]

Здесь 00 = 5,67-Ю- Вт/(м. К") - постоянная Стефана—Больцмана. Для технических расчетов закон Стефана— Больцмана обычно записывают в виде  [c.91]

Степень черноты е меняется для различных тел от нуля до единицы в зависимости от материала, состояния поверхности и температуры. Используя понятие степени черноты, можно записать закон Стефана—Больцмана для реального тела  [c.91]

С ростом температуры, когда максимум излучения смещается в область коротких волн, степень черноты уменьшается. Поскольку степень черноты газа Ег существенно зависит от температуры, закон четвертой степени Стефана— Больцмана строго не выполняется. Так,  [c.96]

Автор, широко образованный педагог, прекрасно сознавая огромное значение статистической термодинамики для решения технических задач, показал формы и методы использования основных результатов статистики Больцмана и квантовых статистик Бозе — Эйнштейна и Ферми — Дирака при рассмотрении важнейших понятий термодинамики, как например внутренней энергии, теплоемкости, энтропии и т. д.  [c.7]

Постоянная Стефана-Больцмана а  [c.23]

Больцмана дает, в частности, основу для статистического вычисления термодинамических свойств. В гл. 2 рассмотрено применение статистических выводов для вычисления термодинамических свойств с числовыми расчетами для идеального гам.  [c.28]

Уравнение (3-11) имеет форму закона Больцмана распределения энергии и закона Максвелла распределения молекул по скоростям и известно как функция распределения Максвелла — Больцмана.  [c.98]

Эту функцию распределения впервые вывел Ферми, а затем применил Дирак к свободным электронам металла она известна как распределение Ферми — Дирака и отличается от распределения Больцмана для различных частии на член (+1) в знаменателе.  [c.100]

Распределение Больцмана как приближение для неразличимых частиц  [c.103]

Это выражение для w аналогично тому, которое было найдено в п. 3 для различимых частиц, деленному на постоянную величину п. Множитель п не фигурирует в уравнении (3-16) вследствие того, что частицы рассматриваются как неразличимые. Если это приближенное выражение для w использовать для нахождения наиболее вероятного распределения энергии, то получится выражение, идентичное уравнению (3-11) для распределения Больцмана, так как постоянный множитель п1 не влияет на величину d in w. Таким образом, распределение Больцмана для различимых частиц может быть использовано как приближенное выражение для неразличимых частиц, когда п .  [c.103]


Средняя термодинамическая энергия получается с помощью функции распределения Больцмана она точна для различимых частиц и дает очень хорошее приближение для неразличимых частиц  [c.106]

Подстановка этих уравнений в закон распределения Больцмана дает выражение для доли общего числа частиц, имеющих энергию между е и е 4- de  [c.110]

Число способов, при которых имеет место наиболее вероятное распределение энергии, может быть найдено подстановкой закона распределения Больцмана для и,- в уравнение (4-21). Распределение Больцмана для может быть выражено в функции суммы состояний с помощью уравнений (3-11), (3-17), (3-18) и (3-30)  [c.129]

Если уравнение (4-22) закона распределения Больцмана использовать для замены , , то число способов, которыми достигается  [c.129]

Для любого расстояния h от поверхности можно выразить (/г) и Лэ (h) по закону Больцмана в функции п и электростатического потенциала V  [c.51]

Собственное излучение вычислим на основании закона Стефана — Больцмана  [c.192]

Работы Максвелла и Больцмана составили один из наиболее важных этапов в понимании тепловых величин. С тех пор стало возможным определять температуру либо через макроскопические термодинамические величины, такие, как теплота и работа, либо (с равным основанием и тождественными результатами) как величину, которая характеризует распределение энергии между частицами системы. Однако ограничение кинетической теории Максвелла и Больцмана заключалось в том, что она применима только к системам невзаимодействующих частиц, т. е. исключительно к идеальным газам, а на практике — к реальным газам в пределе низких давлений или высоких температур.  [c.20]

