Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Колебания и волны в среде

КОЛЕБАНИЯ И ВОЛНЫ В СРЕДЕ  [c.10]

Колебания и волны в природе весьма разнообразны. Вызванные в среде каким-либо источником, колебания создают волну. Частица сплошной среды (газа, жидкости или твердого тела), будучи выведена из положения равновесия упругими силами, действующими на нее со стороны других частиц, стремится возвратиться в первоначальное положение. Соседние, ближайшие к ней частицы также выведены из равновесия и возбуждают более далекие. Таким образом, колебательное движение возбужденных частиц вызывает процесс распространения  [c.19]


Основные научные направления магнитная гидродинамика вязкой жидкости, теория развитых течений и течений на начальном участке канала для различных конфигураций магнитного поля, биомеханика континуальные модели биологических сплошных сред, спонтанные кальциевые колебания и волны в изолированных клетках, теория перистальтических течений.  [c.627]

Распространению волн в слоистых средах посвящены монографии [14, НО]. Явление волнового фильтра исследовалось в работах [39, 40]. Использованное в параграфе дисперсионное уравнение для стержня получено в [39, НО]. Достаточно полный обзор работ по колебаниям и волнам в слоистых композитах дан в [43].  [c.302]

Гц по аналогии с электромагнитными волнами, имеющими частоты ниже красной границы видимого света, т. е. по аналогии с инфракрасным электромагнитным излучением, называются инфразвуками, а механические колебания и волны в различных средах, имеющие частоты выше 20 000 Гц, называются ультразвуками (сравни ультрафиолетовое излучение). В последнее время в опытах с физическими средами и телами применяют механические колебания и волны с частотами 10 —10 Гц. Такие колебания со сверхвысокими для звуковой шкалы частотами называются гиперзвуками.  [c.15]

Одними из перспективных методов интенсификации производства в нефтегазодобывающей промышленности являются методы, основанные на волновой технологии [1-3]. В ее основе лежит идея о преобразовании колебаний и волн в другие формы механического движения. Нелинейная волновая механика многофазных систем позволила открыть ряд эффектов, происходящих в многофазных системах, в частности односторонне направленное перемещение твердых частиц и капель и ускорение течений жидкости в капиллярах и пористых средах, увеличение амплитуды волны по мере удаления от источника из-за нелинейного взаимодействия волн и пр. Для реализации этих эффектов в промышленности необходимы генераторы, создающие требуемые типы волн — гармонические, периодические импульсы, ударные и т. д. В зависимости от конструктивного исполнения устройств, предназначенных для создания периодических импульсов, можно обеспечить как ударное, репрессивное, так и депрессивное воздействие на пласт с целью повышения производительности добывающих или приемистости нагнетательных скважин. Принцип действия некоторых конструкций, предназначенных для ударного воздействия на пласт, можно охарактеризовать как мгновенную остановку падающего столба жидкости. Для определения амплитуды ударного воздействия и формы импульса необходимо знать волновую картину (динамику распространения прямых и отраженных волн сжатия и разряжения), возникающую в жидкости.  [c.208]


АКУСТИКА, учение о звуке в широком смысле этого слова. Единицы А. см. ОСТ 7242 и Единицы измерений. А. занимается изучением быстрых механич. колебаний в диапазоне частот от 1G—20 Hz (нижний продел слуха) до 20 ООО Hz, в особенности же изучением излучения и распространения их в форме волн в твердых, жидких и газообразных средах и восприятия их органом слуха. Изучение механич. колебаний и волн в области частот ниже 20 Hz и в области от 20 ООО Hz до 1 000000 Hz также в известной мере относят к А.,  [c.259]

Современную акустику условно можно разделить на общую акустику, прикладную и психофизиологическую. Общая акустика занимается теоретическим и экспериментальным, изучением закономерностей излучения, распространения и приема упругих колебаний и волн в различных средах и системах. Условно ее можно разделить на теорию звука, физическую акустику и нелинейную акустику, хотя, вообще говоря, нелинейную акустику можно считать и частью физической акустики.  [c.11]

