Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Закон распространения света

Сравним равенство (11.160) с равенством (11.153), применяя его к одной материальной точке. Из сравнения равенств (И. 153) и (II. 160) следует, что существует некоторая аналогия между задачами механики и оптики. Эта аналогия заключается в том, что закону распространения света со скоростью И1 соответствует закон движения материальной точки, движущейся со скоростью  [c.209]

Эта теорема, доказанная нами для волновой теории в том приближении, когда справедлива геометрическая оптика (А, 0), представляет в геометрической оптике аксиому, именуемую принципом кратчайшего оптического пути (или минимального времени распространения). Она была сформулирована Ферма как общий закон распространения света (принцип Ферма, около 1660 г.). Действительно, нетрудно видеть, что для однородной среды этот принцип приводит к закону прямолинейного распространения согласно геометрической аксиоме о том, что прямая есть  [c.275]


Рассмотренная нами возможность отнюдь не является абстракцией. Именно по такому принципу создает иллюзию присутствия объекта новинка современной оптики — голограмма. Для того чтобы понять конкретный механизм, с помощью которого голограмма записывает и воспроизводит световые поля, необходимо ознакомиться сначала с некоторыми законами распространения света.  [c.16]

Провозгласив принцип наименьшего действия общим законом распространения света, Мопертюи в 1746 г. представил Берлинской академии ме-муар, в котором он применяет этот принцип к удару тел и к случаю равновесия. Название этого мемуара Законы движения и покоя, выведенные из метафизического принципа отчетливо доказывает исходную идею Мопертюи, целиком лежащую в области телеологической метафизики.  [c.195]

Гипотеза о существовании эфира как выделенной системы отсчета выдвигала постановку ряда опытов с целью выяснения законов распространения света в телах, движущихся относительно эфира, и опытов, связанных с движением наблюдателя относительно эфира. Результаты этих опытов вскрыли противоречия в самом понятии эфира и привели в конечном счете к отказу от представлений о возможности определить абсолютное движение тел с помощью оптических явлений. Принцип относительности был распространен не только на механические явления, но и на все явления  [c.392]

Как получить законы распространения света в равномерно движущихся относительно наблюдателя телах Приведите релятивистское объяснение результатов опыта Физо.  [c.412]

ЗАКОН РАСПРОСТРАНЕНИЯ СВЕТА  [c.336]

ЗАКОН РАСПРОСТРАНЕНИЯ СВЕТА 337  [c.337]

Предположим, что мы находимся в некоторой инерциальной системе отсчета /, и в нашем распоряжении имеется большое количество стандартных часов, которые отсчитывают одинаковое время, если покоятся в одном и том же месте. Разместим эти часы в системе / везде, где нужно измерять время. Для синхронизации часов используем световые сигналы, поскольку законы распространения света достаточно хорошо известны из экспериментов.  [c.30]

КРИСТАЛЛООПТИКА, пограничная область оптики и кристаллофизики, охватывающая изучение законов распространения света в кристаллах. Характерными для кристаллов явлениями, изучаемыми К., явл. двойное лучепреломление, поляризация света, вращение плоскости поляризации, плеохроизм и др. Вопросы поглощения и излучения света кристаллами изучаются в спектроскопии кристаллов. Влияние электрич. и магн. полей на оптич. св-ва кристаллов исследуются в электрооптике и магнитооптике, опирающихся на осн. законы К.  [c.324]

Закон прямолинейного распространения света в однородной среде как следствие принципа Ферма. Ввиду того что минимальное расстояние между двумя точками есть прямая линия, соединяющая эти точки, прямолинейное распространение света в однородной среде является прямым следствием принципа Ферма.  [c.168]


Закон прямолинейного распространения света в однородной среде.  [c.172]

Экспериментально установленный закон преломления света получает объяснение на основании принципа Гюйгенса. Согласно волновым представлениям преломление является следствием изменения скорости распространения волн при переходе из одной среды в другую, а физический смысл показателя преломления — это отношение скорости распространения волн в первой среде к скорости их распространения во второй среде V2.  [c.265]

Несмотря на очевидное различие в способах генерирования и регистрации электромагнитных волн разного типа, можно показать, что законы распространения таких волн задаются одними и теми же дифференциальными уравнениями. Речь здесь идет об уравнениях Максвелла, в которых свойства среды учитываются введением соответствующих констант, а переход излучения из одной среды в другую определяется с помощью граничных условий для векторов напряженности электрического и магнитного полей. Использование метода, предложенного Максвеллом более 100 лет назад, позволяет построить единую теорию распространения электромагнитных волн и применить ее для описания основных свойств света. Такое феноменологическое рассмотрение  [c.9]