Итак, мы коротко обсудили, каким образом основные параметры состояния в классической термодинамике Т п 5 связаны с соответствующими параметрами 0 и И в статистической механике. Важная роль постоянной Больцмана к очевидна она обеспечивает связь между численными значениями механических (в классической или квантовой механике) и термодинамических величин. Здесь следует отметить еще одно уточнение величины температуры, вытекающее из уравнения (1.16). Температура является параметром состояния, обратно пропорциональным скорости изменения логарифма числа состояний как функции энергии для системы, находящейся в тепловом равновесии. Поскольку число состояний возрастает пропорционально очень высокой степени энергии, то определенная таким образом температура всегда будет положительной величиной.  [c.22]

Численное значение постоянной Больцмана k устанавливают, принимая произвольное значение температуры тройной точки воды и сравнивая уравнения состояния системы, записанные на языке классической и статистической механики. Простейшей системой является идеальный газ, для которого в классическом случае  [c.25]

Чтобы объяснить различие между первичной и вторичной термометрией, прежде всего укажем, в чем смысл первичной термометрии. Под первичной термометрией принято понимать термометрию, осуществляемую с помощью термометра, уравнение состояния для которого можно выписать в явном виде без привлечения неизвестных постоянных, зависящих от температуры. Выше было показано, каким образом постоянная Больцмана обеспечивает необходимое соответствие между численными значениями механических и тепловых величин и каким образом ее численное значение определяется фиксированием температуры 273,16 К для тройной точки воды. Таким же способом было найдено численное значение газовой постоянной. Таким образом, имеются три взаимосвязанные постоянные Т (тройная точка воды) или То (температура таяния льда), к и R. В принципе теперь можно записать уравнение состояния для любой системы и использовать ее в качестве термометра, смело полагая, что полученная таким способом температура окажется в термодинамическом и численном согласии с температурой, полученной при использовании любой другой системы и другого уравнения состояния. Примерами таких систем, пригодных для термометрии, могут служить упомянутые выше при обсуждении определения к н Я газовые, акустические, шумовые термометры и термометры полного излучения. Наличие не зависящих от температуры постоянных, таких, как геометрический фактор в термометре полного излучения, можно учесть, выполнив одно измерение при То Последующее измерение Е(Т)  [c.33]


Строгий вывод для второго вириального коэффициента газа, подчиняющегося статистике Больцмана, довольно сложен. Результат не зависит от того, что принято за основу при расчете вириальная теорема Клаузиуса, классическая или квантовая механика или канонический ансамбль. Исходя из классической механики, имеем  [c.80]

Очевидно, что конкретный механизм рассеяния электронов играет для термоэлектричества важную роль. Можно, например, предположить, что электроны, имеющие большую скорость, должны рассеиваться атомами решетки под меньшими углами, чем электроны с меньшей скоростью. Другими словами, средняя длина свободного пробега электронов будет зависеть от их кинетической энергии. Это верно в целом, но конкретная взаимосвязь длины пробега и энергии сложна и сильно зависит от электронной структуры решетки. Сложность связи между длиной пробега и энергией электронов не дает возможности получить количественное описание термоэлектричества, хотя качественно картина явления проста. Другими словами, наших сведений о поверхности Ферми реального металла недостаточно для вычисления термо-э.д.с. Следует отметить, что для полупроводников ситуация проще, поскольку число электронов и дырок, участвующих в процессе проводимости, значительно меньше. В этом случае модель электронного газа, в которой частицы подчиняются статистике Максвелла — Больцмана, лучше отражает истинную природу явления.  [c.268]

Проблема детектора теплового излучения неотделима от вопроса об излучательных свойствах источника излучения. Спектральные характеристики излучения черного тела, как будет показано, описываются законом Планка. Проинтегрированный по всем длинам волн закон Планка приводит к закону Стефана — Больцмана, который описывает температурную зависимость полного излучения, испущенного черным телом. Если бы не было необходимости учитывать излучательные свойства материалов, оптический термометр был бы очень простым. К сожалению, реальные материалы не ведут себя как черное тело, и в законы Планка и Стефана — Больцмана приходится вводить поправочные факторы, называемые коэффициентами излучения. Коэффициент излучения зависит от температуры и от длины волны и является функцией электронной структуры материала, а также макроскопической формы его поверхности.  [c.311]

Стефана — Больцмана и Планка  [c.312]

Эта формула Рэлея — Джинса для энергии в полости, являющаяся результатом применения статистики Больцмана к полю излучения.  [c.313]