Книга разделена на две части в первой обсуждаются колебания и волны в линейных системах и средах, во второй — в нелинейных. С нашей точки зрения, такое разделение значительно облегчает восприятие теории колебаний и волн на современном уровне. Так, распространение плоской гармонической волны в периодически слоистой среде описывается практически той же математической моделью, что и явление параметрической неустойчивости в сосредоточенной системе с одной степенью свободы, и их параллельное рассмотрение вполне естественно. Анализ же, например, автоколебаний в возбудимой среде — ансамбле автогенераторов — представляется непосредственным обобщением задачи о взаимодействии небольшого числа генераторов и т. д.  [c.9]

Общей, или классической, акустикой называют раздел физики, имеющий дело с упругими колебаниями и волнами в классической сплои ной среде в случае, когда длины волн значительно больше расстояний между атомами и молекулами. Другими словами, общая акустика — это часть механики сплошных сред (гидродинамики и теории упругости), изучающая колебательные и волновые процессы. Если же среда характеризуется не только механическими, но и другими физическими свойствами (например, наличием пьезоэлектричества, фотоупругости, магнитных свойств и т. д.), то процесс распространения звука в такой среде может существенно зависеть от этих свойств. Для описания акустических явлений в этом случае уже недостаточно традиционных представлений механики сплошных сред. Необходимо использовать более общие модели, основанные на рассмотрении соответствующих явлений на макро- и микроуровнях. Это относится к взаимодействиям звука с тепловыми упругими волнами в кристаллах — фононами, взаимодействиям со светом — фотонами (акустооптика), со свободными носителями заряда — электронами (акустоэлектроника), с возбуждениями в магнитоупорядоченных кристаллах — магнонами. Когда длина волны становится сравнимой с параметром решетки кристалла, возникают специфические явления, которые также не могут быть описаны в рамках классической механики сплошных сред.  [c.6]

Обычно же применяемые в контрольно-измерительной технике акустические колебания и волны, в том числе импульсы, характеризуются малостью возмущений. В этом случае изменения плотности среды из-за возникновения и распространения колебаний и волн много меньше (по крайней мере на три-четыре порядка), чем плотность невозмущенной среды.  [c.31]

Теория упругости излагается как часть теоретической физики. Наряду с традиционными вопросами рассматриваются макроскопическая теория теплопроводности и вязкости твердых тел, ряд вопросов теории упругих колебаний и волн, теория дислокаций. В новом издании добавлена специальная глава о механике жидких кристаллов, объединяющей в себе черты, свойственные как жидкостям, так и упругим средам.  [c.4]

Мы видим, таким образом, что продольные волны в стержнях и пластинках обладают таким же характером, как и волны в неограниченной среде, отличаясь лишь величиной своей скорости, по-прежнему не зависящей от частоты. Совсем иные соотношения получаются для волн изгиба в пластинках и стержнях, при которых колебания происходят в направлении, перпендикулярном к оси стержня или плоскости пластинки, т. е. сопровождаются их изгибом.  [c.139]


Такую плоскую волну в среде мы получим, если поместим в упругую среду большую пластину, колеблющуюся в направлении нормали к пластине. Все точки среды, прилегающие к пластине, совершают колебания с одинаковыми амплитудой и фазой. Эти колебания будут  [c.704]

Движение источника звука, сопровождающееся изменением расстояния от источника до приемника, приводит к изменению частоты принимаемого звука. Это связано с тем, что скорость распространения звуковой волны в среде не зависит от скорости движения источника. Поэтому, если источник звука движется от приемника со скоростью V см/сек, то за единицу времени мимо приемника пройдут не все максимумы и минимумы волны, излученные за это время источником, а только часть их приемник отметит меньшее число колебаний, чем создает источник. Убедиться в этом можно при помощи следующего элементарного расчета. Пусть источник в начале секунды находился на расстоянии с см от приемника, причем с см сек — скорость звука в среде. Тогда через секунду он будет находиться на расстоянии (с+ v) см. На этом расстоянии уложатся все / максимумов, которые за одну секунду созданы излучателем (/ — частота колебаний излучателя). Но за одну секунду до приемника дойдут не все максимумы, а только часть их, расположенная на расстоянии с см. Следовательно, приемник отметит меньшую частоту /, причем /7/ = с/ (с + и), откуда  [c.731]

