Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Интегрирование уравнений малых колебаний

ИНТЕГРИРОВАНИЕ УРАВНЕНИЙ МАЛЫХ КОЛЕБАНИИ  [c.233]

ИНТЕГРИРОВАНИЕ УРАВНЕНИИ МАЛЫХ КОЛЕБАНИИ СИСТЕМЫ ОКОЛО СОСТОЯНИЯ СТАЦИОНАРНОГО ДВИЖЕНИЯ  [c.236]

Интегрирование уравнений малых колебаний  [c.451]

ИНТЕГРИРОВАНИЕ УРАВНЕНИЙ МАЛЫХ КОЛЕБАНИЙ 461  [c.461]

Интегрирование дифференциальных уравнений малых колебаний  [c.232]

Произведенный анализ устанавливает существование нормальных координат, но не позволяет указать способы нахождения форм Л линейных преобразований (II. 190), независимых от предварительного интегрирования дифференциальных уравнений малых колебаний. Кроме этого, остается нерассмотренным случай кратных корней характеристического уравнения.  [c.245]


В настоящем параграфе мы займемся изучением устойчивости регулятора давления, в котором возникает кулоново трение при движении поршня клапана. При учете кулонова трения уравнения малых колебаний системы в отличие от предыдущего будут уже нелинейными и для их интегрирования придется пользоваться приближенным методом, аналогичным методу Ван-дер-Поля, развитому только для обыкновенных дифференциальных уравнений.  [c.210]

В заключение отметим, что методы составления и интегрирования дифференциальных уравнений малых колебаний системы с двумя степенями свободы около положения устойчивого равновесия без всяких изменений могут быть распространены на системы с большим числом степеней свободы.  [c.483]

Теперь выразив, что вариация действия 85 обращается в нуль, и проделав интегрирования по частям с целью замены производных от вариаций и самими вариациями, причем используются краевые условия (51) для вариаций, получаем дифференциальные уравнения малых колебаний цепи  [c.687]

При исследовании малых колебаний около устойчивого равновесного состояния во многих случаях можно (не совершая большой погрешности) сохранять в выражениях, зависящих от координат и скоростей, только члены низшего (относительно этих величин) порядка, отбрасывая все другие как бесконечно малые высших порядков. Такая операция приводит обычно решение задачи о малых колебаниях к интегрированию линейных дифференциальных уравнений с постоянными коэффициентами. Она называется линеаризацией уравнений движения системы. Колебания, описываемые линеаризованными дифференциальными уравнениями, называются линейными колебаниями. Линеаризация уравнений малых колебаний может иногда оказаться результатом некоторых конструктивных изменений в рассматриваемой или проектируемой системе, что до известной степени служит основанием ее допустимости.  [c.69]

УРАВНЕНИЕ ЧАСТОТ, ИЛИ ВЕКОВОЕ УРАВНЕНИЕ. В практической постановке задача об интегрировании системы дифференциальных уравнений малых колебаний сводится к нахождению частных решений, соответствующих главным колебаниям. Именно с этими колебаниями связаны критические резонансные) состояния системы. В предыдущем разделе была установлена форма т ких частных решений когда система совершает одно из главный колебаний, все координаты q изменяются по одному и тому же гармоническому закону  [c.122]


Колебательные движения механических систем удобно описывать уравнениями Лагранжа в обобщенных координатах. При составлении уравнений мы будем отсчитывать обобщенные координаты всегда от положения устойчивого равновесия, относительно которого и происходят колебания механических систем. В большинстве случаев эти уравнения нелинейны и их интегрирование связано с большими трудностями. Однако при решении многих технических задач оказывается возможным в этих уравнениях отбрасывать квадраты и более высокие степени координат и скоростей. Такая операция называется линеаризацией уравнений. Линеаризованные уравнения не могут, конечно, в точности отобразить движения системы и дают несколько искаженную картину явления. Искажения тем менее существенны, чем меньше отброшенные члены уравнений в сравнении с оставшимися. Если значения координат и скоростей во все время движения остаются очень малыми, то их квадратами и высшими степенями вполне можно пренебречь, подобно тому, как в дифференциальном исчислении пренебрегают бесконечно малыми высших порядков. Таким образом, мы пришли к заключению, что колебания, описываемые линеаризованными уравнениями при сделанном выборе начала отсчета, должны быть только малыми колебаниями около положения равновесия.  [c.435]

