Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тела твердые — Гипотеза деформациями и напряжениями

Книга задумана как учебное пособие, и, разумеется, автор дает необходимые сведения из механики деформируемого твердого тела, с тем чтобы сделать изложение ясным и завершенным. Он приводит теорию поля деформаций и напряжений в точке, описывает элементы теории упругости и пластичности, разбирает многочисленные гипотезы прочности бездефектного материала, дает сведения о коэффициентах концентрации в упругой и пластической областях деформирования.  [c.5]


В механике деформируемого твердого тела при сравнительно большой точности определения напряженно-деформированного состояния в конструкциях степень точности определения момента разрушения остается низкой. Это несоответствие в первую очередь объясняется тем, что гипотеза сплошности, которая кладется в основу задач определения напряжений и деформаций, дает возможность определить лишь осредненные значения напряжений, не учитывая реально существующей микроструктуры, которая существенно влияет на характеристики прочности и разрушения. Многообразие возможных и реально существуюш,их микроструктур не дает возможности построить единую теорию разрушения, которая могла бы учитывать влияние строения материалов на его прочность с той же степенью точности, как определяются напряжения и деформации на базе гипотезы сплошности, игнорирующей микроструктуру материалов. Описанные в 8.10 критерии кратковременной прочности базируются на представлении о разрушении как о мгновенном акте.  [c.181]

Главное, что будет излагаться в этой книге, по существу, состоит из трех основных частей 1) основные понятия о перемещениях, внутренних напряжениях, деформациях и работе внутренних сил, а также о процессе нагружения малого элемента твердого тела 2) основные механические свойства твердых тел, такие, как упругость и идеальная пластичность, текучесть, ползучесть и релаксация, вязкость и динамическое сопротивление, усталость и разрушение 3) основные кинематические и геометрические гипотезы, упрощающие математическую постановку задач о напряжениях, деформациях, перемещениях и разрушениях твердых тел при различных внешних воздействиях, а также основные уравнения и методы решения задач о деформации и прочности тел. Методы сопротивления материалов отличаются от более строгих методов теории упругости и пластичности в основном введением ряда упрощающих предположений кинематического и геометрического характера и, тем не менее, в большинстве случаев оказываются достаточно точными.  [c.12]

Обращение А. Ю. Ишлинского к идеям Т. Кармана было не только нетривиальным, но и смелым шагом. Ибо развитие теории необратимых деформаций и разрушения твердых тел уже шло другим путем (построение гладких поверхностей нагружения, принцип Мизеса и ассоциированный закон течения, связанный по существу с подобием тензоров (девиаторов) — этот путь практически исключил рассмотрение физического механизма необратимых деформаций и разрушения твердых тел, по которому пошли в соответствии с представлениями Сен-Венана и Т. Кармана и которые будут воспроизведены здесь в духе статьи [1]. Сразу следует сказать конечно, не было необходимости ни в гипотезе о подобии тензоров (девиаторов), ни в ассоциированном законе. Действительно, в [3] авторы предположили, что упругое состояние материала при определенном уровне напряжений по Треска-Сен-Венану при достижении максимальным касательным напряжением постоянного для материала значения  [c.40]


В этой книге излагается общая теория криволинейных координат и ее применения в механике, в учении о теплоте и теории упругости разъясняется преобразование уравнений теории упругости к криволинейной системе координат и в качестве примера исследуется деформация сферической оболочки. В заключительных главах Ламе подвергает критическому анализу принципы, на основе которых строится вывод основных уравнений теории упругости. Теперь он уже не одобряет вывод уравнений по способу Навье (с привлечением гипотезы молекулярных сил), а отдает предпочтение методу Коши (в котором используется лишь статика твердого тела). Затем он принимает гипотезу Коши, согласно которой компоненты напряжения должны быть линейными функциями компонент деформации. Для изотропных материалов принятие этой гипотезы приводит к сокращению кисла необходимых упругих постоянных до двух, находимых из испытаний на простое растяжение и простое кручение. Таким путем все не-  [c.144]

Наиболее простой моделью упругопластического поведения при динамическом нагружении является модель Рахматулина —Кармана. Модель основана на гипотезе, что связь между напряжением и деформацией для ограниченного диапазона скоростей деформирования может быть описана единой функциональной зависимостью о(е). Поскольку для большинства твердых тел сопротивление  [c.135]

Предельная поверхность разрушения. В противоположность только что описанному характеру поведения твердых тел под сильным сжатием, те же тела в случае равномерного всестороннего растяжения обнаруживают, как известно, способность противостоять лишь таким напряжениям, которые не превышают некоторой определенной величины. Если три главных напряжения являются равными растягивающими напряжениями, то твердые материалы разрушаются без предшествующей пластической деформации. Такое же разрушение без остаточных деформаций наблюдается во многих твердых материалах и при простом одноосном или двухосном растяжении. Так называемые хрупкие материалы (стекло, чугун, большинство горных пород) при растяжении в одном илп нескольких направлениях разрушаются внезапно без заметных остаточных деформаций. Отсюда мы приходим к гипотезе, что в случае растягивающих напряжений совокупности предельных напряженных состояний Од, способных вызвать разрыв в теле, соответствует вторая предельная поверхность  [c.200]

Основы теории упругости были разработаны почти одновременно Навье (1821), Коши (1822), Пуассоном (1829). Независимо друг от друга они получили по существу все основные уравнения этой теории. Особо выделялись работы Коши. В отличие от Навье и Пуассона, привлекавших гипотезу молекулярных сил, Коши, опираясь на метод, в котором используется статика твердого тела, ввел понятия деформации и нагфяжения, установил дифференциальные уравнения равновесия, граничные условия, зависимости между деформациями и перемещениями, а также соотношения между напряжениями и деформациями для изотропного тела, первоначально содержавшие две упругие постоянные. В эти же годы появились исследования М. В. Остроградского о распространении волн в упругом теле при возмущении в его малой области. На эти исследования ссылается в своих работах Пуассон, впервые (1830) доказавший существование в однородной изотропной среде двух типов волн (волны расширения и искажения).  [c.5]

Рядом исследователей делались попытки описать физическую картину проявления сил внутреннего трения. По Т. Кельвину и В. Фойхту [26] на силы внутреннего трения в твердых телах можно распространить гипотезу Ньютона для жидкости, т. е. можно полагать, что сила внутреннего трения линейно связана со скоростью деформации. Несмотря на то что эта гипотеза противоречит многочисленным опытным данным, во всяком случае для сталей при обычно применяемых частотах и напряжениях, ею часто пользуются, поскольку она создает известные удобства при решении уравнений колебаний с затуханием. В действительности природа внутреннего трения более сложна. Наиболее важными причинами, вызывающими рассеяние энергии колебаний в металле, по-видимому, являются 1) местные пластические де-  [c.95]


Проблема термоцпклической прочности является комплексной проблемой, включающей в себя три основных вопроса. Первый вопрос заключается в разработке уравнений состояния, способных с удовлетворяющей инженерную практику точностью описать кинетику напряженно-деформированного состояния, процессы пластичности и ползучести при переменных нагрузках и температурах. Уравнения состояния должны включать параметры, характеризующие процесс накопления повреждений и разрушения материала. Второй вопрос заключается в выборе физически обоснованной меры повреждаемости материала, характеризующей кинетику разрушения материала на различных стадиях процесса деформирования, и разработке соответствующих кинетических уравнений, устанавливающих связь между указанной мерой и параметрами процесса. Третьим вопросом является формулировка соответствующих гипотез, связывающих кинетику процесса деформирования и накопления повреждений с типом разрушения, и критериев разрушения, связывающих параметры напряженно-деформированного состояния и меры повреждаемости для критических состояний материала. При решении указанных трех проблем должна учитываться существенная нестационарность нагрун<ения н нагрева Б условиях малоциклового термоусталостного разрушения, а формулировка соответствующих уравнений и критериев должна опираться на современные представления физики твердого тела о микро- и субмикроскопическом механизмах пластических деформаций и накопления повреждений в материале [42—64 .  [c.141]

Осветим бегло содержание книги Нейманна. В первых пяти главах он выводит основные уравнения теории упругости изотропного тела, вводя понятие компонент напряжения и деформации и устанавливая соотношения между ними через две упругие постоянные. Его обозначения для компонент напряжения были впоследствии приняты многими авторами в частности, их принял Ляв (А. Е. Н. Love). В следующих трех главах дается вывод основных уравнений с помощью гипотезы о молекулярном строении твердых тел. Излагаются работы Навье и Пуассона. Выводятся уравнения для неравномерного распределения температуры, исследуется теорема об единственности решений уравнений упругости. Следующая часть книги посвящена приложениям основных уравнений к частным задачам. Глава, в которой описывается  [c.303]

К осени 1822 г. Когци ) открыл большинство основных элементов чистой теории упругости. Он ввел понятие о напряжении и деформациях в дапной точке. Показал, что они могут быть определены шестью соответствуюш,ими компонентами. Исходя из гипотезы о сплошном и однородном строении твердого тела, Коши получил уравнения движения (или равновесия). Он впервые ввел в уравнения теории упругости две упругие постоянные, в то время как уравнения Павье содержали лишь одну. Соотношения, связываюш,ие малые деформации и перемегцения, названы его именем.  [c.11]

Ю. И. Ремнев (1958, 1959) рассмотрел связь между напряжениями и малыми деформациями в кристаллическом твердом теле при объемном расширении, вызванном облучением тяжелыми частицами, и предлояшл ряд гипотез, позволяющих определить это расширение. Было рассмотрено нейтронное облучение, так как бомбардирующий нейтрон, проходя через кристаллическую решетку, не взаимодействует с атомами кулоновыми силами и производит наибольшее нарушение. Предполагается, что в результате облучения механические свойства материала (модуль Юнга, предел текучести и т. д.) могут меняться, а изотропия материала не нарушается. А. А. Ильюшин и П. М. Огибалов (1960) предложили методы расчета прочности оболочек толстостенного цилиндра и полого шара. Как и в работах Ю. И. Ремнева, здесь принимается, что падение потока нейтронов пропорционально энергии и толщине слоя, а свойства тела в данной точке зависят от дозы облучения в этой точке.  [c.466]

Ограничения математической теории (123). — 77. Диаграммы зависимости между напряжениями и деф ормациями (124).— 78. Предел пропорциональности, предел упругости и критическая точка (125).—79. Влияние времени. Пластичность (127). — 79А. Мгновенные напряжения (12в). — 80. Вязкость твердых тел 81. Анизотропия вследствие остаточной деформации (129).— 82. Повторная нагрузка (129). —82А.-Уда-шй гистегезис (130). — 83. Гипотезы относительно условий разрушения (131). — 84.ЧЦели  [c.8]


Смотреть страницы где упоминается термин Тела твердые — Гипотеза деформациями и напряжениями : [c.9]    [c.628]    [c.25]    [c.280]    [c.186]    [c.212]    [c.20]   
Сопротивление материалов (1958) -- [ c.12 ]



ПОИСК



597 — Деформации и напряжения

Гипотеза

Гипотеза о твердых телах

Напряжения и деформации твердого тела

Тела твердые — Деформации



© 2025 Mash-xxl.info Реклама на сайте