Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механизм и его свойства

ПЛОСКИЙ ШАРНИРНЫЙ ЧЕТЫРЕХЗВЕННЫЙ МЕХАНИЗМ И ЕГО СВОЙСТВА  [c.96]

В этой книге не делается попыток детального исследования поведения материалов с позиций физики твердого тела, однако обращение к простой атомистической модели поведения металлов должно помочь уяснить различные механизмы их повреждения. Читателю, возможно, покажется удивительным, что природа явления металлического сцепления и теория его количественного описания еще, по существу, неизвестны. К настоящему времени предпринято много попыток определить металлическое сцепление, используя сведения о химическом строении материала и его свойствах или характеризуя отличия металлического сцепления от других видов межатомных связей. Тем не менее из-за сложности строения металлов простого выражения для точного определения сил сцепления пока указать нельзя.  [c.25]


На распрямление тонкостенных вкладышей без бурта оказывают влияние такие факторы, как материал антифрикционного слоя, его толщина и физические свойства, материал основы и его свойства, рабочая температура сборки узла. В связи с тем что эти особенности не устанавливаются в настоящем стандарте, значение распрямления также не регламентируется. Распрямление во всех случаях должно быть положительным. После эксплуатации механизма в нормальных условиях значение распрямления должно быть достаточно для обеспечения ремонта (восстановления). Фактическое значение распрямления устанавливают по согласованию между потребителем и изготовителем.  [c.63]

Как правило, при гидродинамическом анализе реальных пластовых систем мы располагаем сравнительно небольшой информацией об их свойствах. Существенно то, что объем информации можно увеличить в основном при бурении и исследовании новых скважин, что сопряжено с большими затратами. Поэтому расчетная схема реального процесса всегда носит некоторый, как правило значительный, элемент неопределенности, обусловленный неполнотой информации о пластовой системе, и, следовательно, в этих условиях точное предсказание фильтрационных процессов невозможно. Заметная хаотичность устройства порового пространства и его свойств, влияющих на течение жидкости, случайный механизм образования и эволюции пластовых систем, недостаточность информации требуют развития специального аппарата, который при анализе фильтрационных процессов учитывал бы специфичность изучаемых объектов. Совершенно естественно использовать для этой цели науку о случайных явлениях — теорию вероятностей и математическую статистику.  [c.9]

Кинематическая схема механизма дает полное представление о структуре механизма и определяет его кинематические свойства. Она является графическим изображением механизма посредством условных обозначений звеньев и кинематических пар с указанием размеров, которые необходимы для кинематического анализа механизма.  [c.15]

Закономерности формирования химического состава металла шва изложены в разд. III Физико-химические и металлургические процессы при сварке . Материал первых двух разделов дает описание тех физических и температурных условий, которые создаются над поверхностью металла и в самом металле в процессе сварки. В этом плане материал первых двух разделов представляет собой как бы описание того физического фона, от которого зависит протекание реакций, переход различных легирующих элементов в металл шва или их удаление и окисление. Вопросы защиты металла шва и массообмена на границе металл— шлак и металл — газ — центральные в разд. III. Эти процессы предопределяют химический состав металла шва, а следовательно, во многом и его механические свойства. Однако формирование свойств сварного шва, а тем более сварного соединения, определяется не только химическим составом металла. Характер кристаллизации шва во многом влияет на его свойства. Свойства околошовной зоны и в определенной мере металла шва существенно зависят от температурного и термомеханического циклов, которые сопровождают процесс сварки. Для многих легированных сталей и сплавов эта фаза формирования сварного соединения предопределяет их механические свойства. Процесс сварки может создавать в металле такие скорости нагрева и охлаждения металла вследствие передачи теплоты по механизму теплопроводности, которые часто невозможно организовать при термической обработке путем поверхностной теплопередачи. Образование сварного соединения сопровождается пластическими деформациями металла и возникновением собственных напряжений, которые также влияют на свойства соединений. Эти вопросы рассматриваются в IV, заключительном разделе учебника — Термодеформационные процессы и превращения в металлах при сварке .  [c.6]


При наличии дефектов и повреждений оборудования, характеристики которых не удовлетворяют требованиям научно-технической документации, и изменении свойств металла, не предусмотренном ТУ, оценивают фактическую нагружен-ность конструкций и согласно [36, 57, 65, 88, 92, 105, 125-132] проводят дополнительный расчет прочности их элементов с учетом выявленных негативных факторов. При этом уточняют механизмы повреждений металла оборудования, его ПТС (в том числе основные), устанавливают критерии предельного состояния элементов конструкций. Основными ПТС, как правило, являются дефекты сварных соединений несплошности в основном металле оборудования коррозионные повреждения  [c.166]

Постоянными параметрами при кинематическом синтезе обычно являются либо линейные размеры звеньев механизмов, либо положения точек на заданных траекториях, их скорости и ускорения. Эти параметры назначают исходя из типа механизма с учетом конкретных его свойств и назначения. При этом для обеспечения требуемых кинематических свойств механизма необходимо удовлетворить некоторые условия, связанные с определенными ограничениями.  [c.57]

В этой вводной главе прежде всего необходимо ввести основные определения и охарактеризовать свойства рассматриваемых волн оптического диапазона. Изложение начинается с анализа уравнений Максвелла и вытекающего из них волнового уравнения. При этом отмечается, что система уравнений Максвелла является следствием законов электрического и магнитного полей, обобщенных и дополненных гениальным создателем этой теории. Таким образом, сразу вводится понятие электромагнитной волны, возникающей в качестве решения волнового уравнения, и проводится рассмотрение ее свойств. При этом выявляется кажущееся противоречие между результатами экспериментальных исследований и решением волнового уравнения в виде монохроматических плоских волн. Данная ситуация может быть понята с привлечением принципа суперпозиции и спектрального разложения, базирующегося на теореме Фурье. В рамках этих представлений можно истолковать особенности распространения свободных волн в различных средах и определить понятия энергии и импульса электромагнитной волны, формулируя соответствующие законы сохранения. Рассмотрение излучения гармонического осциллятора, которым заканчивается глава, позволяет принять механизм возникновения излучения, облегчает модельные представления о законах его распространения и открывает возможность рассмотрения более сложных условий эксперимента, которое проводится в последующих главах.  [c.15]

При изучении общих свойств механизмов необходимо выделять наиболее существенные общие признаки механизмов, отвлекаясь от частных признаков, присущих конкретному механизму. Например, при изучении кинематических свойств механизма достаточно иметь его схему, содержащую сведения, необходимые для определения кинематических характеристик перемещений, скоростей и ускорений. Конструктивные формы отдельных частей механизма для одной и той же схемы могут быть различными и они, как правило, не влияют на кинематические характеристики. Отсюда следует, что схемы механизмов, рассматриваемые в теории механизмов и машин, если они составлены правильно, являются научными абстракциями, отражающими общие свойства механизмов глубже, вернее и полнее, чем чертежи отдельных конкретных механизмов. Абстракция материи, закона природы, абстракция стоимости и т. д., одним словом,  [c.5]

Анализ механизма состоит в исследовании кинематических и динамических свойств механизма по заданной его схеме, а синтез механизма— в проектировании схемы механизма по заданным его  [c.6]

Появление теории механизмов как науки, имеющей характерные для нее методы исследования и проектирования механизмов, относится ко второй половине восемнадцатого столетия. Сначала развивались методы анализа механизмов как более простые. Лишь с середины девятнадцатого столетия стали развиваться также методы синтеза механизмов. Особенно плодотворным оказался общий метод аналитического синтеза механизмов, предложенный П. Л. Чебышевым . Постановка задачи синтеза по Чебышеву и возможности, которые предоставляют современные ЭВМ, обеспечивают практически решение любой задачи синтеза механизмов по заданным кинематическим свойствам. Значительно сложнее решать задачи синтеза механизмов по заданным динамическим свойствам. Необходимость их учета вызывается непрерывным ростом нагруженности и быстроходности механизмов, а также общим повышением требований к качеству выполнения рабочего процесса. Учет динамических свойств потребовал рассмотрения влияния на движение механизма упругости его частей, переменности их масс, зазоров в подвижных соединениях и т. п. В связи с появлением механизмов, в которых для преобразования движения используются жидкости и газы, динамика механизмов стала основываться не только на законах механики твердого тела, но и на законах течения жидкости и газов. Неудивительно поэтому, что, несмотря на большое число публикуемых работ по динамике механизмов, решение проблемы синтеза механи.шов по их динамическим свойствам еще далеко до завершения.  [c.7]


Кинематические передаточные функции механизма непосредственно определяют только его кинематические свойства. Однако они входят в коэффициенты уравнения движения механизма и совместно с динамическими передаточными функциями дают возможность провести качественное исследование динамических свойств механизма при любых законах изменения сил. В этом состоит достоинство операторного метода рещения уравнений движения механизма. Другим достоинством является возможность использования справочных таблиц для отыскания искомого решения  [c.85]

Этапы синтеза механизмов. Проектирование любого механизма начинается с проектирования его схемы. Последующие расчеты на прочность, конструктивное оформление звеньев и кинематических пар, выбор материалов и другие этапы проектирования, как правило, уже не могут существенно изменить основные свойства механизма. Проектирование схемы механизма по заданным его свойствам называется синтезом механизма.  [c.142]

Анализ механизма состоит в исследовании кинематических и динамических свойств механизма по заданной его схеме, а синтез механизма — в проектировании схемы механизма по заданным его свойствам. Следовательно, всякая задача синтеза механизма является обратной по отношению к задаче анализа. Разделение теории механизмов на анализ и синтез носит услов-Е[ый характер, так как выбор схемы механизма и определение его параметров часто выполняются путем сравнительного анализа различных механизмов для воспроизведения одних и тех же движений. Этот сравнительный анализ возможных вариантов механизма составляет теперь основу методов синтеза с использованием электронных вычислительных машин (ЭВМ). Кроме того, в процессе синтеза механизма приходится выполнять проверочные расчеты, используя методы анализа. Тем не менее методически удобно различать задачи анализа и синтеза механизмов, так как это разделение позволяет объединять задачи теории механизмов в однородные группы по признаку общности методов.  [c.11]

В первую очередь надо отметить, что впервые в программу курса и учебники внесены вопросы построения систем управления механизмами. Эти дополнения важны в двух отношениях. Во-первых нельзя говорить о полноте изложения теории механизмов, если изучается только их кинематика и динамика. Вы бор определенного типа механизма и установление требований, предъявляемых к проектированию его схемы, можно обосновать лишь с учетом свойств той системы, которая будет управлять согласованным движением всех механизмов конкретной машины.  [c.14]

Принято различать два этапа синтеза механизма. Первый этап — выбор структурной схемы — выполняется на основании структурного синтеза, рассмотренного в 4 гл. I, с использованием справочных данных по отдельным видам механизмов. Второй этап — определение постоянных параметров выбранной схемы механизма по заданным его свойствам. Этот этап обычно начинается с кинематического синтеза, иод которым понимается проектирование кинематической схемы механизма, т. е. определение постоянных параметров кинематической схемы механизма по заданным его кинематическим свойствам. Если требуется учесть и динамические свойства механизма, то решается более общая задача динамического синтеза, под которым понимается проектирование кинематической схемы механизма с определен наем параметров, характеризующих распределение масс звеньев.  [c.349]

Так, антропометрические свойства человека определяют типичные размеры и форму человеческого тела и его отдельных частей, что, в свою очередь, определяет размеры машины, расположение отдельных частей и механизмов и в первую очередь механизмов управления.  [c.527]

Практическая работа над картами механизмов деформации состоит из нескольких этапов [32]. Во-первых, для рассматриваемого материала собирается таблица значений его свойств, которые необходимы для численного решения указанных ранее уравнений скоростей деформации. К их числу относятся параметр кристаллической решетки, молекулярный объем, вектор Бюргерса, модули упругости и сдвига и их температурные зависимости, различные коэффициенты диффузии.  [c.27]

Область 1П вязкого разрушения отвечает независимому от температуры поведению материала, пока с ростом температуры не происходит деградация его свойств. Ведущий механизм вязкого разрушения в виде порообразования, приводящий к последующему формированию ямочного рельефа излома, остается неизменным в связи с возрастанием температуры. Поэтому в области П1 можно наблюдать однотипный рельеф излома как в случае влияния температуры на вязкость разрушения материала, так и при отсутствии такового.  [c.82]

Указанный принцип означает, что в процессе эволюции состояния материала последовательно реализуемые механизмы распространения трещины характеризуют его свойство сопротивляться внешней нагрузке. Один и тот же механизм развития трещины может действовать при разной комбинации параметров воздействия и уровне их величин. Условия внешнего нагружения не меняют свойств материала, а позволяют ему реализовать либо всю последовательность возможных механизмов разрушения, присущих данному материалу, или препятствуют этому, что приводит к действию лишь часть из возможных механизмов разрушения.  [c.101]

Эволюция открытых систем осуществляется в упорядоченной последовательности реализуемых механизмов эволюции на масштабных различных уровнях. Они характеризуют собой свойство открытой системы поддерживать устойчивость в некоторый период времени в результате рассеивания и/или поглощения подводимой энергии. При достижении некоторых критических условий система не может сохранить неизменность процесса или механизма эволюции и происходит дискретный переход к новому более сложному процессу эволюции. Указанные переходы реализуются в соответствии с некоторой определенной иерархией на разных масштабных уровнях независимо от условий и способа подвода к системе энергии извне. Применительно к элементам конструкций это означает, что при всем многообразии эксплуатационного воздействия на металл в процессе роста трещины могут быть реализованы только те механизмы разрушения, которые присущи данному материалу и являются его свойством сопротивляться развитию усталостного разрушения.  [c.188]


Методы измерения твердости материалов прочно вошли в практику контроля качества и проведения научных исследований. Научная и практическая ценность этих измерений заключается в том, что по величине твердости можно судить о многих важных характеристиках свойств материалов, а часто и определять их. Из результатов многочисленных исследований следует, что твердость материала зависит от его кристаллической структуры и связана со многими механическими и физическими характеристиками, с пределами текучести, прочности, усталости, с ползучестью и длительной прочностью, сжимаемостью, коррелируется также с некоторыми магнитными и электрическими свойствами. Измерение твердости является простым, но высокочувствительным методом исследования механизма пластической деформации, старения, наклепа, возврата, рекристаллизации и других фазовых и структурных превращений.  [c.22]

Самостоятельное решение учащимися ряда примеров по каждому отделу курса теории механизмов и машин имеет большое значение оно не только учит практическому применению методов кинематического и динамического анализа и синтеза механизмов, не только развивает расчетную технги у, но и обогащает учащегося представлением (I новых, ему еще неизвестных схемах механизмов и их свойствах, тем самым расширяя его технический кругозор.  [c.5]

Входными параметрами при постановке и решении задач синтеза механизмов называются параметры механизмов, заранее известные или заранее заданные при постановке задач синтеза. Выходными параметрами называют или размеры механизма и его отдельных частей, или параметры движений звеньев, или величины, определяющие интегральные свойства проектируемого механизма (например, угол сервиса манипулятора), и другие, которые должны быть определены в результате решения задачи синтеза. Так, например, при решении задачи геометрокинематического синтеза пространственного механизма, приведенного в 4.6, по методу интерполяционного приближения входными параметрами синтеза являются координаты точек ф,-, if,-, а также величины с и а, выходными — размеры звеньев механизма L, к, /я, Ь.  [c.75]

Иногда цикловой механизм шагового типа может быть создан на базе механизма с двумя степенями подвижности, осущест-вляюш его сложение непрерывного равномерного враш,ательного движения с возвратно-поступательным или колебательным движениями. Пример схемы такого механизма, объединяюш,его свойства червячной передачи и кулачкового или рычажного механизмов, показан на рис. 1, з [82]. В этом случае угловые перемеш,е-ния червячного колеса, вызванные равномерным вращением червяка, суммируются с дополнительными перемещ,ениями от осевого Бозвратно-посту,нательного движения червяка, управляемого, например, кулачковым механизмом. Аналогичную задачу  [c.6]

Для того чтобы познакомиться со способом построения плана скоростей и его свойствами, рассмотрим еще раз решение предыдущей задачи определения скоростей в четырехзвенном шарнирном механизме, но методом построения плана скоростей. Выбираем произвольную точку плоскости чертежа р (рис. 176) и от нее производим все те построения, которые раньше выполняли на самом механизме (рис. 175) и от разных точек. Прежде всего вычисляем скорость точки А по формуле = OH oi и откладываем ее на плане скоростей в виде отрезка = ра L к звену 0- А. Черта над обозначе-  [c.123]

В твердых веществах по механизму протекания различают упругую и пластическую деформации. Упругой деформацией называют деформацию, влшшие которой на форму, структуру и свойства материала устраняется после прекращения действия внешних сил, а пластической — такую часть деформации, которая остается после снятия нагрузки, необратимо изменяя структуру материала и его свойства.  [c.82]