Это выражение для закона Планка. Он устанавливает связь между энергией, приходящейся на единичный интервал частот при частоте V в замкнутом параллелепипеде с объемом V, и температурой стенок. Как и следовало ожидать, закон Планка в пределе низких частот переходит в закон Рэлея — Джинса, а в пределе высоких частот — в закон Вина. Интегрирование уравнения Планка по всем частотам приводит к закону полного излучения Стефана — Больцмана. Полная энергия 0 в той же полости выражается как  [c.314]

Молекулярно-кинетический подход к исследованию опирается на изучение молекулярного (микродискретно-го) строения газа и поэтому лучше соответствует реальным условиям. Однако использование дифференциальных уравнений в частных производных требует возврата к гипотезе о квазисплошности среды и квазинепрерывности полей ее характеристик. Возникающее противоречие снимается с помощью перехода к макроскопическому описанию свойств и процессов через микроскопические свойства отдельных молекул среды, структура и элементарные процессы в которой дискретны. Этот переход осуществляется с помощью функций распределения Максвелла или Больцмана. При этом свойства среды выступают как осредненные по всем молекулам и как непрерывные функции координат и времени.  [c.26]

Систему уравнений для вывода критериальных зависимостей исследуемого класса дисперсных теплоносителей получим, используя предложенную выше модель гетерогенной элементарной ячейки. Этот подход, по-види-мому, связан с минимальными физическими погрешностями, что существенно для теории подобия. Возникающая при этом математическая некорректность вывода соответствующих дифференциальных уравнений связана с тем, что к рассматриваемому молю гетерогенной системы в силу конечности его размеров и дискретности его 1компонентов неприменимы точные математические методы. Мож но полагать, что для дисперсных систем в принципе невозможно получить полностью корректную (одновременно с физической и формально-математической точек зрения) систему дифференциальных уравнений пока не будут предложены соответствующие функции распределения, аналогичные функциям Максвелла и Больцмана для газа. Поэтому в дальнейшем воспользуемся приближенным методом конечных разностей, дополнительно учитывая следующее  [c.33]

N3---=2 2nmkTjhy где т — масса электрона k — постоянная Больцмана А — постоянная Планка. 50  [c.50]

Для термометрии в области низких температур, где в качестве термометрического газа используется гелий, уравнение (3.9) является приближенным, так как не учитывает влияния квантовых эффектов. Вопросу изучения вторых вириальных коэффициентов Не и Не в квантовой области ниже 8 К, а также в промежуточной области между 8 и 30 К было уделено довольно много внимания. Первые успешные вычисления вириальных коэффициентов выполнены де Буром и Мичелом в 1939 г. [22]. Псгзднее более точные вычисления были осуществлены Килпатриком и др. [44] и Бойдом и др. [7]. Полное выражение для В(Т) с учетом квантовых эффектов, данное в работе [7], представляет собой сумму двух взаимодействий — В(Т)прям и В(Т)обы. Первая часть описывает парное взаимодействие частиц, подчиняющихся статистике Больцмана, вторая — взаимо-  [c.81]



Смотреть страницы где упоминается термин Больцмана : [c.379]    [c.305]    [c.8]    [c.28]    [c.221]    [c.6]    [c.23]    [c.97]    [c.103]    [c.270]    [c.43]    [c.125]    [c.157]    [c.20]    [c.27]    [c.272]    [c.313]   
Смотреть главы в:

Физическая газодинамика реагирующих сред  -> Больцмана

Введение в кинетическую теорию газов  -> Больцмана


Механические свойства полимеров и полимерных композиций (1978) -- [ c.56 , c.57 ]

Физическое металловедение Вып I (1967) -- [ c.62 ]

Механика сплошной среды Часть2 Общие законы кинематики и динамики (2002) -- [ c.0 ]

Краткий справочник по физике (2002) -- [ c.0 , c.72 ]

Физика твердого тела Т.2 (0) -- [ c.0 ]

Основы оптики (2006) -- [ c.247 ]

Свойства газов и жидкостей Издание 3 (1982) -- [ c.4 , c.350 , c.410 , c.471 ]

Физика твердого тела Т.1 (0) -- [ c.0 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте