Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Абразивные Характеристики

Зерна абразивных инструментов представляют собой искусственные НЛП природные минералы и кристаллы. Абразивные материалы отличаются высоко твердостью, которая определяется по минералогической шкале. Зерна абразивов разделяют по крупности на группы И номера. Основная характеристика номера зернистости — количество и крупность его основной фракции. При изготовлении инструмента зерна скрепляются друг с другом с помощью цементирующего вещества — связки, Наиболее широко применяют инструменты, изготовленные на керамической, бакелитовой или вулканитовой связке.  [c.363]


Твердое топливо характеризуется абразивностью — свойством при контакте с другими материалами вызывать износ последних, что зависит от количества содержащихся в нем колчеданной серы, золы и ее состава. Эта характеристика топлива важна для выбора оборудования системы пылеприготовления.  [c.26]

Так, проф. М. М. Хрущов и М. А. Бабичев [2171 исследовали различные материалы и сплавы на износ при трении об абразивное полотно и определяли так называемую относительную износостойкость материалов е, т. е. отношение износа эталонного материала к износу испытуемого. Исследования показали,, что основной характеристикой абразивной износостойкости является твердость металлов и сплавов. Для чистых металлов и термиче ски необработанных сталей имеется линейная зависимость между их твердостью и износостойкостью  [c.245]

Следует отметить, что при выглаживании деталей их поверхностный слой свободен от абразивных включений, что улучшает эксплуатационные характеристики деталей машин. В поверхностном слое при выглаживании обычно возникают сжимаюш,ие остаточные напряжения, повышающие предел текучести материала.  [c.448]

Покрытия не несут самостоятельной механической нагрузки и их разрушение происходит лишь попутно с разрушением изделия. Поэтому на первый взгляд прочность покрытий не представляет особого интереса. Однако по прочности покрытий можно судить об их стойкости против абразивного и эрозионного износа. Поскольку испытания на износ сложнее и длительнее, чем определение прочности, а их результаты часто бывают недостаточно надежными, прочность покрытий, служаш их для заш иты изделий от износа, можно считать одной из важнейших характеристик. Следует также учесть, что процесс напыления применяется не только для нанесения покрытий, но и для изготовления корковых деталей, получаемых путем напыления материала на удаляемую модель. Для таких изделий прочность напыленных материалов имеет большое значение и поэтому желательно располагать надежным методом ее определения.  [c.62]

Качество покрытия оценивается прежде всего специальными свойствами. Для деталей с покрытиями, работающих в парах трения или в условиях ударного воздействия абразивных частиц, основными оценочными критериями являются скорость и интенсивность изнашивания. Если изделие работает при знакопеременных нагрузках, то важно знать влияние покрытия на характеристики усталостной прочности и т. д.  [c.134]


Авторами было исследовано влияние основных механических характеристик стали (твердости, предела прочности, предела текучести, сопротивления срезу, предела выносливости, относительного удлинения, относительного сужения, ударной вязкости) на ее износостойкость при ударно-абразивном изнашивании.  [c.157]

Результаты исследования износостойкости стали в зависимости от изменения ее механических свойств показывают, что при ударно-абразивном изнашивании ни одна из рассмотренных механических характеристик не влияет на износостойкость однозначно в хрупкой и вязкой обла стях разрушения. Следовательно, необходимо выявить такую механическую характеристику стали, которая имела бы прямую корреляционную связь с износостойкостью независимо от характера разрушения.  [c.174]

Таким образом, при ударно-абразивном изнашивании износостойкость стали имеет прямую корреляционную связь только с сопротивлением срезу. Связь других механических характеристик с износостойкостью стали носит частный характер. Следовательно, твердость, предел прочности, пластичность и вязкость не могут быть обобщенными критериями износостойкости стали при ее ударе по абразиву.  [c.176]

Анализ зависимостей износостойкости стали от ее различных механических характеристик позволил заключить, что при выявлении основного критерия износостойкости стали в условиях ударно-абразивного изнашивания необходимо учитывать характер силового воздействия на контакте и механизм формирования  [c.182]

Сложный. характер зависимостей износостойкости стали при учете различных механических характеристик обусловлен, по-видимому, различием напряженных состояний на контакте при динамическом внедрении единичной абразивной частицы в поверхность изнашивания и при известных методах определения различных механических характеристик.  [c.183]

Для увеличения прочностных характеристик абразивных порошков (алмаза, боразона) и лучшего крепления их в абразивных инструментах применяют металлизацию. С этой целью в основном используют методы гальванического покрытия и нанесения металла из газовой фазы [1, 18].  [c.101]

Во втором случае разрушение произойдет тогда, когда площадь опасного сечения уменьшится до недопустимых пределов. Обычно уменьшение площади опасного сечения связано с неудовлетворительной износостойкостью выбранного материала, т. е., несмотря на удовлетворительные прочностные характеристики, этот материал должен быть заменен более износостойким. Данный случай разрушения деталей машин часто встречается в узлах, контактирующих с абразивом, так как абразивный износ — наиболее катастрофический вид износа. Рассматриваемый вид разрушения носит двоякий характер. С одной стороны — это постепенный отказ, с другой — типичный внезапный отказ, наблюдающийся при определенных условиях. Этот вид разрушения, по сути, ухудшает первый член формулы (3), хотя, если разрушения еще не произошло, он определяет второй член той же формулы.  [c.22]

Таким образом, выполненный анализ изнашивания некоторых. деталей бульдозеров типа Д-271 в эксплуатационных условиях позволил выяснить характер разрушения поверхностей деталей при абразивном износе. При этом установлены отдельные количественные характеристики поверхностей изнашивания (микротвердость, скорость изнашивания и др.).  [c.176]

Для повышения прочностных характеристик и лучшего закрепления порошков алмаза, карбида кремния, корунда и кварца на абразивных инструментах используют покрытия на органических, керамических или металлических связках. Металлические покрытия толщиной до 400 ангстрем наносят с помощью электронного луча.  [c.141]

Абразивные порошки и покрытия 11, 14, 15, 88, 143, 246, 254 характеристика частиц 91 Авторадиографический метод 50  [c.265]

Основными параметрами качества поверхностного слоя деталей после механической обработки металлическим или абразивным инструментом является шероховатость поверхности, глубина и степень наклепа и технологические макронапряжения. Для определения степени влияния каждого из них в отдельности на характеристики усталости, в данной работе использован метод изотермических нагревов в вакууме образцов после заданных режимов механической обработки. Вакуум необходим для предохранения от окисления поверхностного слоя образцов при нагревах. Для этой цели образцы после механической обработки на заданных режимах разделены на три группы. Образцы первой группы испытывали на усталость непосредственно после механической обработки, образцы второй и третьей групп до испытания на усталость подвергали изотермическим нагревам в вакууме для снятия технологических макронапряжений (вторая группа) и для снятия поверхностного наклепа (третья группа). Относительную значимость каждого параметра качества поверхностного слоя в отдельности оценивали путем сравнения характеристик усталости образцов после термообработок для снятия остаточных напряжений, поверхностного наклепа и образцов, не подвергавшихся термической обработке.  [c.173]


Исследования показали, что сопротивление усталости при рабочих температурах образцов и лопаток из жаропрочных сплавов и стали после ЭХО определяется в основном шероховатостью поверхности и наличием следов растравливания по границам зерен. После ЭХО с последующим шлифованием абразивной лентой, фетровым кругом и виброконтактным полированием, а также деформационным упрочнением после ЭХО с шероховатостью поверхности у9—VlO усталостная прочность в основном определяется поверхностным наклепом. Поверхностный наклеп в зависимости от методов и режимов окончательной обработки может изменяться в широких пределах, соответственно меняются и характеристики усталости материалов. Он является наиболее чувствительным параметром качества поверхностного слоя, и для каждого сплава и температуры нагрева суш,ествует своя оптимальная степень наклепа, обеспечивающая максимальную усталостную прочность.  [c.223]

Лабораторный способ изнашивания об абразивную поверхность не воспроизводит условий службы деталей, тем не менее относительная износостойкость, определяемая описанным выше методом, является характеристикой прочностных свойств материалов. Относительная износостойкость дает в безразмерных единицах количественную оценку сопротивления материала разрушению в предельно наклепанном состоянии.  [c.33]

Частота осциллирования 200 дв. ход/мин. Давление ленты 230 кПа. Припуск на обработку 6 мкм параметры шероховатости Ra = = 0,32 -н0,08 мкм в зависимости от характеристики абразивной ленты и режимов обработки  [c.201]

Изучение эрозионной стойкости сталей /170/ показало, что определяющими являются теплофизические характеристики металла, поэтому выбор легирующих элементов или их комбинации необходимо осуществлять с учетом этих свойств, а также исходя из условий абразивной и ударной прочности металлов. Легирующие элементы преимущественно растворяются в основных фазах железоуглеродистых сплавов (феррит, аустенит, цементит), образуя сложные карбиды и другие соединения. Улучшение технических свойств сталей (прочность, износостойкость и т.д.) достигается также с помощью термической обработки, в результате которой происходит перераспределение химических элементов и соединений как внутри кристаллических зерен, так и между ними, что оказывает существенное влияние на энергию межатомных связей. Углерод является одним из основных легирующих элементов, и при увеличении содержания углерода эрозия возрастает по линейному закону, что может быть объяснено уменьшением  [c.173]

Величина поверхности нагрева, а следовательно, и размеры блоков стал],иых малогабаритных экономайзеров зависят от ряда факторов температуры питательной воды, влажности и зольности сжигаемого топлива, нaличи [ или отсутствия рассечки с воздухоподогревателем, абразивных характеристик золы и др. Детали креплений змеевиков (стойки, подвески) выполняются одинаковыми.  [c.22]

Бункера. Конструкцию бункера определяют следующие факторы размер частиц, их влажность, плотность, угол откоса, угол скольжения, коэффихщент трения, абразивная характеристика, коррозионное действие, текучесть и способность к созданию сводов.  [c.835]

Стремление получить поверхнрстный слой с наилучшими эксплуатационными характеристиками привело к применению различных технологических процессов финишной обработки, таких как шлифование, суперфиниш, полирование, абразивная доводка и др. При этом на строение поверхностного слоя и его геометрические и физические параметры оказывает влияние не только вид технологического процесса окончательной обработки, но и режимы обработки, обусловливающие сложные процессы формирования данного рельефа (см. гл. 10, п. 5).  [c.77]

Известно также, что параметры шероховатости поверхности оказывают существенное влияние на сопротивление усталости. В общем случае предел усталости повышается с улучшением качества поверхностного слоя. Кроме того, на них влияет направление следов обработки при их совпадении с действием главного напряжения предел усталости выше. Финишная обработка поверхности, которая в основном определяет конфигурацию микроскопических рисок и механические свойства поверхностного слоя, существенно влияет н а предел выносливости даже при одинаковом классе шероховатости. Например, в работе [127] приведены результаты испытаний на выносливость образцов из сталей Р18, 9ХМФИ9Х, обработанных алмазным и обычным шлифованием. Сопротивляемость усталостному разрушению при шлифовании кругами из синтетических алмазов повышается на 20—45% при контактных нагрузках и до 30% при изгибе. Это связано с характеристикой рельефа поверхности, когда число царапин на единицу поверхности и их глубина значительно меньше при алмазном шлифовании, чем при абразивном, а рельеф становится более гладким (см. также рис. 150). Проведенные исследования позволили повысить стойкость валков для станов холодной прокатки вследствие правильного выбора технологического процесса.  [c.439]

Схемы и описания установок даны в [183, 184]. Для всех методов испытаний был выбран единый цилиндрический образец. В работах Г. М. Сорокина показано, что механизм разрушения при ударно-абразивном изнашивании определяется большим количеством факторов энергией удара, физико-механическими характеристиками абразива, составом и свойствами испытуемого материала, степенью закрепленности абразивных частиц и т. д. [183—185]. Общепринятые характеристики прочности и пластичности (предел текучести, предел прочности, твердость, относительное удлинение, относительное сужение, ударная вязкость) неоднозначно влияют на износостойкость при ударно-абразивном изнашивании. Повышение прочности или пластичности сказывается благоприятно только до определенного порогового уровня. Дальнейшее увеличение этих характеристик приводцт к возрастанию износа, но причины понижения износостойкости различны. Если рост прочности сопровождается повышен115м вязкохрупкого перехода, то износ увеличивается за счет интенсификации хрупкого выкрашивания. Значительное повышение пластич-. ности приводит к падению износостойкости из-за активного пластического течения и сопутствующего наклепа. По-видимому, максимальной износостойкостью обладают сплавы, находящиеся На границе хрупкого и вязкого разрушения.  [c.109]


Биполимерный пластик, состоящий из поливинилхлорида и полиэфирного стеклопластика, был использован для изготовления смесительной камеры. При конструировании этой системы учитывалась стойкость поливинилхлорида к кислотам с высокой окисляющей способностью. Основными преимуществами таких биполимерных композиционных систем являются относительно высокая прочность в результате армирования термопластичного — термореактивного связующего стекловолокнистым наполнителем химическая стойкость как результат сочетания термопластов и термореактивных полимеров экономия оборудования стойкость против абразивного износа стойкость к УФ-излучению оптимальные эксплуатационные характеристики, сочетающиеся с химической стойкостью и стойкостью против абразивного износа по сравнению с композициями на основе органических волокон и связующего огнестойкость при добавлении к связующему трехокиси сурьмы.  [c.330]