Химико-термическая обработка стали ( ХТО ). Физические основы ХТО. Назначение и виды цементации. Механизм образования цементованного слоя и его свойства. Цементация в твердом карбюризаторе. Газовая цементация. Термическая обработка после цементации и свойства цементированных деталей.  [c.8]

Дд1я того чтобы составить функцию положения механизма, следует рассмотреть фигуру, которую образуют оси его звеньев. Из геометрических свойств этой фигуры находят искомую зависимость (подробнее об этом см. книгу В. А. Зиновьева Теория механизмов и машин , Физматгиз, 1972).  [c.33]

При проектировании кулачковых механизмов необходимо удовлетворить различные требования минимума габаритных размеров контактных напряжений и потерь на трение, исключения возможности заклинивания при работе и др. Для снижения материалоемкости обычно стремятся к уменьшению габаритных размеров. Так как угол давления определяется направлениями вектора скорости выходного звена и нормали к профилю кулачка, то, следовательно, выбор геометрических размеров механизма определяет и его эксплуатационные свойства Для всего диапазона изменения передаточной функции необходимо обеспечить значение угла давления, M Hbuiee минимально допустимого ссд Размеры, полученные из условия обеспечения требуемых качественных характеристик и определяющие габаритные размеры механизма, называют основными.  [c.172]

Упругие звенья соединяются кинематическими парами в кинематическую цепь, обладающую упругими свойствами. Поэтому вводят понятие жесткости механизма, под которым подразумевают силу или момент силы, приложенные к вхоОному звену и вызывающие его единичное линейное или угловое перемеи ение. Жесткость механизма зависит от структурной и конструктивной схемы, жесткостей его звеньев, от вида кинематических пар, соединяющих звенья, и упругих свойств их элементов. Податливость механизма, состоящего из п звеньев, последовательно соединенных р кинематическими парами, равна сумме податливостей его звеньев и кинематических пар Х с  [c.295]


Смотреть страницы где упоминается термин Механизм и его свойства : [c.193]    [c.7]    [c.111]    [c.131]    [c.152]    [c.141]    [c.193]    [c.70]    [c.143]    [c.178]    [c.3]    [c.100]    [c.243]    [c.181]   
Смотреть главы в:

Основы технической механики  -> Механизм и его свойства



ПОИСК



Анализ некоторых схем механизмов аксиально-поршневых гидромашин для выбора механизма с оптимальными динамическими свойствами

Вакансионные механизмы изменения свойств металлов

Вешииков В. В., Гукасян А. А. Влияние упругих свойств механизмов пневматического робота на статическую точность позиционирования

Г лава , Система механизмов Структура механизмов. Классификация механизмов по физическим свойствам звеньев и способу их сочетаний

Динамика механизмов с переменной массой звеньУчет упругости звеньев и диссипативных свойств системы

Кинематические свойства и проектирование исполнительных механизмов

Композиционные теплозащитные материалы 9- 1. Влияние состава материала на теплофизические свойства и механизм прогрева и разрушения

Кривошипно-коромысловые механизмы с заданными свойствами

Магнитные свойства ферримагнитных гранатов и механизмы переключения

Механические свойства и механизмы упрочнения

Образование новых границ - механизм структурообразования и релаксации напряжений. Роль границ в формировании прочностных свойств металла

Общие сведения о механизме. Свойства механизмов

Плоский шарнирный четырехзвенный механизм и его свойства

Производительность крановых механизмов Определение параметров крановых механизмов на основе оптимизации энергетических и регулировочных свойств электропривода

Р-аш иац иоиные свойства юриоповерхностей влияние толщины слоя механизм отражения Мерриэма

Расчёт динамических свойств изодромным механизмом с фрикционной

Ритца механизмы возникновения и потери свойств

Свойства и классификация элементарных-шаговых механизмов

Структура и свойства кинематических цепей механизмов манипуляторов и роботов

Тавхелидзе Д. С. Ромбоиды в стержневых механизмах и их свойства

Физическая интерпретация сопоставление со свойствами монокристалла доменный механизм

Характеристики упругих свойств звеньев и механизмов



© 2025 Mash-xxl.info Реклама на сайте