Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механизмы Скорость и ускорение — Определение

Ниже излагается порядок проектирования присоединенной группы и последовательность определения ускорения рабочего звена спроектированного механизма в крайнем рабочем положении. Для определения положений звеньев механизма, скоростей и ускорений пользуемся аналитическими методами расчета, изложенными в работе [3]. Круговой направляющий механизм считается уже спроектированным, поэтому исходными данными для проектирования присоединенной группы будут I ad = вс = d = см = 1 -мo = Флв. где, как указывалось выше, Ав — угол поворота кривошипа, соответствующий крайнему рабочему положению звена FG, а Lq,d — величина отрезка, определяющего положения центра приближаемой окружности, т. е. крайнее нерабочее положение шарнира G.  [c.51]


Из методов кинематического исследования механизмов наиболее полно разработаны графические. Они требуют вычерчивания механизма для ряда положений ведущего звена за один период движения и выполнения соответствующих этим положениям масштабных построений планов скоростей и ускорений. Такие методы обладают рядом достоинств, и поэтому широко применяются на практике при кинематическом и кинетостатическом расчетах механизмов. Скорости и ускорения в данном случае являются векторными величинами, которые представляют собой отрезки прямых, выражающих определенный результат измерения вещественным числом. Отрезки имеют конечные размеры, начальную точку и направление, обозначаемое стрелкой, обращенной острием в сторону направления. При векторном выражении кинематических параметров механизмов следует обращать внимание на особенность результата. Так, линейные скорости двух произвольно взятых точек на окружности радиуса г алгебраически равны между собой, но векторно они не равны, так как направлены под углом друг к другу.  [c.42]

Аналитическое определение положений, скоростей и ускорений звеньев механизмов  [c.33]

Определение скоростей и ускорений групп II класса может быть проведено методом планов скоростей и ускорений. Так как механизмы II класса образованы последовательным присоединением групп, то изложение метода планов можно вести применительно к различным видам групп II класса. Аналогично задаче  [c.79]

В рассмотренном механизме задача об определении скоростей и ускорений сводилась к двукратному графическому дифференцированию заданной кривой перемещений. В ряде задач теории механизмов приходится пользоваться интегрированием кинематических диаграмм. Пусть, например, задана (рис. 4.39, а) диаграмма ускорения ас какой-либо точки механизма, имеющей прямолинейное движение, в функции времени t. Требуется построить диаграммы V = V (О с — с (О- Ось абсцисс (рис. 4.39, а) разбивается на равные участки и из точек /, 2,  [c.110]

Для определения аналогов скоростей и ускорений механизмов можно использовать уравнения (5.32)—(5.35).  [c.119]

Определение истинных скоростей и ускорений звеньев механизма при заданных угловой скорости Oj и углового ускорения Ё2 может быть сделано так, как показано в 16.  [c.122]

Г. Выше МЫ рассмотрели аналитический метод определения положений и аналогов скоростей и ускорений четырехзвенных рычажных механизмов.  [c.127]


Для определения аналогов скоростей и ускорений механизма (рис. 5.17) необходимо произвести двукратное дифференцирование уравнений (5.101). Так как решение задач кинематического  [c.129]

Если для кулачкового механизма определены положения выходного звена и построены графики зависимости перемещения выходного звена в функции обобщенной координаты, например для механизма, показанного на рис. 6.3 (график Sj = а (Фх)), или график Ф2 = Фа (Ф1) (рис. 6.5) для механизма, показанного на рис. 6.4, то для определения скоростей и ускорений выходных звеньев удобнее всего применить метод кинематических диаграмм, изложенный в 22.  [c.134]

Для определения этим методом скоростей и ускорений кулачковых механизмов необходимо знать радиусы кривизны различных участков профиля кулачка. В кулачках, профили которых очерчены по дугам окружностей, парабол, эллипсов, отрезкам прямых и т. д., нахождение радиусов кривизны  [c.135]

Г. Переходим к рассмотрению вопроса об определении угловых скоростей и ускорений звеньев механизма (рис. 8.17). При определении этих векторных величии считается известным движение каждого звена k по отношению к предыдущему ft — I. В рассматриваемой нами цепи (рис. 8.17) эти движения определяют производные относительных угловых скоростей и ускорений fft.f .i и 4h,h-i (ft = I, 2,. .., 6) (эю производные по времени от обобщенных координат = = Ф(1, Л-1 и пи, и поэтому их можно назыв.ять еще обобщенными скоростями и ускорениями, или их аналогами).  [c.182]

Кинематический анализ механизма ведется в следующем порядке сначала исследуется движение начальных звеньев, а затем выполняется кинематический анализ отдельных структурных групп в порядке их присоединения при образовании механизма. В этом случае в каждой структурной группе будут известны положения, скорости и ускорения тех элементов кинематических пар, к которым присоединяется данная группа. Кинематический анализ каждой группы Ассура должен начинаться с определения кинематических параметров внутренних пар группы. Затем определяются  [c.81]