Механизм ударно-абразивного изнашивания стали при динамическом взаимодействии с монолитным абразивом имеет свои особености, прежде всего это возможность развития наклепа в приповерхностном слое на образце. Приповерхностный слой образца в результате многократного соударения с монолитом абразива подвергается деформированию, наклепу и охрупчиванию. В этих условиях исходные структура и свойства стали меняются. В момент внедрения твердых абразивных частиц в поверхность изнашивания металл имеет уже низкие механические характеристики, т. е. изнашивание облегчается.  [c.91]

В различных отраслях машиностроения широко применяют аустенитную сталь 110Г13Л, однако ее износостойкость в условиях ударно-абразивного изнашивания практически не изучена. Механические свойства сталей перлитного и аустенитного класса при отпуске изменяются по-разному. С повышением температуры -отпуска прочностные характеристики (ов, Оо,2 HR ) сталей перлитного класса снижаются, а показатели пластичности (йн, б, i 3) —увеличиваются.  [c.167]

При абразивном изнашивании преобладает механический фактор, однако степень влияния некоторых других факторов, таких как химические, теплофизические характеристики абразивных частиц, коррозионная стойкость металла и др., в ряде случаев оказывается существенной. Во всяком случае механические свойства металлов (твердость, сопротивление царапа1[ью) однозначно не определяют их сопротивляемость абразивной эрозии. В настоящее время еще нельзя четко сказать, какими свойствами должен обладать металл для высокого сопротивления этому виду разрушения.  [c.88]

Несмотря на высокую аварийность рассматриваемой детали, основной причиной выхода ее из строя является низкая абразивная износостойкость конструкционных материалов. Применяемая для средних ножей сталь Ст. 5 должна быть заменена ввиду неудовлетворительных ее износных характеристик. Для крайних ножей обычно используется сталь типа 110Г13Л. Ее высокие износные свойства на отвалах бульдозеров не реализуются из-за невозможности динамического наклепа данной стали. Только в карьерах на перемещении крупно взорванной горной массы возможно выявление преимуществ данной стали.  [c.97]

У Глероди1Стые стали обычно не обладают достаточным сопротивлением абразивному изнаш иванию. Тем не менее они широко используются для из1ГОТовлени Я деталей, контактирующих с абразивом. Поэтому изучение их абразивной износостойкости представляет интерес, особенно при низких температурах, для которых эта характеристика сталей ранее не исследовалась.  [c.146]

С увеличением поперечной подачи при плоском шлифовании как кругом, так и абразивной лентой повышается глубина и степень наклепа в каждом из исследуемых сплавов. Так, например, при продольном шлифовании кругом в сплаве ЭИ617 с увеличением поперечной подачи от 0,005 до 0,08 мм/дв. ход глубина наклепа возросла от 30 до 60 мкм, а степень наклепа от 29,7 до 43,8%. При этих же условиях шлифования в сплаве ЭИ929 глубина наклепа увеличилась от 17 до 35 мкм, а степень наклепа — от 25,6 до 30,1%. Пренебрегая влиянием характеристик абразивных кругов и лент, можно считать, что характер зависимостей глубины и степени наклепа от поперечной подачи один и тот же как при плоском, так и при круглом наружном шлифовании жаропрочных сплавов.  [c.104]

Осевые макронапряжения после плоского шлифования абразивными кругами и лентами сплавов ЭИ617, ЭИ826 и ЭИ929 изучали в зависимости от шероховатости поверхности и направления микронеровностей вдоль образца и поперек. Шероховатость поверхности V 5, V 7, V 9а и V Юа обеспечивалась изменением поперечной подачи и характеристик абразивного инструмента. Условия шлифования указаны в табл. 3.3 (режимы 66—69 и 70—73).  [c.119]

Для исследования влияния шероховатости поверхности при отсутствии поверхностного наклепа на характеристики усталости испытано по 17 серий образцов из сплавов ЭИ617, ЭИ826 и ЭИ929 с различной высотой микронеровностей 5, 7, 9 и 10-го классов чистоты. Образцы фрезеровали, шлифовали абразивным кругом и лентой вдоль и поперек оси образца. Режимы механической обработки указаны в табл. 3.3.  [c.190]

