Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Абразивный Классы

Тонкое шлифова- ние 0,04..Д10 Круги абразивные (класса точности АА зернистостью 12-М 14) и алмазные (зернистостью 40/28 - 5/3) t = 0,005...0,025 мм v,p= 15...25 м/с Vj,r = 10...50 м/мин = 0,005...0,01 мм/дв. ход 5 р = 0,3...0,5 м/мин (круглое шлифование) S p= 1...2 м/мин (плоское шлифование) 0,03...0,05 0,003...0,01 0,01...0,015 Ra = 0,63...2,5 Ra = 0,08...0,32 / о = 0,32... 1,25 0,005...0,030  [c.698]

Полированием не исправляются погрешности геометрической формы, а также местные дефекты, полученные или оставшиеся от предыдущих операций (вмятины, раковины и др.). Полированием достигается шероховатость поверхности 12—13-го класса, но не обеспечивается высокая точность. Полированная поверхность имеет блестящий, зеркальный вид. Полирование ведется при высокой скорости полировального круга или абразивной ленты (до 40 м/сек).В массовом и крупносерийном производстве для полирования применяют многошпиндельные полировальные автоматы.  [c.202]


В результате хонингования получается гладкая и блестящая поверхность 9—11-го классов и с точностью 1—2-го класса. Охлаждение производится обычно керосином, который способствует удалению абразивных зерен, остающихся в порах металла (особенно чугуна) и увеличивающих износ отверстия при эксплуатации детали, поэтому интенсивное охлаждение необходимо.  [c.226]

Увеличение содержания марганца и углерода в высокомарганцевых сталях аустенитного класса повышает сопротивление абразивному изнашиванию. Распад аустенита при отпуске, несмотря на увеличение твердости сплава, уменьшает износостойкость.  [c.33]

Полезная роль трения и износа менее заметна, хотя и очень важна. Трение необходимо для перемещения человека по земле, для надежной и безопасной работы транспортных средств, которая возможна только при достаточном сцеплении колес с дорожным покрытием и безотказной работе тормозных устройств. Явление износа используется при создании поверхностей различного класса чистоты путем обработки их абразивными материалами разной зернистости. От эффективности процесса изнашивания зависит качество регистрации различной информации (использование карандашей). Полезное применение износа — самозатачивающаяся кромка режущего инструмента [3].  [c.6]

В качестве вала применялись ролики из закаленной стали ШХ-15, шлифованные по поверхности до получения высокого класса шероховатости, после чего абразивной шкуркой с размером зерна 240 мкм на них наносилась шероховатость.  [c.68]

Абразивные порошки, применяемые для получения КЭП, подразделяются на различные классы в зависимо-  [c.14]

Характерной особенностью исследования наклепа и других параметров качества поверхности при плоском шлифовании является шлифование на оптимальных (из условий максимальной производительности и стойкости абразива) режимах абразивными кругами и лентами, обеспечивающими получение обработанной поверхности с заданной шероховатостью 5, 7, 9а и 10а классов по ГОСТ 2789—59 (см. табл. 3.3, режимы 67—69 и 70—73). Принятая методика исследования качества поверхностного слоя позволяет параметры наклепа и технологические макронапряжения рассматривать с учетом неровностей поверхности, что важно для выявления зависимости между этими параметрами качества поверхностного слоя.  [c.104]

Результаты исследований показали, что на сопротивление усталости жаропрочных сплавов оказывает заметное влияние величина и направление микронеровностей на обработанной поверхности. Шероховатость поверхности (у5—уЮ) после шлифования абразивным кругом или лентой снижает сопротивление усталости сплавов по сравнению с сопротивлением усталости образцов с шероховатостью поверхности у14. Это снижение усталостной прочности составляет при микронеровностях вдоль оси образца соответственно для 5, 7, 9 и 10-го классов — 13,3 10,3 7,5 и 6%, а при неровностях поперек оси образца для тех же классов чистоты поверхности — соответственно 21,7 16,3 12,5 и 10,5%.  [c.191]