Диаграммы перемещений (линейных или угловых) могут быть получены в результате экспериментальных исследований или графических построений при решении задач по определению положений звеньев механизма за один цикл его движения. Кинематические диаграммы скоростей и ускорений строят обычно либо по данным планов скоростей и ускорений, либо графическим дифференцированием диаграммы перемещений 5 = 5 (/) или ф = ф (О-  [c.40]

Основная задача кинематического исследования кулачкового механизма заключается в определении перемещений, скоростей и ускорений ведомого звена по заданным размерам механизма, профилю кулачка и закону его движения. Решение этой задачи может быть выполнено графическим, графоаналитическим и аналитическим методами  [c.236]

Тело (или механизм) при решении задач надо изображать в том положении, для которого требуется определить ускорение соответствующей точки. Расчет начинается с определения по данным задачи скорости и ускорения точки, принимаемой за полюс. Дальнейшие особенности расчета подробно рассматриваются в решенных ниже задачах. Там же даются необходимые дополнительные указания.  [c.141]

Для определения скорости и ускорении точек и звеньев сложных механизмов при использовании метода преобразования координат имеют в виду, что радиус-вектор () " , например точки Е. есть векторная функция обобщенных координат  [c.134]

Решение системы (11.19) позволит найти перемещения, скорости и ускорения звеньев механизма, движущихся под действием приложенных к ним сил (движущих и сопротивления) в функции времени t. Это необходимо для правильного выбора мощности приводов, определения максимальных скоростей движения, инерционной нагрузки, быстродействия манипулятора.  [c.337]


Способом Виллиса определяются абсолютные угловые скорости всех зубчатых колес. Далее, используя формулы и методы определения скоростей и ускорений точек тела в плоско-параллельном движении, можно найти скорости и ускорения любой точки звеньев механизма. Можно поступить иначе. Сначала определить относительную и переносную угловые скорости и, далее, пользуясь теоремой сложения скоростей и теоремой Кориолиса, найти скорости и ускорения любой точки колеса.  [c.457]

Графическое определение скоростей и ускорений точек механизмов, совершающих плоскопараллельное движение, осуществляется путем построения планов скоростей и ускорений. Приведенная ниже задача иллюстрирует применение этого метода.  [c.235]

При кинематическом исследовании механизмов решаются две основные задачи 1) определение положений всех звеньев и траекторий отдельных точек звеньев механизма 2) определение линейных скоростей и ускорений точек и угловых скоростей и ускорений звеньев механизма.  [c.35]

Для построения планов скоростей и ускорений механизма необходимо иметь план механизма при определенном положении начального звена, угловую скорость и угловое ускорение этого звена. Построив планы скоростей и ускорений механизма, можно определить угловые скорости и ускорения всех его звеньев и линейные скорости и ускорения отдельных точек звеньев. Планы скоростей и ускорений строят для каждой из структурных групп, из которых составлен механизм, а для этого необходимо  [c.38]

Определение скоростей и ускорений точек и звеньев механизмов по аналогам скоростей и ускорений  [c.41]

Аналоги скоростей и ускорений зависят только от структуры и геометрии механизма и не зависят от абсолютных значений скорости ведущего звена. Таким образом, задача определения скоростей и ускорений в механизмах сводится к отысканию аналогов скоростей и ускорений для звеньев и точек звеньев механизма. Истинные скорости и ускорения после решения этой задачи определяются с помощью формул (4.3) — (4.6).  [c.42]

Рассмотрим применение аналитического метода замкнутых векторных контуров к задачам определения траекторий точек, скоростей и ускорений звеньев и точек звеньев плоских механизмов с низшими парами. Всю схему механизма можно рассматривать как состоящую из ряда замкнутых векторных контуров, каждый из которых характеризует присоединенную структурную группу совместно с исходным механизмом. Для каждого контура составляют векторные уравнения замкнутости. Проектируя векторы на оси координат, получают уравнения в скалярном виде.  [c.43]

Задача аналитического исследования кинематики механизмов сводится к определению законов изменения аналогов скоростей и ускорений ведомых звеньев механизмов, вычисление которых трудоемко. Эти вычисления целесообразно проводить на  [c.48]

При определении траекторий точек механизмов, их скоростей и ускорений удобно использовать несколько координатных систем, последовательно определяя в них координаты точек механизма. Для вычислений координат точек в одной координатной системе по их координатам в других системах (рис. 5.8) используют известные из векторной алгебры и аналитической геометрии зависимости  [c.52]

Постоянными параметрами при кинематическом синтезе обычно являются либо линейные размеры звеньев механизмов, либо положения точек на заданных траекториях, их скорости и ускорения. Эти параметры назначают исходя из типа механизма с учетом конкретных его свойств и назначения. При этом для обеспечения требуемых кинематических свойств механизма необходимо удовлетворить некоторые условия, связанные с определенными ограничениями.  [c.57]

Основными характеристиками кулачкового механизма являются закон движения ведомого звена, величина и закон изменения усилия, которое может воспринимать это звено. В зависимости от назначения механизма может быть задан только ход выходного звена — максимальное перемещение толкателя или угол качания коромысла. При этом не учитывается закон изменения скорости и ускорения в пределах заданных перемещений. В других случаях кроме хода выходного звена предъявляется определенное требование к закону изменения его скорости или ускорения.  [c.170]

Задачи анализа заключаются в определении кинематических характеристик движения механизма, геометрические размеры которого известны. В зависимости от цели исследования определяются положения звеньев, их перемещения, траектории, скорости и ускорения. Задача кинематического исследования решается с целью получения  [c.187]

Задание К-6. Определение скоростей и ускорений точек многозвенного механизма  [c.106]

Задачи кинематического анализа состоят в определении положений звеньев, включая и определение траекторий отдельных точек звеньев, скоростей и ускорений. При этом считаются известными законы движения начальных звеньев и кинематическая схема механизма.  [c.11]

Программы расчета кинематических характеристик трех рассмотренных схем плоских рычажных механизмов состоят из главных программ ( В, С, О) и подпрограмм. Главная (основная), программа определяет порядок расчета кинематических характеристик, ввод и вывод информации, организацию цикла изменения обоб-щенно координаты. Подпрограммы, выполняющие расчет таких характеристик, как перемещение и угол поворота ведомого звена, аналоги угловых и линейных скоростей и ускорений, проекции аналогов скорости и ускорения точки, закрепленной на ведомом звене, на оси координат и т. д., также ориентированы на определенную схему механизма. Подпрограммы расчета скоростных характеристик механизмов, угла поворота ведущего звена, длины и угла наклона вектора, угла между звеньями, справочные данные являются общими для всех программ.  [c.85]


Ниже рассмотрены конструкции некоторых (типовых) узлов автоматов и особенности их расчета применительно к автоматам для холодной объемной штамповки. Расчеты этих узлов рекомендуется проводить согласно указаниям соответствующих руководящих технических материалов (РТМУ), разработанных ЦБКМ. В этих РТМ приведена классификация механизмов, выделены рациональные конструктивные решения и составлены соответствующие им математические модели с учетом жесткости звеньев и зазоров в шарнирах. Решение составленных уравнений применительно к ряду механизмов позволило определить коэффициенты динамичности К, иа которые следует умножать статические нагрузки, чтобы учесть динамику нагружения. В ряде случаев приведены формулы для определения К конечных звеньев механизмов скоростей и ускорений.  [c.195]

Возможность раздельного рассмотрения перманентного и начального движений механизма имеет важное значение при исследовании кинематики и динамики механизмов. Оно позволяет при кинематическом исследовании определять положения, скорости и ускорения звеньев в функции обобщенной координаты механизма, а не в функции времени. Истинный закон изменения обобщенной координаты от времени зависит от сил, действующих и возникаюн],их в механизме, и может быть определен только после динамического исследования механизма. Определив в результате этого исследования закон изменения обобщенной координаты, например угла поворота ср начального звена от времени t, т. е. ф = <р (О, мы определим угловую скорость этого звена оз =  [c.73]

Для определения скоростей и ускорений звеньев механизма шарнирного четырехзвенника (рис. 5.3) составляем векторное уравнение замкнутости контура AD D. Имеем  [c.116]

Рассмотрим определение перемещений, скоростей и ускорений звеньев механизма, показанного на рис. 5.9. Продолжим ось Of направляющей В до пересечения в точке Е с осью Ау и представим к онтур АЕСА как сумму векторов  [c.123]

Для всех видов этих механизмов определение положений звеньев могло бы быть сделано рассмотрением одного или двух треугольных контуров. Для определения аналогов скоростей и ускорений можно составлять векторные уравнения замкнутости контуров и далее эти уравнения проектировать на взаимно перпендикулярные оси координат, а получеинкю выражения дважды дифференцировать по принятой обобщенной координате.  [c.127]

Для определения аналогов скоростей и ускорений составляются векторные уравнения замкнутости контуров А B D А и DEFGD для механизма, показанного на рис. 5.16, а, и контуров AB DA и EFDE для механизма, показанного на рис. 5.16, б.  [c.128]