Закон прямолинейного распространения света.  [c.13]

Закон прямолинейного распространения света. В однородной среде свет распространяется по прямым линиям.  [c.13]

Более детальное исследование описываемых явлений показывает, что закон прямолинейного распространения света теряет силу, если мы переходим к очень малым отверстиям. Так, в опыте, изображенном на рис. 1.2, мы получим хорошее изображение при размере отверстия около 0,5 мм изображение будет очень несовершенным при отверстии 0,02—0,03 мм. Изображения совсем не получится и экран будет освещен практически равномерно при размерах отверстия около 0,5—1 мкм. Отступления от закона прямолинейного распространения света рассматриваются в учении о дифракции.  [c.14]

В такой первоначальной форме принцип Гюйгенса говорит лишь о направлении распространения волнового фронта, который формально отождествляется с геометрической поверхностью, огибающей вторичные волны. Таким образом, речь идет собственно о распространении этой поверхности, а не о распространении волн, и выводы Гюйгенса относятся лишь к вопросу о направлении распространения света. В таком виде принцип Гюйгенса является, по существу, принципом геометрической оптики и, строго говоря, может применяться лишь в условиях пригодности геометрической оптики, т. е. когда длина световой волны бесконечно мала по сравнению с протяженностью волнового фронта. В этих условиях он позволяет вывести основные законы геометрической оптики (законы преломления и отражения). Рассмотрим для примера преломление плоской волны на границе двух сред, причем скорость волны в первой среде обозначим через 01, во второй — через  [c.19]

Из сказанного выше должно быть ясным, что большое количество понятий, связанных с переносимой светом энергией, обусловлено, в конечном итоге, законом прямолинейного распространения света, в силу которого световая энергия может переноситься по-разному в различных направлениях и через элементы поверхности, находящиеся в разных точках. Наиболее дифференцированной характеристикой светового поля служит яркость (или интенсивность), определяющая мощность, распространяющуюся в заданном направлении вблизи заданной точки пространства. Сила света описывает мощность, также распространяющуюся в заданном направлении, но от всей поверхности протяженного источника. Освещенность и свети-г.юсть характеризуют мощность, которая распространяется вблизи какой-либо определенной точки пространства во всех направлениях. Наконец, наиболее интегральной характеристикой является поток, — мощность, переносимая во всех направлениях через всю заданную поверхность. Приведенные соображения наглядно иллюстрируются соотношениями между введенными величинами и яркостью  [c.50]


Явления интерференции света во всем их многообразии служат убедительнейшим доказательством волновой природы световых процессов. Однако окончательная победа волновых представлений была невозможна без истолкования с волновой точки зрения фундаментального и хорошо подтвержденного опытом закона прямолинейного распространения света.  [c.150]

Модифицированный таким образом принцип Гюйгенса—Френеля становится основным принципом волновой оптики и позволяет исследовать вопросы, относящиеся к интенсивности результирующей волны в разных направлениях, т. е. решать задачи о дифракции света (см. ниже). В соответствии с этим был решен, вопрос о границах применимости закона прямолинейного распространения света, и принцип Гюйгенса—Френеля оказался применимым к выяснению закона распространения волн любой длины.  [c.151]

Изучение дифракции света на ультраакустических волнах стало важным методом исследования законов распространения этих волн в веществе и служит для исследования вопросов молекулярной физики для некоторых технических применений используется ультраакустическая дефектоскопия.  [c.234]

Вернемся к диаграмме Минковского (рис. 414) и дадим еще один вывод формулы (21), выражающей эффект замедления хода движущихся часов. Пусть наблюдатель В, движущийся со скоростью и < с в системе Охх, и наблюдатель А, покоящийся в тон же системе, находятся в начальный момент в одной и той же точке О х =. г = 0) пространства, где они синхронизируют свои часы, поставив их так, что т = т = 0. Покоящийся в ис-ходно11 системе Охт наблюдатель А в момент т = 6о по своим часам (точка No) посылает световой сигнал, который принимается наблюдателем В в момент, когда его часы показывают время т = 01 =/гбо (точка yVi). Траекторией светового луча служит прямая NqN, параллельная диагонали ОС. Сразу же по получении сигнала наблюдатель В посылает ответный сигнал (с траекторией N]N2 — прямой, перпендикулярной к диагонали ОС), который принимается покоящимся наблюдателем в момент, когда его собственные часы показывают т = 02 = kQ (точка N2). Совпадение коэффициентов пропорциональности в двух последних равенствах выражает как раз принцип относительности, т. е. совпадение законов распространения света во всех ииерциальных системах отсчета. Итак, 02 = fe9l = fe 6o.  [c.457]