Монолитный твердосплавный инструмент предназначен, прежде всего, для обработки жаропрочных, нержавеющих и титановых сплавов, а также пластических масс с абразивными наполнителями, например, стеклопластиков. Износостойкость его в 5—20 раз выше, чем быстрорежущих сталей, обеспечивается также повышение производительности обработки в 2—гЗ раза, точности и чистоты — на один-два класса. Монолитными выпускаются фрезы угловые, кана-вочные, шпоночные (диаметром 2—14 мм), концевые (диаметром  [c.18]

Выпускаются также зубчатые хоны (абразивные шевера) из зеленого карбида кремния на вулканитовой связке, позволяющие в течение 40—60 с довести эвольвентную поверхность зубьев до 8— 9-го класса шероховатости, несколько повысить точность все это улучшает плавность зацепления, уменьшает шум в зубчатых передачах и увеличивает их долговечность.  [c.27]

Для удаления дефектных слоев металла и получения наиболее точных по размеру и форме поверхностей с минимальной шероховатостью осуществляют притирку. Применение микропорошков позволило при доводке плоскопараллельных мер длины получать поверхности 12—14-го классов шероховатости. Определяющим фактором, влияющим на съем металла и шероховатость поверхности при притирке, является отношение глубины внедрения абразивного зерна в обрабатываемую поверхность h к радиусу закругления его вершин р.  [c.29]

Особым видом шлифования является хонингование. Хонин-гование обеспечивает получение деталей с чистотой поверхности 8—12-го классов по ГОСТу 2789—59 и применяется для обработки как наружных, так и внутренних поверхностей. Шероховатость поверхности после хонингования зависит от зернистости абразивных брусков. Припуск под хонингование в основном зависит от характера операции, предшествующей хонингованию. диаметра отверстия, материала детали и др. Если хонингованию предшествует растачивание отверстия, следует оставлять при-  [c.388]

В качестве абразивного порошка применяют окись алюминия соответствующей зернистости. Для повышения класса чистоты поверхность ленты перед началом работы иногда смазывают маслом. Точность обработки лентой до 0,05 мм, высота микронеровностей до 0,1 мк.  [c.83]

Тонкое шлифо- вание 0,04-0,10 Круги абразивные (класса точности АА зернистостью 12-м 14) и алмазные (зернистостью 40/28-5/3) = 0,005-1-0,025 мм = 15-г25 м/с 1,-з,г= 10-50 м/мин рад — 0,005 -г-0,01 мм/дв. ход 5пр = 0,3- 0,5 м/мин (круглое шлифование) Упр =1- 2 м/мин (плоское шлифо-пяннс) 0,03-0,05 Ло = 2,50,63 0,005- 0,030  [c.800]

Точность обработки отверстий по 2-му классу точности достигается чистовым развертыванием, протягиванием, шлифованием, притиркой, доводкой абразивными головками (хонинг-процессом),.доводкой колеблющимися абразивными брусками (суперфиниш) этими же способами можно в ряде случаев получить точность и 1-го класса, но при более тщательной работе на хорошо выверенных и вполне исправных, неизношенных станках.  [c.63]

При полировании снимают припуск, равный 0,010—0,015 мм. Полирование абразивной лентой ведется при скорости ц = 15 -4--4-20 м1мин и при числе оборотов п =100-4- 150 в минуту. Шероховатость после предварительного полирования "шеек должна соответствовать 8-му классу, а после окончательного 9—10-му и выше. Продолжительность полирования шеек колеблется в пределах 3—5 мин.  [c.385]

Сплав ВК6М предназначается для чистовой получистовой обработки жаропрочных сталей и сплавов, нержавеющих сталей аустенитного класса, специальных твердых чугунов и бронзы, сплавов легких металлов, твердых и абразивных материалов, пластмасс, стекла, термически необработанных углеродистых и легированных сталей.  [c.259]