Иапрмыер, пусть требуется построить планы скоростей и ускорений в перманептном движении кулачкового механизма, показанного на рис. 6.9, а, у которого радиус кривизны OiQ профиля кулачка в точке С равняется р. Имеем следующие векторные уравиения для определения скоростей и ускорений  [c.136]

Механизм мальтийского креста после замены высших пар низшими может быть приведен к обыкновенному кулисному механизму (рис. 8.9). Для определения скоростей и ускорений этого механизма могут быть приведены формулы для кулисного механизма, выведенные нами в 25. При исследовании механизма мальтийского креста с внешним зацеплением надо исследовать движение заменяющего кулисного механизма при повороте его звена 1 на угол 2ф1 для механизма с внутренним зацеплением исследование производится при повороте звена / кулисного механизма на угол 2ф[. На рис. 8.10 даны диаграммы угловой скорости и углового ускорения звена 2 при постояппоп угловой ско-  [c.172]

Определение скоростей и ускорений в пространственных механизмах. Для этого необходимо дважды продифференцировать по времени уравнения, полученные при решении задачи о положениях звеньев. В результате получаются две системы линейных уравнений. Решая каждую в отдельности, находим первые и вторые производные параметров относительного двил<ення звеньев.  [c.110]

Определение перемещений, скоростей и ускорений в механизмах аналитическим методом производится, когда необходимо получить эти параметры с большой точностью. Задача сводится к составлению расчетных формул в зависимости от типа механизма. Существует два метода аналитического исследования механизмов 1) метод замкнутых векторных контуров, разработанный В. А. Зиновьевым, и 2) метод преобразования координат, разработанный Ю. Ф. Морошкиным. Второй метод, более сложный математически, позволяет проводить исследование плоских и пространственных механизмов со многими степенями свободы. Он особенно перспективен при исследовании механизмов промышленных роботов.  [c.43]

При кинематическом исследовании пространственных механизмов с низшими парами используют те же зависимости и соотношения между векторами перемещений, скоростей и ускорений, что и для плоских механизмов, только необходимые преобразования проводятся в пространственной системе координат. Основная задача анализа пространственных механизмов — это определение перемеи ений точек звеньев, получение функций положения и уравнений траекторий движения. Эти задачи решаются как обицим векторным методом, применимым для всех механизмов, так и аналитическим, применяющимся для малозвенных механизмов с простыми соотношениями линейных и угловых координат. При анализе пространственных  [c.213]


Смотреть страницы где упоминается термин Механизмы Скорость и ускорение — Определение : [c.87]    [c.73]    [c.79]    [c.551]    [c.82]    [c.88]   
Справочник машиностроителя Том 1 Изд.3 (1963) -- [ c.537 , c.549 ]



ПОИСК



Задание К-6. Определение скоростей и ускорений точек многозвенного механизма

Задание К.9. Определение угловых скоростей и угловых ускорений звеньев механизма манипулятора по заданному движению рабочей точки

КИНЕМАТИЧЕСКИЙ АНАЛИЗ МЕХАНИЗМОВ Аналитическое определение положений, скоростей и ускорений еньев механизмов

Линейные уравнения для определения скоростей и ускорений звеньев механизма

Метод особых точек определения скоростей ускорений механизмов

Механизмы Определение скоростей

Механизмы Определение ускорений

Механизмы Скорости — Определени

Номограммы для определения коэффициента скоростей и ускорений в кулачковых механизмах

Номограммы для определения скоростей и ускорений в кулачковых механизмах

Определение положений, скоростей и ускорений в механизмах с низшими парами Определение положений и перемещений звеньев

Определение приведенных масс шатунно-кривошипного механизма. Точные выражения скорости и ускорения поршня

Определение скоростей и ускорений

Определение скоростей и ускорений в плоских механизмах с высшими парами

Определение скоростей и ускорений в плоских механизмах с низшими парами аналитическими методами

Определение скоростей и ускорений в пространственных механизмах с высшими парами

Определение скоростей и ускорений в пространственных механизмах с низшими парами

Определение скоростей и ускорений в сферических механизмах

Определение скоростей и ускорений звеньев механизмов

Определение скоростей и ускорений точек звеньев механизма j в случае заданного относительного движения смежных звеньев ИЗ Аналитическая кинематика плоских механизмов

Определение скоростей и ускорений точек и звеньев плоских рычажных механизмов

Определение скоростей и ускорения точек механизма методом планов

Опытное определение перемещений, скоростей, ускорений, сил и крутящих моментов при исследовании механизмов машин

Построение траекторий, определение скоростей и ускорений точек плоского механизма

Сергеев В. И. К определению ошибок скоростей и ускорений плоских механизмов с высшими кинематическими парами

Скорости механизмов

Скорость Определение

Скорость и ускорение

Ускорение — Определение



© 2025 Mash-xxl.info Реклама на сайте