При исследовании хонингования гильз двигателя, -изготовляемых из закаленного чугуна и имеющих твердость HR 40—47, установлено, что износ брусков на связке Ml с омедненными алмазными зернами примерно в 1,5 раза меньше, а производительность на 10— 20% ниже, чем брусков с неметаллизированными зернами. При этом бруски из синтетических металлизированных алмазов АСВ 25 Ml/ u на 40% производительнее брусков А25 такой же характеристики из природных алмазов. Объясняется это более высокой хрупкостью (самозатачиваемостью) синтетических алмазов расход их оказался в 2,5 раза больше, чем природных. Алмазное хонингование позволило получать шероховатость = 0,14 мкм (0,26 мкм при абразивной доводке), при этом исходная шероховатость после растачивания соответствовала 5-му классу. Для чернового хонингования рекомендуются бруски А25 Ml, для чистового — АСВМ1 и для окончательного — A M 28М1, во всех случаях с металлизированными зернами. Оптимальным является режим, соответствующий окружной скорости брусков 60—70 м/мин, при черновой операции скорость возвратнопоступательного движения 16 м/мин и давление на бруски 15 кгс/см при чистовой соответственно 16 м/мин и 10 кгс/см и при окончательной— 12 м/мин и 4 кгс/см [761.  [c.72]

Г. М. Заморуев в 1946 г. [72] и в 1953 [73] опубликовал работы, в которых привел широкую характеристику различных форм изнашивания сталей при трении скольжения. Абразивное изнашивание им выделялось, как самостоятельная форма и он полагал, что эта форма изнашивания возникает при трении металла о твердые неметаллические материалы илн о твердые металлические частицы и возможна как при наличии, так и при отсутствии смазки. Твердые абразивные частицы могут находиться в связанном состоянии (fфиксированный абразив ) или в свободном несвязанном состоянии ( нефиксированный абразив ).  [c.6]

Хорошо известен способ повышения эксплуатационных характеристик (защита от механического, абразивного и эрозионного износа, повышение коррозиестойкости и др.) путем газоплазменного напыления (металлизация) деталей. Суть этого процесса состоит в напылении струей сжатого воздуха или газа частичек защитного металла на обрабатываемую де-  [c.57]

В научно-исследовательских институтах и на заводах применяют специализированные машины, обеспечивающие исследования различных видов износа при широком диапазоне изменения внешних механических воздействий, среды и материалов. Б. И. Костецким и др. предложены машины КЕ-1, КЕ-2, КЕ-3 и КЕ-4 для определения износа схватыванием, окислительного, абразивного и осиовидиого. Каждая из указанных машин имеет необходимые устройства для того, чтобы при работе полностью оценивать все стадии износа, для изучения которого она предназначена. С помощью машины можно измерять количественные показатели трения и износа и изучать основные качественные характеристики износа, например микрорельеф и микроструктуру поверхности и поверхностных слоев, тепловой режим трения, остаточные напряжения.  [c.242]


Для вычисления интенсивностей износа при воздействии абразивных частиц на поверхность требуются параметры удара (угол в н скорость частиц Ио), макроскопические мехапп-ческне характеристики поверхности и абразивных частиц (fo, Ов. Ps.  [c.194]

Получение продуктов заданной гранулометрической характеристики для некоторых производств является определяющим. При измельчении руд, как правило, стоит задача получения минимального количества шламистых фракций. В абразивной, огнеупорной и керамической промышленности достаточно остро стоят вопросы получения продуктов узких классов крупности возможность регулирования гранулометрических характеристик является одним из основных показателей способа разрушения, определяющих его конкурентоспособность.  [c.92]

Характеристика абразивных кругов СМ1—СМ2К для правки алмазных кругов М1 150%  [c.561]


Смотреть страницы где упоминается термин Абразивные Характеристики : [c.27]    [c.305]    [c.13]    [c.154]    [c.362]    [c.114]    [c.184]    [c.189]    [c.192]   
Справочник металлиста Том 3 Изд.2 (1966) -- [ c.667 , c.668 ]

Справочник машиностроителя Том 2 (1952) -- [ c.715 , c.727 ]



ПОИСК



Абразивно-отрезные станки и автоматы Технические характеристики

Абразивность

Абразивные Характеристика для суперфиниширования

Абразивные инструменты. Характеристики шлифовальных кругов

Абразивные материалы и их характеристики

Абразивные материалы, их виды и характеристика . . — t 54. Абразивные инструменты

Абразивные порошки и покрытия характеристика частиц

Абразивный инструмент - Выбор характеристик 583 Классификация 575 - Методы измерения твердости 582 Параметры шероховатости и точность резьбообразования

Анодно-механические абразивные станки Технические характеристики

Выбор характеристики абразивного инструмента

Изн абразивное

Круги абразивные, армированные, характеристика

Материалы абразивные проводниковые — Характеристики

Основные технические характеристик к абразивному износу

Основные характеристики абразивных зерен

Основные характеристики абразивных инструментов

Основные характеристики твердых составляющих абразивно-полировальных смесей

Правящие абразивные круги Характеристики

Характеристика абразивного инструмента

Характеристика абразивных кругов для заточки инструмента



© 2025 Mash-xxl.info Реклама на сайте