Наличие в рабочих жидкостях абразивных частиц, твердость которых, как правило, выше твердости трущихся поверхностей металлов, а тем более полимеров, значительно увеличивает интенсивность износа гидрооборудования и вызывает задир и заклинивание прецизионных сопряжений. Поэтому присутствие в масле механических примесей нежелательно. Содержание механических примесей в единице объема (мг/л или в %) определяется по ГОСТ 6370-83 и ГОСТ 12275-66, а количество частиц различных размеров (фанулометрический состав) — по ГОСТ 17216-71. Этим ГОСТом установлено 19 классов чистоты рабочих жидкостей (табл. 19). Весь диапазон размеров механических примесей от 0,5 до 200 мкм разбит на восемь интервалов. Для каждого класса чистоты в этих интервалах указано максимальное число частиц загрязнений определенных размеров в объеме жидкости 100 слР.  [c.144]


В качестве примера можно остановиться на широко применяемой для окончательной обработки прецизионных деталей абразивной доводке при помощи притиров с абразивной пастой или суспензией на их поверхности. При этом достигается точность обработки (погрешность формы) до 0,02 мкм, а шероховатость поверхности до 12—14-го классов. Этим методом обрабатываются калибры, точные керамические опоры, пластины резцов и другие прецизионные детали, особенно выполненные из труднообрабатцваемых материалов. Как показали исследования, проведенные в МВТУ им. Баумана П. Н. Орловым, на строение поверхности, получаемой в результате доводки, основное влияние оказывает характер  [c.77]

Известно также, что параметры шероховатости поверхности оказывают существенное влияние на сопротивление усталости. В общем случае предел усталости повышается с улучшением качества поверхностного слоя. Кроме того, на них влияет направление следов обработки при их совпадении с действием главного напряжения предел усталости выше. Финишная обработка поверхности, которая в основном определяет конфигурацию микроскопических рисок и механические свойства поверхностного слоя, существенно влияет н а предел выносливости даже при одинаковом классе шероховатости. Например, в работе [127] приведены результаты испытаний на выносливость образцов из сталей Р18, 9ХМФИ9Х, обработанных алмазным и обычным шлифованием. Сопротивляемость усталостному разрушению при шлифовании кругами из синтетических алмазов повышается на 20—45% при контактных нагрузках и до 30% при изгибе. Это связано с характеристикой рельефа поверхности, когда число царапин на единицу поверхности и их глубина значительно меньше при алмазном шлифовании, чем при абразивном, а рельеф становится более гладким (см. также рис. 150). Проведенные исследования позволили повысить стойкость валков для станов холодной прокатки вследствие правильного выбора технологического процесса.  [c.439]

Исследование причин снижения усталостной прочности после абразивной шлифовки провели Л.А. Гликман и Л. М.Фейгин [171]. Испытания вели круговь)м изгибом гладких цилиндрических образцов сплава Т1—4,5 % А1 (типа ВТБ) диаметром рабочей части 7,5 мм. Часть образцов на конечной стадии изготовления шлифовали на воздухе или в аргоне кругом ЭБ60СМ1К при скорости 2000 об/мин и подаче 0,1 мм за проход, охлаждение было минимальнь)м (для исключения коробления образцов). Другую часть образцов изготавливали точением с тщательной полировкой наждачной бумагой да 8-го класса шероховатости. Шлифованна)е образцы по партиям подвергали дополнительной обработке с целью снятия остаточных напряжений или тонкого поверхностного слоя. В каждом варианте испытывали по несколько партий образцов с целью проверки однозначности получаемых данных. Результаты исследования представлены на рис. 114. Видно, что усталостная прочность шлифованных образцов на 25 % ниже, чем точеных и полированных. Защита зоны шлифовки аргоном не оказала положительного влияния, следовательно, основная причина снижения усталостной прочности после шлифовки сос-  [c.178]

В различных отраслях машиностроения широко применяют аустенитную сталь 110Г13Л, однако ее износостойкость в условиях ударно-абразивного изнашивания практически не изучена. Механические свойства сталей перлитного и аустенитного класса при отпуске изменяются по-разному. С повышением температуры -отпуска прочностные характеристики (ов, Оо,2 HR ) сталей перлитного класса снижаются, а показатели пластичности (йн, б, i 3) —увеличиваются.  [c.167]

Трение различных материалов [18]. При испытании на изнашивание зубной эмали, дентина, различных пломбировочных материалов трением о шлифовальный круг, по одному и тому же месту абразивной ленты, путем вытирания вращающимся диском лунки на плоскости образца но удавалось получить устойчивых значений износа из-за постепенного понижения шероховатости поверхности, вызывающей износ. Поэтому ниже, при испытании последним из перечисленных методов на машине трения Шкода-Савнна , был применен диск из стали высокой твердости, шероховатость которого периодически восстанавливалась трением о цемент. Ус.ловия подготовки диска были следующие нагрузка 20 кгс, число оборотов диска 675 об/мин (это число оборотов рекомендуется руководством по производству опытов на машине для образцов из стали), продолжительность 6 мин. После такой подготовки диск испытывался по плоской поверхности из закаленной стали высокого класса шероховатости, твердостью около 900 кгс/мм . Если износы, получившиеся на ней до и после испытания с испытуемым материалом, были одинаковые, это свидетельствовало о сохранении диском постоянной шероховатости в процессе испытания. Постоянство же износов закаленной стали (эта.лона) после каждой подготовки диска указывало на достижение одинаковой исходной шероховатости диска.  [c.20]

Для исследования влияния шероховатости поверхности при отсутствии поверхностного наклепа на характеристики усталости испытано по 17 серий образцов из сплавов ЭИ617, ЭИ826 и ЭИ929 с различной высотой микронеровностей 5, 7, 9 и 10-го классов чистоты. Образцы фрезеровали, шлифовали абразивным кругом и лентой вдоль и поперек оси образца. Режимы механической обработки указаны в табл. 3.3.  [c.190]

Качество микропорошков оценивается зернистостью, абразивной способностью и шероховатостью обработанной ими поверхности. Абразивная способность выражается отношением веса сошлифован-ного корунда к весу израсходованного микропорошка. Шероховатость обработанной поверхности регламентирована для каждой зернистости. Например, при обработке образцов из твердого сплава Т15К6 микропорошком 40/28 шероховатость при механическом методе испытаний должна соответствовать 9в классу, а при обработке порошком 2/1 — 126 классу чистоты.  [c.59]


При исследовании хонингования гильз двигателя, -изготовляемых из закаленного чугуна и имеющих твердость HR 40—47, установлено, что износ брусков на связке Ml с омедненными алмазными зернами примерно в 1,5 раза меньше, а производительность на 10— 20% ниже, чем брусков с неметаллизированными зернами. При этом бруски из синтетических металлизированных алмазов АСВ 25 Ml/ u на 40% производительнее брусков А25 такой же характеристики из природных алмазов. Объясняется это более высокой хрупкостью (самозатачиваемостью) синтетических алмазов расход их оказался в 2,5 раза больше, чем природных. Алмазное хонингование позволило получать шероховатость = 0,14 мкм (0,26 мкм при абразивной доводке), при этом исходная шероховатость после растачивания соответствовала 5-му классу. Для чернового хонингования рекомендуются бруски А25 Ml, для чистового — АСВМ1 и для окончательного — A M 28М1, во всех случаях с металлизированными зернами. Оптимальным является режим, соответствующий окружной скорости брусков 60—70 м/мин, при черновой операции скорость возвратнопоступательного движения 16 м/мин и давление на бруски 15 кгс/см при чистовой соответственно 16 м/мин и 10 кгс/см и при окончательной— 12 м/мин и 4 кгс/см [761.  [c.72]

Электроалмазная обработка хорошо себя зарекомендовала при изготовлении деталей из магнитотвердых сплавов типа ЮНДК, отличаюш,ихся большой хрупкостью. Благодаря наложению электрического тока съем металла при обработке указанных сплавов возрастает в 5—20 раз, причем, как и при обработке твердых сцлавов, 95% его приходится на анодное растворение, что предопределяет малый расход алмазов. Уменьшая образование сколов и выкрашиваний на кромках, процесс обеспечивает шероховатость поверхности в пределах 9—10-го класса чистоты. Если при абразивном плоском шлифовании из-за нагрева, выкрашиваний и сколов глубину резания редко назначают более 0,05 мм, то при электроалмазном она может быть увеличена до 1,5—2 мм, а поперечную подачу принимают максимальной для данной ширины алмазного круга. Продольную подачу нужно ограничивать, иначе электрохимические процессы не будут успевать охватывать большие плош,ади среза, нагрузки на инструмент и деталь возрастут, удельный съем металла за счет электрохимических процессов снизится.  [c.85]

При виброшлифовании в качестве рабочей среды используют абразивные гранулы (бой абразивных кругов и брусков) средней зернистости. Процесс отличается сравнительно большим съемом металла (0,01—0,1 мм), при этом обеспечивается шероховатость поверхности, соответствующая 6—7-му классам. Виброполирование ведется в резервуарах, заполненных шлифовальными порошками или микропорошками обеспечивается 8-й класс шероховатости. Виброупрочнение обычно осуществляют в резервуарах, рабочей средой которых являются стальные полированные шарики диаметром 4—10 мм. При виброупрочнении шариками обеспечивается наклеп поверхностных слоев на глубину 0,2—0,3 мм, напряжения сжатия 20—100 кгс/мм , шероховатость поверхности при этом может улучшаться до 8—9-го классов.  [c.137]

Механическая обработка поверхностей, подлежащих прнтпрке, должна выполняться так, чтобы шероховатость была не выше шероховатости (R 20 по шестому классу.) Притирка заключается в обработке металлической поверхности абразивными зернами, свободно расположенными между взаимно движущимися поверхностями. Одна из поверхностей является ведущей (притир), она должна быть изготовлена из более мягкого материала, чем материал обрабатываемой поверхности. В поверхность притира вдавливаются (шаржируются) зерна абразива и ведутся по обрабатываемой поверхности. Существуют два метода притирки — с помощью притира и взаимная притирка двух поверхностей, когда две детали изделия взаимно перемещаются друг относительно друга. Использование притира более рационально. Перед притиркой ведущая поверхность тщательно очищается бензином и шаржируется, т. е. на нее наносится равномерным слоем разведенная притирочная паста и втирается в поверхностный слой рабочей части притира. В процессе притирки паста должна периодически возобновляться, так как абразивы постепенно разрушаются, а смазка окисляется.  [c.291]

Дорожку качения шлифуют на вну-тришлифовальных автоматах методом врезания с базированием детали на жестких опорах скорость 60 м/с, радиальная подача до 6 мм/мин. Обработка наружных колец завершается доводкой дорожки качения. Для колец подшипников класса точности О производится полирование дорожки качения абразивной лентой со скоростью 25 м/с. Для колец подшипников класса точности 6 и выше производится суперфиниширование поверхности роликовой дорожки со скоростью около 5 м/с.  [c.263]

В качестве доводочной операции для получения высокого класса чистоты цилиндрических, фасонных и плоских поверхностей широко используется прлтирка. Притирка обеспечивает изготовление деталей с точностью до 1 мкм. При работе мягкими притирами в качестве абразивных материалов употребляют наждак, корунд, карборунд, карбид бора зернистостью 100—200. Для смазки применяют керосин, бензин, машинное масло. При работе твердыми притирами (закаленная сталь, хромированная сталь и особые сорта стекла) в качестве абразива применяют крокус, венскую известь, окись хрома. Сталь и чугун притирают керосином, машинным маслом, газолином, легкие сплавы — деревянным маслом. Притирка представляет собой не только механический процесс резания, но и химический процесс. В результате введения в притирочные пасты химически активных веществ (олеиновой кислоты, стеариновой кислоты и др.) на притираемой поверхности образуется пленка окислов металла, менее прочная, чем основной металл. Эта пленка легко удаляется абразивом с меньшей твердостью, чем основной металл. Процесс притирки производится как вручную, так и на специальных станках.  [c.389]

Получение продуктов заданной гранулометрической характеристики для некоторых производств является определяющим. При измельчении руд, как правило, стоит задача получения минимального количества шламистых фракций. В абразивной, огнеупорной и керамической промышленности достаточно остро стоят вопросы получения продуктов узких классов крупности возможность регулирования гранулометрических характеристик является одним из основных показателей способа разрушения, определяющих его конкурентоспособность.  [c.92]

Рассмотренный выше процесс электроимпульсного разрушения соответствует одностадиальному процессу, т.е. исходный материал измельчается на электроде-классификаторе с размером калибровочных отверстий, равным верхнему пределу крупности готового продукта. При этом осколки материала, последовательно уменьшая свой размер в процессе разрушения, неоднократно попадают в рабочую зону, пока не достигнут размера меньше отверстия в электроде-классификаторе. Параметры источника импульсов при этом остаются постоянными, что приводит к излишним потерям энергии за счет переизмельчения материала. В идеальной системе требуется на каждый узкий класс крупности подавать импульсы с различными параметрами, обеспечивающими оптимальные показатели разрушения, т.е переход к стадиальному процессу измельчения. Стадиальные процессы следует использовать там, где предъявляются достаточно жесткие требования к готовому продукту по выходу отдельных классов (например, периклаз, кварцевое сырье, различные абразивные материалы и т.д.), где требуется выделить из разрушаемой руды без существенных повреждений кристаллы различной крупности (ограночное кристаллосырье, легкошламующиеся руды и т.д.) или где остро стоит вопрос о снижении энергоемкости разрушения. Введение промежуточной стадии дробления позволяет увеличить эффективность процесса за счет разрушения более узких классов при использовании оптимальных параметров импульса в каждой стадии.  [c.105]


Данный процесс предназначен для отделки зубьев колес после термической обработки при массовом или серийном производстве зубчатых колес. В качестве инструментов используют абразивные шестерни или шестерни, боковые стороны зубьев которых армированы алмазами. Кинематика зубохонингования аналогична процессу шевингования зубьев колес, а процесс снятия припуска — процессу хонингования. С)бычно процесс зубохонингования осуществляют при беззазорном зацеплении хона и обрабатываемого колеса. В результате обработки повышается точность по шагу на 0,01—0,03 мм, по колебанию мерительного межцентрового расстояния на 0,01—0,03 мм. Уменьшается шум передачи на 1—3 дб. Шероховатость обработанной поверхности уменьшается на два класса. В процессе обработки ось хона устанавливают под  [c.614]

Характеристики абразивных брусков для суперфиниширования даны в табл. 41. Алмазные бруски для суперфиниширования применяют зернистостью 28/20—5/3 с концентрацией 100, 150 и 200% на органических связках (см. табл. 26). Бруски Э9М20 С—СТ (ЧТ) К применяют для микродоводки закаленных сталей марок 45, 20Х, ШХ 5, ХВГ, УЮА, алюминиевых сплавов типа АК-6 с чистотой обработанных поверхностен деталей в пределах 11—13-го классов.  [c.668]

BK6IVI. За счет более мелкозернистой структуры износостойкость выше, чем у сплава ВК6, при несколько меньших прочности и сопротивляемости ударам, вибрациям и выкрашиванию. Чистовая и полу-чистовая обработка жаропрочных сталей и сплавов нержавеющих сталей аустенитного класса, специальных твердых чугунов, твердых и абразивных изоляционных материалов, пластмасс, твердой бумаги, стекла, фарфора. Обработка сырых углеродистых и легированных сталей при тонких сечениях среза на малых скоростях резания.  [c.113]