Если из них определенным образом вырезать пластинку, то при сжатии или растяжении такой пластинки на ее поверхности появятся электрические заряды — с одной стороны положительные, с другой— отрицательные. В этом и состоит пьезоэлектрический эффект. Этот эффект обратим. Если пластинку покрыть с двух сторон металлическими электродами (например, алюминиевой фольгой) и присоединить к ним источник переменного напряжения, то пластинка попеременно то сжимается, то растягивается. Эти колебания поверхности пластинки и возбуждают в среде ультразвуковые волны. Используя пьезоэлектрические излучатели, удается получать ультразвуки сравнительно небольшой интенсивности.  [c.243]

Акустические колебания и волны. Акустические колебания — это механические колебания частиц упругой среды, а акустические волны — процесс распространения в этой среде механиче-  [c.4]

В предыдущих двух главах рассматривались волны и колебания конструкций, состоящих из распределенных масс и податливостей (жесткостей), без учета демпфирования — важного параметра, характеризующего затухание волн и колебаний. Этот параметр обусловлен внутренним и внешним трением, излучением и другими причинами, вызывающими убывание акустической энергии в рассматриваемой конструкции. Во многих случаях эффекты потерь пренебрежимо малы, по в некоторых случаях пренебрежение ими ведет к большим ошибкам в расчетах. Так, амплитуда вынужденных колебаний на резонансной частоте существенно зависит от потерь (см. рис. 3.14). Так же сильно зависят от потерь и отклики произвольной колебательной системы на кратковременные нагрузки. Вследствие демпфирования часть энергии колеблющейся конструкции превращается в тепло и предоставленные самим себе колебания затухают со временем. Аналогичная картина наблюдается и при распространении волны в среде. Из-за внутренних потерь часть энергии волны идет на нагревание среды и амплитуда волнового движения уменьшается с расстоянием по мере распространения волны.  [c.207]

Ультразвуковая дефектоскопия использует упругие колебания и волны, распространяющихся в упругих средах. Колебательные движения могут возникать в любой среде. Колебания одной из час-  [c.115]

Таким образом, посмотрев внимательнее вокруг себя и проанализировав увиденное, можно отметить поразительную общность многих закономерностей, характерных для звука и света, механических и электромагнитных колебаний. Эти закономерности проявляются в колебаниях и волнах, описываемых едиными уравнениями для различных физических сред.  [c.19]

Что же в итоге дала эпоха становления и утверждения классической механики, эпоха от Галилея до Ньютона, в учении о колебаниях и волнах Пользуясь современной нам терминологией, мы можем подытожить труды целого столетия следующим образом. Во-первых, была построена теория малых колебаний (около положения равновесия) системы с одной степенью свободы (маятник) как незатухающих, так и при наличии вязкого сопротивления. Теория была построена в геометрической форме, ее еще предстояло перевести на язык анализа и представить как результат интегрирования дифференциального уравнения. Во-вторых, была дана в основном оправдавшая себя схема распространения волн сжатия и разрежения в идеальной жидкости, выявлена зависимость скорости распространения этих волн от упругости (давления) и плотности среды. В-третьих, была дана (слишком) упрощенная физическая схема образования волн на поверхности тяжелой жидкости. В-четвертых, был найден плодотворный принцип для построения фронта распро-  [c.261]

В рамках оговоренной линейной модели основные соотношения, описывающие акустические колебания и волны в среде, следуют из уравнения состояния среды, уравнения движения Ньютона и уравнения неразрьшности. Результатом являются уравнения волнового типа, которые могут быть решены при соответствующих начальных и граничных условиях. Процесс колебаний или распространения волны сопровождается периодическим смещением частиц из положения равновесия, изменением плотности, давления и скорости движения частиц в среде. Представим результирующие величины, характеризующие состояние среды при прохождении через нее акустической волны, в виде суммы стационарной (при отсутствии звукового возмущения) и периодической составляющих  [c.32]


Впервые четко мысль о таком единстве бьша, по-видимому, высказана Рэлеем (1842-1919), который в свою знаменитую книгу Теория звука ввел две дополнительные главы о колебаниях изогнутых пластинок и оболочек, а также об электрических колебаниях. В своем труде Рэлей не только пересмотрел всю созданную до него акустику, но и дал первое систематическое изложение общего учения о колебаниях и волнах малой амплитуды. Велик вклад Рэлея во многие разделы теории колебаний и волн. Его без преувеличения можно считать основоположником современной линейной теории колебаний и волн. В предисловии к первому изданию Теории звука он писал, говоря о целях книги Со времени известной работы о звуке в En i lopedia Metropolitama, принадлежащей Джону Гершелю (1845), не было опубликовано ни одного полного труда, где предмет трактовался бы математически [58, т. 1,с. 20]. Необходимость такого труда и заставила Рэлея заняться Теорией звука . Он начал обдумывать ее план уже в 1871 году. Первый том, посвященный линейным колебаниям, был опубликован в 1877 году, второй, где рассматривались волны в упругой среде, — в 1878 году.  [c.60]

Спецкурс Избранные вопросы теории колебаний и волн в распределенных системах знакомит студентов с современными достижениями теории волн применительно к динамике распредепенных упругих систем. В курсе изучаются колебания периодических структур, составленных из различных комбинаций реологических элементов Гука и Юма. Осуществляется предельный переход к распределенным системам. С помощью вариационного метода строятся модели упругих колебаний стерж1 сй и пластин. Рассматриваются кинематические и динамические характеристики волнового процесса, выводятся уравнения переноса энергии и импульса. Методом стационарной фазы из)Д1а-ется асимптотическое поведение волн в линейных средах. Вводится понятие дисперсии фазовой и групповой скоростей. Рассматривается нелинейная эволюция волн Римана, ударных волн и солитонов. Изучаются также волновые процессы в системах с нестационарными и движущими границами.  [c.12]

Электрические колебания и волны в различных электрич. ценях, системах и средах. Теоретические и эк-сноримонтальпые исследования электрич. колебаний в системах с сосредоточенными параметрами и в непрерывных с распределенными параметрами средах являются основой для разработки различных методов возбуждения, усиления и преобразования колебаний с частотами от единиц гц, до 104 щ и выше. Рассмотрение колебат. процессов в ])еальпых системах с учетом особенностей применяв-  [c.313]

Понятия о колебательных движениях и волнах сформулировались в начале XIX в. В то время получены линейные решения уравнений теоретической механики и гидродинамики, описывающие движения планет и волн на воде. Несколько позднее благодаря наблюдательности Д. С. Рассела [186], теоретическим исследованиям Б. Римана [97, 99] и других исследователей сформировалось понятие о нелинейных волнах. Однако, если линейные колебания и волны были весьма полно изучены в XIX в., что нашло отражение в фундаментальном курсе Д. Рэлея [177], то этого нельзя сказать о нелинейных колебаниях. Сознание того, что нелинейные уравнения содержат в себе качественно новую информацию об окружающем мире пришло после разработки А. Пуанкаре новых методов их изучения. Созданные им и другими исследователями методы интегрирования нелинейных уравнений нашли широкое применение в радиофизике [6] и механике твердых тел [73]. Более медленно нелинейные понятия и подходы входили в механику жидкости и твердого деформируемого тела. Показательно, что первые монографии, посвященные нелинейному поведению деформируемых систем, были опубликованы на-рубеже первой половины XX в. [39, 72, 107, 153]. В это же время резко возрос интерес к нелинейным колебаниям и волнам в различных сплошных средах. Сформировались нелинейная оптика, нелинейная акустика [97, 173], теория ударных волн [9, 198] и другие нелинейные науки [184, 195, 207]. В них рассматриваются обычно закономерности формоизменения волн, взаимодействия их друг с другом и физическими полями в безграничных средах. Нелинейные волны в ограниченных средах исследованы в значительно меньшей степени, несмотря на то что они интересны для приложений. В последнем случае важнейшее значение приобретает проблема формирования волн в среде в результате силового, кинематического, теплового или ударного нагружения ее границ. Сложность проблемы связана с необходимостью учета физических явлений, которые обычно не проявляют себя вдали от границ, таких как плавление, испарение и разрушение среды, а также взаимодействия соприкасающихся сред. В монографии рассмотрен широкий круг задач генерации и распространения нелинейных волн давления, деформаций, напряжений в ограниченных неоднородных сплошных средах. Большое внимание уделено динамическому разрушению и испарению жидких и твердых сред вблизи границ, модельным построениям для адекватного математического описания этих процессов. Анализируется влияние на них взаимодействия соприкасающихся сред, а также механических и тепловых явлений, происходящих в объемах, прилегающих к границам.  [c.3]

В узком смысле слова акустика-это учение о звуке, т.е, ой упругих колебаниях и волнах в газах, жидкостях и твердых телах, слышимых человеческим ухом частоты таких колебаний и волн лежат в диапазоне примерно от 16 до 20 ООО Гц. В широком смысле слова зто область физики, изучапцая упругие колебания и волны в различных средах от самых низких частот (инфразвук, условно от О до 16 Гц) до предельно высоких частот Гц (гиперзвук в кристаллических твердых телах при низких тешературах).  [c.5]

ПРИЕМНИКИ И ИНДИКАТОРЫ УЛЬТРАЗВУКА. Индикаторы УЗ (И. у.) позволяют обнаружить акустич. колебания и волны в газообразных, жидких и твёрдых средах. Приёмники УЗ (П. у.) служат, кроме того, для измерения тех или иных параметров колебаний и волн, напр, амплитуды колебательного слгещения частиц, колебательной скорости частиц, ускорения, звукового давления, интенсивности звука. П. у. всегда представляют собой специальные устройства, предназначенные для указанных выше целей в качестве И. у., помимо спе-  [c.269]

Существование различных теоретических подходов (в данном случае спектрального и временного) к одним и тем же объективным процессам не является характерной чертой только учения о колебаниях и волнах. В физике, вообще, часто приходится к одним и тем же явлениям применять различные теоретические трактовки. Так, например, к процессам фазовых превращений или излучения света при решении одних задач применяется терАюдинамическая трактовка, а при решении других — статистическая. Кристалл рассматривается в акустике как непрерывная среда, а в теории теплоемкости учитывается его атомистическая структура.  [c.559]

Осн. разделы К. и в. т.— теория устойчивости линеаризованных систем, теория параметрич. систем, теория автоколебат. и автоволн, процессов, теория ударных волн и солитонов, кинетика колебаний и волн в системах с большим числом степеней свободы, теория стохастич. систем — систем со сложной динамикой. Если классическая К. и в. т. рассматривала в осн. системы с простой динамикой и поэтому изучала, как правило, лишь регулярные (периодические) колебания и волны, то в совр. теории усилился интерес к статистич. задачам, связанным с анализом процессов рождения статистики в детер-миниров. системах. В этих задачах, а также при исследовании сложных колебат. и волн, структур в неравновесных средах совр. К. и в. т. перекрывается с синергетикой.  [c.293]


Следовательно, синергетика логически связана с теорией нелинейных колебаний и волн, которая ыожет служить общей теорией структур в неравновесных средах. В связи с этим и методы, используемые при изучении нелинейных колебаний и волн, могут применяться и для описания структур в неравновесных средах. Примеры применения теории нелинейных колебаний при математическом моделировании диссипативных систем в окрестностях точки бифуркации даны в [13, 14].  [c.253]

Трудности, связанные с этим, состояли в том, что поперечные колебания и волны не могут иметь места в жидкостях и газах. Упругие же колебания в твердых телах еще не были исследованы к тому времени. Учение Френеля о поперечных световых волнах дало толчок к исследованию свойств упругих твердых тел. Применение полученггых знаний к оптике повело к ряду принципиальных затруднен1 й, связанных с несовместимостью механических законов колебаний упругой среды и наблюдае.мых на опыте законов оптических явлений. Эти затруднения были устранены только с появлением электромагнитной теории света. Однако для интересующего нас вопроса о поперечности световых волн механические теории света дали очень много, и плодотворность их для того времени стоит вне сомнения.  [c.372]

Лит. Горелик Г. С., Колебания и волны, 2 изд., М., 19 9 Бреховсквх Л, М., Волны в слоистых средах, 2 илд., М., 1973, гл, 6 Ч е р н о в Л. А., Волны в случайно-неоднородных средах, М., 1975, ч. 1. М. А. Исакович. ГЕОМЕТРИЧЕСКАЯ ОПТИКА раздел оптики, в к-ром изучаются законы распространения света в прозрачных средах и условия получения изображений на основании матем, модели физ. явлений, происходящих в оптич. системах, справедливой, когда длина волны света бесконечно мала. Положения Г. о, имеют значения первых приближений, согласующихся с наблюдаемыми явлениями, если эффекты, вызываемые волновой природой света, — интерференция, дифракция и поляризация — несущественны. Выводы Г, о. строятся дедуктивным методом на основании неск. простых законов, установленных опытным путём  [c.438]

Помимо хаотич. теплового движения частицы П. могут участвовать в упорядоченных коллективны.х процессах, из к-рых наиб, характерны продольные колебания пространствейного заряда — ленгмюровские волны. Их угл. частота сОр = лпе /т наз. плазменной частотой (сит— заряд и масса электрона). Многочисленность и разнообраэие коллективных процессов, отличающие плазму от нейтрального газа, обусловлены дальностью кулоновского взаимодействия, благодаря чему П. можно рассматривать как упругую среду, в к-рой легко возбуждаются и распространяются разл. шумы, колебания и волны. Наличие собств. колебаний и волн — Характерное свойство П.  [c.595]

В соответствии с многообразием исследуемых форм движения материи Ф. подразделяется на ряд дисциплин, или разделов, в той или иной мере связанных друг с другом. Деление Ф. на отд. дисциплины не однозначно, его можно проводить, руководствуясь разл. критериями. По изучаемым объектам Ф. делится на Ф. элементарных частиц и физ, полей, Ф. ядра, Ф. атомов и молекул, Ф. твёрдых, жидких и газообразных тел, Ф. плазмы. Др. критерий — изучаемые процессы или формы движения материи, Различают механич. движение, тепловые процессы, эл.-магн. явления, гравитационные, сильные, слабые взаимодействия соответственно в Ф. выделяют механику материальных точек и твёрдых тел, механику сплошных сред (включая акустику), термодинамику, статистич. физику, электродинамику (включая оптику), теорию тяготения, квантовую механику и квантовую теорию поля. При этом мн. процессы изучаются на разных уровнях на макроско-пич. уровне в феноменологических (описательных) теориях и на микроскопич. уровне в статистич. теориях мн. частиц. Указанные способы подразделения Ф. частично перекрываются вследствие глубокой внутр. взаимосвязи между объектами материального мира и процессами, в к-рых они участвуют. По целям исследования выделяют также прикладную Ф. Особо выделяется теория колебаний и волн, что основано на общности закономерностей колебат. процессов разл. физ. природы и методов их исследования. Здесь рассматриваются механич., акустич., электрич. и оп-тич. колебания и волны с единой точки зрения.  [c.311]


Смотреть страницы где упоминается термин Колебания и волны в среде : [c.24]    [c.144]    [c.344]    [c.858]    [c.87]    [c.11]    [c.293]    [c.82]    [c.646]    [c.700]    [c.581]    [c.313]    [c.516]    [c.362]    [c.229]   
Смотреть главы в:

Бытовые акустические системы  -> Колебания и волны в среде



ПОИСК



Волны 24 — вторичные, обязанные изменениям среды 150 — плоские поперечных колебаний 402 — плоские воздушных колебаний 24 — на воде

Глава двенадцатая Распространение волн колебаний в сплошной упругой среде Общие замечания

Колебания в упорядоченных структурах. Предельный переход к сплошной среде. Волны. Дисперсия

Колебания и волны

Распространение колебаний в однородной среде. Продольные и поперечные волны



© 2025 Mash-xxl.info Реклама на сайте