ОПТИКА [ асферическая содержит элементы, поверхности которых, не имеют сферической формы просветленная обладает уменьшенными коэффициентами отражения света у отдельных ее элементов путем нанесения на них специальных покрытий) как оптическая система (волновая изучает явления, в которых проявляется волновая природа света волоконная рассматривает передачу света и изображений по световодам и пучкам гибких оптических волокон геометрическая изучает законы распространения света в прозрачных средах на основе представлений о световых лучах интегральная изучает методы создания и объединения оптических и оптоэлектронных элементов, предназначенных для управления световыми потоками квантовая изучает явления, в которых при взаимодействии света и вещества существенны квантовые свойства света и атомов вещества когерентная изучает методы создания узконаправленных когерентных пучков света и управления ими нелинейная изучает распространение мощных световых пучков в оптически нелинейных средах (твердые тела, жидкости, газы) и их взаимодействие с веществом силовая изучает воздействие на твердые тела интенсивного светового излучения, в результате которого может нарушаться механическая цельность этих тел статистическая изучает статистические свойства световых полей и особенности их взаимодействия с веществом тонких слоев изучает прохождение света через прозрачные слои вещества, толщина которых соизмерима с длиной световой волны физическая изучает природу света и световых явлений) как раздел оптики электронная занимается вопросами формирования, фокусировки и отклонения пучков электронов и получения с их помощью изображений под воздействием электрических и магнитных полей корпускулярная изучает законы движения заряженных частиц в электрическом и магнитном полях нейтронная изучае взаимодейс вие медленных нейтронов со средой) как раздел физики]  [c.255]

Лит. Горелик Г. С., Колебания и волны, 2 изд., М., 19 9 Бреховсквх Л, М., Волны в слоистых средах, 2 илд., М., 1973, гл, 6 Ч е р н о в Л. А., Волны в случайно-неоднородных средах, М., 1975, ч. 1. М. А. Исакович. ГЕОМЕТРИЧЕСКАЯ ОПТИКА раздел оптики, в к-ром изучаются законы распространения света в прозрачных средах и условия получения изображений на основании матем, модели физ. явлений, происходящих в оптич. системах, справедливой, когда длина волны света бесконечно мала. Положения Г. о, имеют значения первых приближений, согласующихся с наблюдаемыми явлениями, если эффекты, вызываемые волновой природой света, — интерференция, дифракция и поляризация — несущественны. Выводы Г, о. строятся дедуктивным методом на основании неск. простых законов, установленных опытным путём  [c.438]

Рис. I. к зависимости представлений человека об окружающем его мире от законов, по которым распространяется свет. В гипотетическом мпрс, где свет распространяется по кривым траекториям (на рисунке они изображены пунктиром), все кривые линии, совпадающие с такими траекториями (например, кривая АВ), будут казаться наблюдателю h прямыми, поскольку при просмотре с торца эти кривые будут проецироваться в одиу точку. Вместе с тем настоящую кривую АС наблюдатель h сочтет кривой. Однако исконные обитатели такого гипотетического мира вряд ли будут испытывать какие-либо неудобства пх мозг в процессе эволюции научится автоматически учитывать особенности законов распространения света того мира, в котором они живут, и построит образцы предметов, пе менее удобные для анализа, чем те, которыми оперирует наш мозг  [c.5]