При интегрировании системы (18.2), представляющей собой систему двух однородных дифференциальных уравнений второго порядка с постоянными коэффициентами, исходим из того, что механическая система совершает малые колебания около положения устойчивого равновесия. Частные решения этих уравнений, предположив, что координаты qi и изменяются по простому гармоническому закону, можно представить в следующем виде  [c.83]

Общий метод. Уравнения Лагранжа позволяют изучить также малые колебания системы около состояния устойчивого движения. Следуя методу, подобному тому, который был применен при изучении малых колебаний около положения устойчивого равновесия, мы опять придем к интегрированию линейных уравнений, но эти уравнения уже не будут уравнениями с постоянными коэффициентами.  [c.306]

Полное интегрирование рассматриваемой системы представляет трудную задачу, и мы не будем ею заниматься. Мы ограничимся в нашем рассмотрении бесконечно малыми колебаниями маятника вокруг положения устойчивого равновесия. Покажем сначала, что при этом можно привести уравнения движения к линейной форме и найти их общее решение.  [c.150]

Но в то время как прежнее уравнение (15.3) описывало только малые колебания математического маятника и получалось лишь приближенно из точного уравнения (15.1), наше теперешнее уравнение (17.6) и, следовательно, полученная из него путем интегрирования формула (17.7) точно справедливы для любых амплитуд. Таким образом, циклоидальный маятник строго изохронен, т. е. его период колебания вообще не зависит от величины амплитуды .  [c.128]

Второе уравнение системы (6.3) представляет собой результат интегрирования уравнения энергий одномерного потока в торцовой щели для нестационарного движения (имеются в виду малые колебания зазора, о чем говорилось выше)  [c.174]

Другим методом оценки динамической устойчивости несущего винта может быть непосредственное численное интегрирование уравнений движения. Такой подход необходим также при учете нелинейных эффектов, например срыва или сжимаемости. Оценка устойчивости периодических систем по переходным процессам не является тем не менее элементарной задачей. Может быть использован и метод замороженных коэффициентов , в котором находят собственные значения для стационарной системы, построенной с использованием коэффициентов, найденных на данном азимуте. При этом проверяются несколько критических значений азимута, таких, как г з = 90 и 270°. Этот метод основан на предположении о том, что изменение аэродинамических коэффициентов при полете вперед (происходящее почти с частотой вращения винта, по крайней мере для малых р.) происходит намного медленнее, чем колебания лопасти при флаттере (имеющие частоту несколько ниже (Од). Метод замороженных коэффициентов следует применять с осторожностью, так как указанное предположение часто не оправдано.  [c.594]


Что же в итоге дала эпоха становления и утверждения классической механики, эпоха от Галилея до Ньютона, в учении о колебаниях и волнах Пользуясь современной нам терминологией, мы можем подытожить труды целого столетия следующим образом. Во-первых, была построена теория малых колебаний (около положения равновесия) системы с одной степенью свободы (маятник) как незатухающих, так и при наличии вязкого сопротивления. Теория была построена в геометрической форме, ее еще предстояло перевести на язык анализа и представить как результат интегрирования дифференциального уравнения. Во-вторых, была дана в основном оправдавшая себя схема распространения волн сжатия и разрежения в идеальной жидкости, выявлена зависимость скорости распространения этих волн от упругости (давления) и плотности среды. В-третьих, была дана (слишком) упрощенная физическая схема образования волн на поверхности тяжелой жидкости. В-четвертых, был найден плодотворный принцип для построения фронта распро-  [c.261]