ВК6-М — для получистовой обработки жаропрочных сталей и сплавов, коррозионно-стойких сталей аустецитного класса, специальных твердых чугунов, закаленного чугуна, твердой бронзы, сплавов легких металлов, абразивных неметаллических материалов, пластмасс, бумаги, стекла, для обработки  [c.205]

Рукава резиновые напорные с текстильным каркасом (ГОСТ 18698—73), применяемые в качестве гибких трубопроводов для подачи под давлением жидкостей, насыщенного пара, газов и сыпучих материалов, работоспособные в районах умеренного и тропического климата и холодного климата при температуре до —50° С. Рукава по назначению — видам перемещаемых веществ подразделяют на семь классов (римские цифры в скобках соответствуют рекомендации СЭВ) Б(1) для бензина, керосина, минеральных масел при рабочем давлении 1—2,5 6,3 10,0 16,0 и 20,0 кгс/см В (II) — для технической воды и слабых растворов (до 20%) щелочей и неорганических кислот, кроме азотной, при тех же давлениях ВГ(1П) для горячей воды до 100° С при давленли до 10 кгс/см Г(IV)—для воздуха, углекислого газа, азота и других инертных газов при давлении до 10 кгс/см П(УП) — для пищевых веществ при давлениях, приведенных для классов Б и В Ш ( 111) — для абразивных материалов (пеоок) и водных растворов для штукатурных работ при давлениях, указанных для классов Б, В и П Пар-1 (X) — для насыщенного пара до 143° С при давлении до 3 кгс/см Пар-2 (X) — для насыщенного пара до 175° С при давлении до 8 кгс/см .  [c.283]

Г механические свойства и износостойкость сталей различных классов простых углеродистых, низколегированных конструк-i ционных, высоколегированных аустенитных, мартенситных, кар-бидных и друг . Образцьриспытывали при различных структур-I ных состояниях. Испытания на износ проводили на установках типа Шкода—Савина, Бринеля и на центробежной машине X ЧИМЭСХа,, в которой исследовалась абразивная износостойкость % образцой При изнашивании вращением по прослойке кварцевого песка.  [c.5]

Процесс полирования осуществляют при помощи вращающихся со скоростью 30—50 м1сек эластичных кругов, на рабочую поверхность которых наносится абразивная смесь с жидким наполнителем или мастика, состоящая из вяжущего вещества и полировального порошка. Круги применяют из войлока (сделанного из овечьей шерсти или в смеси с козьей), хлопчатобумажной ткани, а также из сульфитцеллюлозной оберточной бумаги. Для получения поверхности высокого класса чистоты применяют круги с графитовым наполнителем, а также алмазные эластичные полировальные ленты.  [c.90]

В тяжелом машиностроении для чистовых операций также применяются полирование, притирка, доводка, сверхдоводка (суперфиниширование) и обкатка поверхностей роликами. П о-лирование применяется для декоративной отделки или для подготовки поверхности перед гальваническими покрытиями. Чистота получается 9—12 классов, но не обеспечивается повышение точности. Полирование осуществляется механическим, химическим и электролитическим путем. Механическое полирование выполняется мягкими кругами, на которые наносятся абразивные вещества в свободном состоянии или с помощью клея. Последовательность переходов и условия обработки при полировании устанавливаются в зависимости от металла, предварительной обработки и требований к чистоте поверхности.  [c.208]


Смотреть страницы где упоминается термин Абразивный Классы : [c.300]    [c.12]    [c.249]    [c.168]    [c.92]    [c.199]    [c.263]    [c.7]    [c.108]   
Справочник металлиста Том 3 Изд.2 (1966) -- [ c.591 ]



ПОИСК



Абразивность

Изн абразивное

Инструменты абразивные - Классы точности

Инструменты абразивные - Классы точности 345 - Правка 355-357 - Рекомендации по выбору номера структуры

Класс чистоты шлифуемой поверхности и рекомендуемая зернистость абразивного материала

Сопротивление срезу — основной критерий износостойкости сталей перлитного класса при ударно-абразивном изнашивании



© 2025 Mash-xxl.info Реклама на сайте