Впрочем, не так уж далека во времени первым актом ее вщволнения была появившаяся в 1905 г. специальная теория относительности. Мы приведем очень краткую и выпуклую характеристику этой теории. В Основах теоретической механики А. Эйнштейн говорит Так называемая специальная теория относительности основывается на том факте, что уравнения Максвелла (а следовательно, и закон распространения света в пустоте) инвариантны по отношению к преобразованиям Лоренца. К этому формальному свойству уравнений Максвелла добавляется достоверное знание нами того эмпирического факта, что законы физики одинаковы во всех инерциаль- 301 ных системах. Отсюда вытекает что переход от одной инерциальной системы к другой должен управляться преобразованиями Лоренца, применяемыми к пространственно-временным координатам. Следовательно, содержание специальной теории относительности может быть резюмировано в одном предложении все законы природы должны быть так определены, чтобы они были ковариантными относительно преобразований Лоренца. Отсюда вытекает, что одновременность двух пространственно-удаленных событий не является инвариантным понятием, а размеры твердых тел и ход часов зависят от состояния их движения. Другим следствием является видоизменение закона Ньютона в случае, когда скорость заданного тела не мала но сравнению со скоростью света. Между прочим, отсюда вытекал принцип эквивалентности массы и энергии, а законы сохранения массы и энергии объединились в один закон. Но раз было доказано, что одновременность относительна и зависит от системы отсчета, исчезла всякая возможность сохранить в основах физики дальнодействие, ибо это понятие предполагало абсолютный характер одновременности (должна существовать возможность констатации положения двух взаимодействующих материальных точек в один и тот же момент ) .  [c.391]

Возвращаясь к случаю узкополосного света, вспомним теперь второе условие квазимонохроматичности оптическая разность хода должна быть намного меньше длины когерентности света. Опираясь на это предположение, мы можем найти соответствующие законы распространения света для взаимной интенсивности. Если условия квазимонохроматичности выполняются, то взаимную интенсивность на поверхности Ед мы найдем, заметив, что  [c.191]

Взаимодействие излучения с прозрачными средами. Если исходить из основного предположения, что среда прозрачна, то, очевидно, надо под термином взаимодействие иметь в виду процесс распрострапения излучения в среде. Основные законы распространения света в прозрачных средах, справедливые в рамках линейной оптики, общеизвестны [1]. Это закон прямолинейного распространения света закон независимости световых пучков законы отражения и преломления на границе различных сред законы поглощения Бугера и Вера. В основе всех этих макроскопических ааконов лежит одна общая микроскопическая закономерность поляризация среды иод действием поля излучения описывается первым, линейным членом р = />< > = разложения индуцированной поляризации по степеням напряженности поля Е.  [c.15]

Основные законы распространения света хорошо известны из курса оптики [1]. Это законы волновой линейной оптики, т. е. законы, определяющие распространение световых волп при малой интенсивности света. Из линейной оптики хорошо известно, что если и среде коэффициент преломления не постоянен, а, например, плавно изменяется, то прямолинейность распространения света нарушается, световые лучж и.чгибаютсн в направлении большего коэффициента преломления. Это так называемое явление оптической рефракции [1] ).  [c.165]

Ф. п. установлен П. Ферма [1] и в первоначальной формулировке имел смысл наиболее общего закона распространения света. Действительно, из Ф. п. вытекают основные законы геометрич. оптики — закон отражения и закон преломления. В волновой теории света Ф. п. представляет собой следствие более общего принципа Гюйгенса и сохраняет силу только в тех случаях, когда длина световой волны может счптаться пренебрежимо малой величиной. Аналогия между Ф. п. и вариационными принципами механики сыграла большую роль в развитии современной динамики, с одной стороны, и теории оптич. инструментов — с другой. Эта же аналогия послужила одпой и отправных точек в открытии квантовой механики.  [c.296]

Сформулированные в предыдущей главе законы распространения света носят общий характер и применимы при решении всех задач геометрической оптики, но в ряде случаев возможны определенные упрон1ения. Рассмотрим поведение света и построение изображений на ненлоских, в частности сферических границах раздела сред.  [c.54]

В геометрической лучевой) оптике рассматриваются законы распространения света в прозрачных средах на основе представлб 1.чй о свете как о совокупности световык лучей (IV.3.1.5°) — линий, вдоль которых распространяется энергия световых электромагнитных волн. В геометрической оптике не учитываются волновые свойства света и связанные с ними дифракщтонные явления, (У.2.3.Г). Например, при прохождении света через линзу (У.1.5.Г) с диаметром оправы где к — длина световой волны, можно пренебречь явлением дифракции па краях линзы. Общий критерий применимости геометрической оптики где О — линейный размер препятствия, на  [c.343]

Т. о., в этой форме Ф. п. есть принцип наименьшей ОДП. В первонач. формулировке франц, учёного П. Ферма (Р. Fermat ок. 1660) принцип имел смысл наиболее общего закона распространения света, из к-рого следовали все (к тому  [c.803]