В работе Об интегрировании уравнений в частных производных, относящихся к малым колебаниям упругой среды рассматривается неограничен-274 ная во всех измерениях однородная упругая среда. Малые смещения ее частиц (и, V, w) заданы для начального значения времени вместе со своими первыми производными (скоростями) по времени  [c.274]

Уравнения движения сферического маятника оказываются более сложными, чем уравнения движения свободной материальной точки, поскольку в эти уравнения входит сила реакции, являющаяся неизвестной функцией координат. Можно пытаться провести интегрирование уравнений методом последовательных приближений, предварительно исключив реакцию. Но и эта задача оказывается весьма сложной. Обычно при исследовании ограничиваются случаем малых колебаний (колебания с малой амплитудой), рассматривая движение приближенным методом. Отношения х// и у 1 рассматриваются как малые величины, квадратами которых в уравнениях движения можно пренебрегать. В таком случае  [c.293]

Первая лекция. Важность изучения колебательных движений при рассмотрении многих вопросов современной техники. Причины возникновения колебаний. Свободные колебания систем с одной степенью свободы. Типичные примеры колебания груза на пружине, крутильные колебания диска, колебания груза на конце консоли, малые колебания математического и физического маятника. Условия, при которых упомянутые системы можно рассматривать как системы с одной степенью свободы. Общность рассмотренных задач. Интегрирование дифференциального уравнения свободных колебаний. Параметрическая структура коэффициента жесткости. Возникновение нелинейных задач теории колебаний.  [c.22]

Линейные консервативные системы. Собственные частоты и нормальные колебания. Зависимость собственных частот от параметров системы. Согласно результатам п. 2 настоящего параграфа задача о малых колебаниях консервативной системы около положения равновесия приводится к интегрированию уравнений Лагранжа, в которых кинетическая энергия Т является однородной квадратичной формой относительно обобщенных скоростей, а  [c.250]

Выбор метода исследования. Выбор конечно-разностной схемы интегрирования уравнений (У.64) определялся характером изучаемой задачи. Особенность поставленной задачи связана с возникновением, движением и взаимодействием ударных волн, причем установление процесса колебаний пузырьковой жидкости может проходить в течение длительного времени. Отсюда вытекает ряд требований к конечноразностному алгоритму. Последний должен быть одно- или двухшаговым для обеспечения простоты, скорости и экономичности расчета обеспечивать малую численную диссипацию и дисперсию при больших временах расчета описывать ударную волну как резкий разрыв и не давать при этом осцилляций перед скачком и за ним иметь не менее, чем второй порядок аппроксимации.  [c.144]

Различают две задачи о малых колебаниях молекулы прямую и обратную. В прямой задаче постоянные к , к , к и к считаются заданными и задача сводится к вычислению частот и форм нормальных колебаний молекулы. В обратной задаче по известным из опыта собственным частотам колебаний молекулы требуется определить ее силовое поле, т. е. набор постоянных к , к , к и Н . Решение любой из этих задач в конечном счете сводится к интегрированию системы уравнений движения  [c.250]

Пример 10. Экспоненциальный горн (рупор). Если считать, что длина волны Л постоянна и не зависит от г (что имеет место, например, при распространении звуковой волны в трубе, импеданс которой меняется из-за изменения диаметра трубы), то интегрирование уравнения (52) дает экспоненциальный закон изменения импеданса I с расстоянием г. Экспоненциально расширяющийся рупор часто используют в высококачественных громкоговорителях для передачи без отражений звуковой энергии, излучаемой мембраной площадью Аг. Если же мы возбудим колебания в цилиндрической трубке без раструба с площадью поперечного сечения Ау и неожиданно подсоединим эту трубку к комнате, то трубка будет резонировать для всех длин волн, для которых на концах трубки образуются пучности, и то, что мы услышим, будет мало похоже на музыку.  [c.232]

Таково дифференциальное уравнение движения нашей системы. Это уравнение ничем не отличается от дифференциального уравнения затухающих колебаний материальной точки, детально изученною в 36. Отсылая за подробностями к указанному месту, отметим только, что интегрирование уравнения (8) приводит в случае малого сопротивления у < ) к затухающим колебаниям, определяемым уравнением  [c.390]


Очерком общих методов интегрирования уравнений динамики заканчивается вторая часть этой книги, содержащая, вместе с ГЛ. I первой части, краткое рассмотрение основ аналитической механики. Оставлен в стороне ряд вопросов, как, например, распространение метода Остроградского — Гамильтона — Якоби на системы с избыточными координатами ) на случай неголоном-ных систем ), колебания с малыми и конечными амплитудами систем при наличии неголономиых связей и т. д.  [c.396]

Равновесие и движение бесконечно тонкой, первоначально плоской, изотропной пластинки. Расширение малой части пластинки. Потенциал сил, производимых расширением. Бесконечно малая деформация. Равновесие при предельных пере-меьцениях. Дифференциальные уравнения поперечных колебаний свободной пластинки. Интегрирование последних для круглой пластинки. Поперечные колебания напряженной мембраны)  [c.371]

Руководство курсовыми работами слушателей механической группы осуществляют преподаватели кафедры теоретической и прикладной механики. В течение первого месяца слушатели, как правило, заканчивают теоретическую разработку решения задач, выбранных в качестве курсовых работ. Большинство слушателей сами определяют тему своей курсовой работы. Чаще всего она связана с собственными научными исследованиями, и лишь малая часть курсовых работ имеет методическую направленность. Тем, кто затрудняется в выборе темы, предлагаются задачи по терретической механике, при выполнении которых целесообразно использовать ЭВМ [1]. В курсовых работах слушателей решались задачи статики, динамики, теории колебаний. В частности, рассматривались задачи 6 немалых колебаниях маятника, об интегрировании уравнения внешней баллистики, о малых колебаниях систем с тремя степенями свободы, которые не имеют решения в конечном виде и требуют применения численнь1х методов.  [c.21]

Книга посвящена активно развивающемуся направлению классической механики — теории интегрирования уравнений Гамильтона. Впервые излагается систематический ангшиз причин неинтегрируемого поведения гамильтоновых систем сложное строение пространства положений, малые знаменатели, расщепление асимптотических поверхностей, рождение изолированых периодических решений, ветвление решений в плоскости комплексного времени, квазислучайные режимы колебаний. Изложены методы интегрирования гамильтоновых систем, перечислены многие точно решенные задачи. Результаты общего характера проиллюстрированы примерами из небесной механики, динамики твердого тела, гидродинамики и математической физики.  [c.2]

Остроградский М. В., Об интегрировании уравнений в частных производных, относящихся к малым колебаниям упругой среды, Мет. de Г A ad., Петербург, I (1831).  [c.187]

На основе приближенного интегрирования уравнений колебаний масс методом малого параметра Н. А. Картвелишвили (1948) получил формулу для определения максимального падения уровня в цилиндрическом резервуаре при набросе нагрузки, учитываюш,ую, что после наброса нагрузки остается постоянным не расход турбин ГЭС, как это обычно предполагается, а их мощность. Развивая эту работу, Н. Ф. Манджавидзе (1955) получила формулы для амплитуды колебаний уровня в резервуаре с сопротивлением.  [c.724]


Смотреть страницы где упоминается термин Интегрирование уравнений малых колебаний : [c.459]    [c.508]    [c.261]    [c.656]    [c.275]    [c.8]   
Смотреть главы в:

Теоретическая механика  -> Интегрирование уравнений малых колебаний



ПОИСК



Интегрирование

Интегрирование дифференциальных уравнений малых колебаний

Интегрирование уравнений

Интегрирование уравнений малых колебаний системы около состояния стационарного движения

Колебания Уравнения колебаний

Колебания малые

Уравнения малых колебаний



© 2025 Mash-xxl.info Реклама на сайте