Как известно, четыре основных закона геометрической оптики (законы прямолилейного распространения света, независимости световых пучков, отражения света от зеркальных поверхностей и преломления света на границе раздела двух прозрачных сред) были установлены на основе опытных данных еще задолго до выяснения истинной природы света. В связи с этим уместно привести некоторые исторические сведения.  [c.3]

Еще 430 лет до нашей эры школа Платона установила законы прямолинейного распространения и отражения света от зеркальных поверхностей. Закон прямолинейного распространения нашел свое отражение также в трудах Эвклида (300 лет до и. э.), тогда как закон преломления света, можно полагать, был установлен Аристотелем (350 лет до н. э.).  [c.3]

Распространение света внутрь металла. Часть света, проходящая внутрь металла, как отмечено в ыше, сильно поглощается в нем. По этой причине в процессе взаимодействия света с металлами существенную роль играют их очень тонкие слои. При таком рассмотрении амплитуда световой волны будет резко уменьшаться по мере проникновения внутрь металла. Пусть монохроматическая световая волна длиной Kq нормально падает на поверхность металла. Ось 2 направим по нормали. Слой металла толщиной dz поглощает часть падающей энергии, пропорциональную толщине поглощающего слоя, т. е. dl = —aldz. Если проинтегрировать это выражение от нуля до 2, то получим известный закон Бугера, о котором более подробно речь пойдет позднее (см. гл. X)  [c.62]

Еще с древних времен известны некоторые основные законы геометрической оптики — прямолинейное распространение света в однородной среде, распространение через границу двух прозрачных сред с отличающимися показателями преломления (закон преломления света) и отражение от плоской зеркальной поверхности (закон отражения света). А как быть, если распространение света происходит в среде с псирерывно меняющимся показателем преломления Существует ли какая-нибудь общая закономерность, описывающая распространение света во всех вышеперечисленных случаях Ответ на подобный вопрос был дан французским математиком Ферма в середине XVII в.  [c.167]


До сих пор (исключая аберрацию света) мы не принимали во внимание возможное изменение законов оптических явлений, когда источники, либо наблюдатель, либо среда двиисугся друг относительно друга, т. е. мы не имели дело с оптикой движущихся сред. Начиная с середины XVII в, проводились различные наблюдения и опыты в этой области с целью выяснения свойства эфира, изучения возможных влияний движения материальной среды (например, воды в опыте Физо, Земли в опыте Майкельсона и т. д.) на скорость распространения света. Эти опыты создали основу оптики движущихся сред, на базе которой возникла специальная теория относительности. К числу таких опытов относятся эффект Допплера — смещение частот колебаний при движении источника или приемника, или же обоих одновременно друг относительно друга, явление аберрации света — отклонение луча источника при относительном движении источника и приемника, явление Физо — изменение скорости света в движущейся среде (увлечение света телом, движущимся относительно наблюдателя), опыт Майкельсона — влияние движения Земли относительно а6сол отно покоящегося эфира на скорость распространения света н т. д.  [c.418]

Соотношения (6.15) и (6.18) оказались полезными для решения сложных задач о распространении света в оптически неоднородной среде. В более простых случаях обычно оказывается достаточным использование только законов отражения и преломления света. При этом для описания условий фокусировки световых пучков и построения изображений применяют некоторые приемы, которые упрощают решение типовых задач. В развитие геометрической оптики суштетвенный вклад внес знаменитый  [c.277]


Смотреть страницы где упоминается термин Закон распространения света : [c.281]    [c.4]    [c.348]    [c.267]    [c.16]    [c.118]    [c.20]    [c.18]    [c.12]   
Смотреть главы в:

Метрология, специальные общетехнические вопросы Кн 1  -> Закон распространения света



ПОИСК



Геометрическая Уравнение эйконала. Луч света. Область применимости лучевого приОПТИКа ближения. Принцип Ферма. Вывод закона преломления из принципа Ферма. Распространение луча в среде с переменным показателем преломления Линзы, зеркала и оптические системы

ЗАКОНЫ РАСПРОСТРАНЕНИЯ СВЕТОВЫХ ПУЧКОВ

Закон независимого распространения света

Закон независимости распространения света

Закон прямолинейного распространения света в однородной среде

Законы распространения важнейших типов световых пучков

Плотности потоков энергии. Коэффициент отражения. Коэффициент пропускания. Закон сохранения энергии. Поляризация света при отражении и преломлении Распространение света в проводящих средах



© 2025 Mash-xxl.info Реклама на сайте